RICKETS IN CHILDREN

Sachin Soni
DNB Pediatrics
Vitamin D physiology
Introduction
Etiology
Clinical feature
Radiology
Diagnosis
Lab
Treatment
VITAMIN D PHYSIOLOGY

Sunlight
Skin

7-Dehydrocholesterol
Cholecalciferol (vitamin D₃)

Liver

25-hydroxyvitamin D₃

Kidney

1,25-dihydroxyvitamin D₃

Maintains calcium balance in the body

dietary intake
Vitamin D₃ (fish, meat)
Vitamin D₂ (supplements)
- Fish, liver and oil,
 - Human milk (30-40 IU/L)
 - Exposure to sun light
- Vitamin D requirement:
 - Infants- 200IU/day (5mcg)
 - Children- 400IU/day (10mcg)
INTRODUCTION

Disease of growing bone due to unmineralized matrix at the growth plates and occurs in children only before fusion of epiphyses
ETIOLOGY

VITAMIN D DISORDERS

Nutritional vitamin D deficiency
 - Congenital vitamin D deficiency
 - Secondary vitamin D deficiency Malabsorption
 - Increased degradation
 - Decreased liver 25-hydroxylase

- Vitamin D–dependent rickets type 1
- Vitamin D–dependent rickets type 2
- Chronic renal failure
CALCIUM DEFICIENCY

- Low intake
- Diet
 - Premature infants (rickets of prematurity)
- Malabsorption
- Primary disease
 - Dietary inhibitors of calcium absorption
PHOSPHORUS DEFICIENCY

- Inadequate intake
- Premature infants (rickets of prematurity)
- Aluminum-containing antacids
- X-linked hypophosphatemic rickets
- Autosomal dominant hypophosphatemic rickets
- Autosomal recessive hypophosphatemic rickets
- Hereditary hypophosphatemic rickets with hypercalciuria
- Overproduction of phosphatonin
- Tumor-induced rickets
- McCune-Albright syndrome
- Epidermal nevus syndrome
- Neurofibromatosis
- Fanconi syndrome
- Dent disease
CLINICAL FEATURES OF RICKETS

- General
 - Failure to thrive
 - Listlessness
 - Protruding abdomen
 - Muscle weakness (especially proximal)
 - Fractures
HEAD

- Craniotabes
- Frontal bossing
- Delayed fontanel closure
- Delayed dentition; caries
- Craniosynostosis

CHEST

- Rachitic rosary
- Harrison groove
- Respiratory infections and atelectasis
- Scoliosis
- Kyphosis
- Lordosis

EXTREMITIES:
- Enlargement of wrists and ankles
- Valgus or varus deformities
- Windswept deformity (combination of valgus deformity of 1 leg with varus deformity of the other leg)
- Anterior bowing of the tibia and femur
- Coxa vara
- Leg pain
HYPOCALCEMIC SYMPTOMS

- Tetany
- Seizures
- Stridor due to laryngeal spasm
Deformities showing curvature of the limbs, potbelly, and Harrison groove.
Wrist x-rays in a normal child (A) and a child with rickets (B). Child with rickets has metaphyseal fraying and cupping of the distal radius and ulna.
CLINICAL EVALUATION

- Dietary history
- Cutaneous synthesis
- Maternal risk
- Medication
- Malabsorption
- Renal disease
- Family history
- Physical Examination
- Lab Test
Vitamin D deficiency is most common cause of rickets globally
Most common in infancy
Transplacental transport of vit D provide enough vit D for first 1 to 2 months of life.
Skin pigmentation
LABORATORY FINDINGS

