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Abstract 

It is widely accepted that type 1 diabetes mellitus (T1DM) is an autoimmune disease resulting from an 
interaction between immunologic, genetic, and environmental factors. However, the exact mechanism 
leading to the development of T1DM remain incomplete. There is a large body of evidence pointing 
towards the important role of toll-like receptor (TLR) activation and vitamin D deficiency in T1DM 

pathogenesis. In this article we review the available data on the influence of TLRs' level of activation 

and vitamin D status on the risk of the development of T1DM in humans and rodent models. We also 
summarized the current information regarding the interactions between TLRs' level of activation, 
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vitamin D status, and various environmental factors, such as enteroviral infections, the gut microbiota, 
and breastfeeding substitution, among others. Our results stipulate that vitamin D seems to protect 
against T1DM by reducing the TLRs' level of activation. 
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Abbreviations 

 

 

1,25(OH)2D – 1,25-dihydroxyvitamin D 

25(OH)D – 25-hydroxyvitamin D 

APC – Antigen presenting cell 

B6/RIP-B7.1mouse – A mouse expressing RIP-
B7.1 transgene 

BBDP rat – Biobreeding diabetes-prone rat 

BBDR rat – Biobreeding diabetes-resistant rat 

CCL – C-C motif chemokine ligand 

CD – Cluster of differentiation 

CI – Confidence Interval 

CL097 – A derivate of the imidazoquinoline 
compound R-848; TLR7/ TLR8 ligand  

CMV – Cytomegalovirus 

CpG – An unmethylated sequence of bacterial 
DNA recognized by TLR9 

CV-B4 – Coxsackie virus B4 

CXCL – C-X-C motif chemokine ligand 

DAMP – Damage-associated molecular pattern 

DC – Dendritic cell 

dsRNA – Double-stranded RNA 

EBV – Ebstein-Barr virus 

HMGB1 – High-mobility group protein B1 

ICA – Islet cell antibodies  

IFN – Interferon 

IL – Interleukin 

KRV – Kilham rat virus 

LCMV – Lymphocytic choriomeningitis virus 

LCMV-GP – The envelope glycoproteins of LCMV 

LPS – Lipopolysaccharide 

LTA – Lipoteichoic acid 

MAP kinase – Mitogen-activated protein kinase 

MHC – Major Histocompatibility Complex 

mRNA – Messenger RNA 

MyD88 – Myeloid differentiation primary response 
gene (88) 

NF-κB – Nuclear factor kappa-light-chain-enhancer 
of activated B cells 

NOD mice – Non-obese diabetic mice  

OR – Odds ratio 

OVA – Ovalbumin 

PAMP – Pathogen-associated molecular pattern 

PBMC – Peripheral blood mononucleated cell 
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Poly(I:C) – Polyinosinic:polycytidylic acid  

PRR – Pattern recognition receptor 

R-848 – An imidazoquinoline compound; TLR7/ 
TLR8 ligand 

SNPs – Single-nucleotide polymorphisms 

ssRNA – Single-stranded RNA 

STZ – Streptozocin 

T1DM – Diabetes mellitus type 1 

T2DM – Diabetes mellitus type 2 

T-cell –   T lymphocyte 

TLR – Toll-like receptor 

TIRAP – Toll-interleukin 1 receptor (TIR) domain 
containing adaptor protein  

TNF-α – Tumour necrosis factor α 

TRAM – TRIF-related adaptor molecule 

Treg – Regulatory T-cell 

TRIF – TIR-domain-containing adapter-inducing 
interferon-β 

VDR – Vitamin D receptor 

VZV – Varicella zoster virus 

 

 

 

 

Introduction 

Diabetes mellitus type 1 is an autoimmune disease resulting from the destruction of insulin-producing 
β-cells within the islets of Langerhans in the pancreas. It has two distinguishable phases – insulitis  
and overt diabetes (1). The first is characterized by an infiltration of  islets’ interstitium  by 
macrophages and CD 8+ T-cells (2). The islets of Langerhans undergo apoptosis and the residual β-
cell mass is usually decreased by at least 90% at clinical onset of T1DM (3). The second phase is 
defined by an insufficient insulin production that results in impaired blood glucose regulation, which 
in turn leads to hyperglycemia. This ultimately causes both acute and chronic complications of 
disease.  

 

The disease is generally believed to be a result of the interaction of the immune system with 
environmental and genetic factors (4). Studies conducted in the last two decades have suggested that 
the role of the humoral arm of the immune system is pivotal in T1DM pathogenesis. However, recent 
studies show that islet cell antibodies serve as mere markers of β-cell destruction. The crucial role of 
the cellular arm of the immune system in the development of disease has become more evident only 
recently (5). 

 

Toll-like receptors 

TLRs are pattern-recognition receptors that have changed little in the course of phylogenesis (6). 
There are 13 human TLRs known today, the first of which was discovered in 1997 (7). TLRs are 
mainly found on the surface of macrophages and dendritic cells, i.e. the sentinel cells. However, they 
are also expressed by tissue cells in the central nervous system, the kidneys, and in the liver (8). By 
recognizing molecular patterns, TLRs found the basis of the innate immune system's function of 
pathogen recognition. Since molecular patterns eliciting the inflammatory response can have their 
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sources not only in pathogens, but also in an organism's own cells (they are called DAMPs then), 
TLRs may mediate pathological cell death (9,10).Thus, TLRs are of particular interest in the study of 
autoimmune disease.  

 

Different TLRs have the ability to recognize a wide variety of exogenous ligands from bacteria 
(flagellin, glycolipids, lipopeptides, lipoproteins, LTA and LPS), viruses (dsRNA, ssRNA, DNA), 
fungi (β-glucan), parasites (profilin), as well as endogenous ligands like fibrinogen, heat shock 
proteins, and HMGB1 (8). Exogenous ligands recognition is enabled by the presence of leucine-rich 
repeat motifs that facilitate protein to protein interactions. Activated TLRs trigger a signaling cascade 
that may use the adaptors MyD88 (the most important one), TIRAP, TRAM and TRIF, which results 
in the activation of NF-kB transcription (11). In fact, only TLR3 uses TRIF and not MyD88 (11,12). It 
should also be noted that MAP kinases may be activated as a consequence of ligand binding by TLRs. 
In general, these mechanisms lead to an increase in the microcellular environment concentration of 
proinflammatory cytokines, antimicrobial peptides, and type I INFs (11). 

 

Vitamin D 

Vitamin D is a name used to describe a group of fat-soluble secosteroids. Of these, cholecalciferol 
(vitamin D3) and ergocalciferol (vitamin D2) play the most important roles in human physiology. It is 
well known that vitamin D has other functions apart from regulating calcium homeostasis. Vitamin D 
influences the immune system, the central nervous system, and muscles (13). Therefore, consequences 
of vitamin D deficiency are not limited to bone disease, i.e. rickets, osteoporosis, and osteomalacia 
(14). A significant volume of data points towards a role of vitamin D deficiency in autoimmune, 
neurologic and cardiovascular disease (15). Vitamin D also seems to influence carcinogenesis. 

 

The synthesis of vitamin D begins in the skin, where cholesterol is exposed to ultraviolet B photons. It 
should be stressed that this natural mechanism of vitamin D production is the most efficient source of 
vitamin D that the human organism possesses. This is well illustrated by the fact that at most latitudes, 
sunbathing for approximately 15 minutes between 10 a.m. and 3 p.m. provides sufficient amount of 
vitamin D (16). On the other hand, there are few nutritional sources of vitamin D, they are not well 
represented in the Western diet, and they contain insufficient amounts of the vitamin to meet demands. 
Oily fish, egg yolks, and artificially fortified, highly-processed foods are all examples of nutritional 
sources of vitamin D (14). 

The actual product of biosynthesis of vitamin D in the skin from cholesterol is 7-dehydrocholesterol. It 
is metabolized to 25-hydroxyvitamin D by the liver. This form of vitamin D is the most commonly 
used marker of vitamin D status. 25-hydroxyvitamin D is further hydroxylated in the kidneys, yielding 
1,25-dihydroxyvitamin D, the most potent form of naturally occurring vitamin D (17). 

A commonly used measure of vitamin D deficiency is 25-hydroxyvitamin D serum concentration 
below 75 nmol/L (17). Although vitamin D deficiency is widespread and seems to be widely prevalent 
in healthy pediatric and adult populations (18), the recommendations on daily vitamin D intake are 
conflicting. They most often range from 400 IU daily for infants (United States Institute of Medicine) 
(19) to 2,000 IU daily for adults over 50 years old (Scientific Advisory Council of Osteoporosis 
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Canada) (20). It was shown that doses as large as 1,500 IU of vitamin D daily may be required to 
reach vitamin D adequacy. It is also recognized that vitamin D supplementation with doses up to 
10,000 IU is safe (21). However, it should be noted that the evidence behind the definition of vitamin 
D deficiency and the recommendations of its supplementation still leaves many questions unanswered. 
A recent study by Autier et al. suggests that low 25-hydroxyvitamin D levels in various diseases result 
from associated chronic inflammation and may not play role in etiopathogenesis (22). 

 

Epidemiology of diabetes mellitus type 1 

T1DM constitutes 5-10% of all cases of diabetes (24). According to Diabetes Mondiale Project Group, 
the incidence of T1DM varies from 0.1/100,000/year in China and Venezuela to 36.5/100,000/year in 
Finland and 36.8/100,000/year in Sardinia. Twenty-one of thirty-nine European populations have a 
high or very high incidence of T1DM (10-19.99/100,000/year and ≥20/100,000/year, respectively). 
The incidence of T1DM among children increases with age and is highest among 10-14 years old in 
most populations worldwide (23). EURODIAB data in 17 European countries registered 29,311 new 
cases of T1DM in children aged under 15 between 1989 and 2003. The overall annual increase in 
incidence was 3.9% (95% CI 3.6-4.2). The predicted number of new cases in 2020 is 24,400. The 
incidence among children under 5 years old will double between 2005 and 2020. The prevalence 
among children younger than 15 years old will rise by 70% in this period (24). 

 

The genetic factors of diabetes mellitus type 1 

The cumulative significance of genetic factors is estimated to be as high as 50-65% according to twin 
studies (25). Approximately 70% of type 1 diabetics carry a HLA risk allele. However, only 3–7% of 
those carrying such a HLA haplotype will manifest T1DM (26). Individuals positive for HLA class II 
alleles – HLA-DRB1*03 (HLA-DR3), HLA-DRB1*04 (HLA-DR4) and DQB1*03:02 (HLA-DR8) 
have the highest risk of developing the disease (27). The link between HLA class II molecules and 
immune-mediated destruction of the pancreatic islets is still incomplete. The binding of crucial 
peptides from autoantigens such as GAD, insulinoma-associated 2 antigen, preproinsulin and zinc 
transporter ZnT8 in the thymus and peripheral organs of the immune system probably play an 
important role (28). Additionally HLA class I alleles, especially B*5701 and B*3906, are 
independently associated with the disease (29).  

Beyond HLA genes, there are also other loci that are linked to T1DM. Current data point towards the 
following genes: CD69, CTLA4, GLIS3, IL2Ra, IL10, IL19, IL20, IL27, PTPN22, and UBASH3A (30–
32). There is also an association between T1DM and single-nucleotide polymorphisms in the 
interferon-induced helicase 1 gene. This gene encodes melanoma differentiation-associated protein 5 – 
a cytoplasmic sensor for viruses, especially coxsackie B (33).  

 

The environmental factors of diabetes mellitus type 1 

Despite the large volume of research, the factor or factors triggering T1DM have not been established 
thus far. Findings obtained from many studies such as American DAISY (34), German BABYDIAB 
(35) and Finnish reports (36) are contradictory and do not give a satisfying answer to the T1DM 
problem. The traditional view of T1DM postulates that an environmental factor causes disease in 
genetically susceptible individuals, whereas newer theories indicate that the penetrance and the 
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expression of heritable immune aberrations, as well as the progression of initially inherited organ 
defects, are under the chronic influence of environmental factors (37). 

Data concerning most investigated environmental risks in relation to TLRs and vitamin D are 
summarized in the table below (Table 1). Vitamin D deficiency, as it is presented in Table 2, is 
considered as an environmental risk factor as well. 

 

Animal models of diabetes mellitus type 1 

NOD mice and biobreeding rats are the most popular rodent models in T1DM research. 

 

NOD mice 

The strain was identified and bred in the late 1970s. NOD mice spontaneously develop T1DM that 
bears the molecular and clinical features of the disorder in humans, i.e. primary mediation by T 
lymphocytes and a chronic course. The inflammation of the islets that begins at the age of 4-5 weeks 
leads to a gradual loss of β-cells and ultimately results in insulin deficiency. Clinical symptoms of 
T1DM in NOD mice present at the age of 12-30 weeks. It is noteworthy that NOD mice do not require 
daily administration of insulin and do not present with ketoacidosis. The percentage of NOD mice that 
develop clinical T1DM is 90% in females and 60% in males. This animal model of T1DM seems to be 
as complex as T1DM in humans, in addition to its molecular basis also not being fully understood 
(1,79,80). 

 

Biobreeding rats 

The biobreeding rats (BB) were first recognized in the 1970s. There are two inbred strains of BB rats: 
diabetes-prone (BBDP) and diabetes-resistant (BBDR). In BBDP a T-cell deficiency resulting from a 
mutation in the gene Ian4 that encodes a mitochondrial protein is at the core of the pathology that 
usually ensues at the age of 12 weeks. It includes polyuria with polydipsia, hyperglycaemia, weight 
loss, all linked with the lack of insulin. Unlike in NOD mice, the ketoacidosis is often fatal, and the 
mice may require insulin for survival. Development of T1DM in BBDR rats, who have normal 
immunologic phenotype, seems to be dependent on anti-viral antibodies (2,11,79). 

As the animal models of T1DM are a result of inbred selection for hyperglycaemia, it is highly 
probable that not all amplified characteristics of the phenotype are related to the autoimmune 
processes that underlie T1DM (79). 

 

The immune system in diabetes mellitus type 1 

Although the exact mechanism leading to β-cell destruction and T1DM pathogenesis remains unclear, 
there are theories that seem to integrate the available data well.  

In 2001, Mathis et al. proposed that T1DM has its roots in exposure of naive T-cells to islet antigens in 
lymph nodes. According to this theory, circulating naive T-cells encounter APCs of the pancreatic 
lymph nodes that carry islet antigens. The sources of the antigens may be diverse, and may include 
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products of cells constituting pancreatic islets and also the remains of apoptotic cells picked up by 
immature DCs. The T-cells activated after exposure to antigen peptides originating in β-cells may lead 
to a progressive loss of β-cells. It remains largely unknown in which circumstances the antigens of 
pancreatic islets could be picked up by the DCs (1). 

Lien et al. proposed in 2009 an explanation of mechanisms leading to the development of T1DM in 
BBDR rats. It concentrates on the role of viruses and TLRs. It is postulated that DCs become activated 
in response to KRV and TLR ligands. The DCs would upregulate the expression of molecules of class 
II MHC and chemokines, leading to a proinflammatory state. Activation of signaling pathways linked 
with TLR9 in response to KRV infection results in inflammation in the lymph nodes of the pancreas. 
T-cells recruited to those lymph nodes become activated. Simultaneously, regulatory T-cells are 
systemically downregulated through exposure to cytokines and TLR activation. These events, 
involving infection and an increase in TLR activity, lead to a release of islet antigens, which are 
picked up by DCs and presented to T-cells (11). There are also other explanations, which put more 
stress on the role of an unknown environmental insult. They are based on research conducted with the 
use of STZ (81).  

The “fertile field” hypothesis formulated in 2003 aimed at incorporating the information regarding the 
roles of various infectious agents in the development of T1DM. The “fertile field” itself is a period of 
time following a viral infection, during which autoreactive T-cells may expand, resulting in 
autoimmunity and ultimately T1DM. Therefore, β-cell death is a consequence of interaction between 
innate susceptibility and an environmental trigger (82). It is noteworthy that β-cells are especially 
prone to being exposed to pathogenic T-cells as they increase the production of IFN and MHC class I 
(83). The function of those effector T-cells is not sufficiently attenuated by regulatory T-cells because 
of their decreased population, altered reactions, and a proinflammatory environment (84). The antigens 
released from β-cells on their destruction are transferred to the pancreatic lymph nodes by APCs, 
possibly including immature DCs. Insulin autoantibody production begins after the conversion of B 
cells to plasma cells. This process occurs in the presence of β-cell antigens. This may in part be due to 
aberrations in the process of positive and negative T-cell selection in the thymus (85). The 
autoreactive CD8+ T-cells also play a role in the destruction of β-cells. These processes lead to a 
second wave of β-cell death. Local inflammation and stress stops insulin production in a large part of 
the remaining islets. The released antigens further stimulate the autoimmune response, thereby 
completing the vicious circle of T1DM etiopathogenesis. The proliferation of new pancreatic antigen-
specific clones of immune cells is called “epitope spreading”. The ensuing inflammation stimulates the 
proliferation of β-cells, which results in a temporary increase of their mass. The autoreactive process 
precipitates the onset of T1DM symptoms (82). 

The enteroviruses can play a role in the pathogenesis of T1DM through several mechanisms that may 
yield synergistic effects, e.g. antibody-dependent enhancement of infection, bystander activation of T 
lymphocytes, IFN-α production by β-cells, molecular mimicry, thymic, pancreatic, and persistent β-
cell infection (67). 

 

The roles of toll-like receptors and vitamin D in diabetes mellitus type 1 

According to the aforementioned hypotheses and data presented in the Table 2, TLRs play an 
important role in T1DM pathogenesis. However, the fact that hyperglycemia results in TLR’s 
upregulation should be noted as well (86). The majority of studies indicates that TLR upregulation 
leads to T1DM development. A few studies described a reduction of risk of T1DM after TLR’s early 
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stimulation. This is consistent with the hygiene hypothesis. Data concerning vitamin D’s impact on 
T1DM development is also summarized in Table 2. 

 

Vitamin D and toll-like receptors’ effects on the immune system 

Information regarding the contradictory effects of TLRs and vitamin D on the immune system, and the 
associations between them are collected in Table 3. 

 

Conclusions 

The current knowledge of TLRs and vitamin D involvement in T1DM points toward new and 
interesting aspects of autoimmunization and also sheds new light on the vast network of 
interdependent molecular processes underlying T1DM. The examples of particularly interesting and 
promising topics related to the role of TLRs in T1DM development are: the normal and pathological 
course of enteroviral infections, the relationship between the gut microbiota and the immune system, 
and the impact of substitution of breastfeeding on long-term predisposition to autoimmune disease. It 
is a matter of discussion whether currently available rodent models of T1DM will be sufficient to 
answer the arising questions. 

 

Although there is abundant evidence for the role of TLRs and vitamin D in the pathogenesis of T1DM, 
the exact mechanisms remain elusive. It seems that TLRs exert their influence on the development of 
T1DM through the modulation of immune responses following β-cell destruction as well as to 
triggering factors, such as enteroviruses. As such, both TLRs and vitamin D are of particular interest 
in T1DM research that could potentially pave the way for new clinical interventions. It is noteworthy 
to mention that such interventions would be effective regardless of the nature of the triggering 
environmental factor. Supplementation of vitamin D, which is a multidirectional modulator of TLR 
function, is one such potential intervention, and initial results of trials assessing its efficacy are 
promising. However, future trials and observational studies are needed to confirm these findings. 
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