Elevated:
- Alkaline phosphatase
- Parathyroid hormone
- Dihydroxyvitamin D

Decreased:
- Calcium
- Phosphorus
- Hydroxyvitamin D
<table>
<thead>
<tr>
<th>Disorder</th>
<th>Ca</th>
<th>Pi</th>
<th>PTH</th>
<th>25-(OH)D</th>
<th>1,25-(OH)₂D</th>
<th>ALK PHOS</th>
<th>URINE Ca</th>
<th>URINE Pi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin D deficiency</td>
<td>N, ↓</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
<td>↓, N, ↑</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>VDDR, type 1</td>
<td>N, ↓</td>
<td>↓</td>
<td>↑</td>
<td>N</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>VDDR, type 2</td>
<td>N, ↓</td>
<td>↓</td>
<td>↑</td>
<td>N</td>
<td>↑↑</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>Chronic renal failure</td>
<td>N, ↓</td>
<td>↑</td>
<td>↑</td>
<td>N</td>
<td>↓</td>
<td>↑</td>
<td>N, ↓</td>
<td>↓</td>
</tr>
<tr>
<td>Dietary Pi deficiency</td>
<td>N</td>
<td>↓</td>
<td>N, ↓</td>
<td>N</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>XLH</td>
<td>N</td>
<td>↓</td>
<td>N</td>
<td>N</td>
<td>RD</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>ADHR</td>
<td>N</td>
<td>↓</td>
<td>N</td>
<td>N</td>
<td>RD</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>HHRH</td>
<td>N</td>
<td>↓</td>
<td>N, ↓</td>
<td>N</td>
<td>RD</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>ARHR</td>
<td>N</td>
<td>↓</td>
<td>N</td>
<td>N</td>
<td>RD</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>Tumor-induced rickets</td>
<td>N</td>
<td>↓</td>
<td>N</td>
<td>N</td>
<td>RD</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>Fanconi syndrome</td>
<td>N</td>
<td>↓</td>
<td>N</td>
<td>N</td>
<td>RD or ↑</td>
<td>↑</td>
<td>↓ or ↑</td>
<td>↑</td>
</tr>
<tr>
<td>Dietary Ca deficiency</td>
<td>N, ↓</td>
<td>↓</td>
<td>↑</td>
<td>N</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
</tr>
</tbody>
</table>
Stoss therapy – 300000 – 600000 IU Vitamin D oral or IM, 2-4 doses over one day

Alternatively high dose vit D, 2000-5000 IU/day over 4-6 wk

Followed by oral Vit D:
- < 1 year of age - 400IU
- > 1 years of age- 600IU

Symptomatic hypocalcemia – IV calcium gluconate 100 mg/kg followed by oral calcium or calcitrol - 0.05mcg/kg/day
PROGNOSIS

- Most of children have excellent prognosis
- Severe disease causing permanent deformity and short stature
PREVENTION

- Daily multivitamin contain- 400IU vit D for infants while 600 IU/day for older children
SECONDARY VITAMIN D DEFICIENCY

- GI diseases - Cholestatic liver disease,
 - Cystic fibrosis, pancreatic dysfunction,
 - Defects in bile acid metabolism,
 - Celiac disease, Crohn disease, intestinal lymphangiectasia
 - Intestinal resection.
- Severe liver disease decreases 25-D formation due to insufficient enzyme activity
- vitamin D deficiency due to liver disease usually requires a loss of >90% of liver function.
- Medication- Phenobarbital or phenytoin
 - isoniazid or rifampin.
TREATMENT

- high doses of vitamin D- 25-D
 (25-50 g/day or 5-7g/kg/day)
- 1,25-D, or with parenteral vitamin D.
- Degradation of vitamin D by the CYP system
 - Acute therapy as for nutritional deficiency
 followed by
- long-term administration of high doses of vitamin D
 - 1,000 IU/day) as much as 4,000 IU/day
VITAMIN D–DEPENDENT RICKETS, TYPE 1

- Autosomal recessive disorder
- Mutations in the gene encoding renal 1α-hydroxylase
- 1st 2 yr of life
- Classic features symptomatic hypocalcemia
- Normal levels of 25-D
- Low or normal levels of 1,25-D
- Renal tubular dysfunction- Metabolic acidosis and generalized aminoaciduria
- Treatment- 1,25-D (calcitriol)- 0.25-2 g/day
VITAMIN D–DEPENDENT RICKETS, TYPE 2

- Autosomal recessive disorder
- Mutations in gene encoding vitamin D receptor
- Levels of 1,25-D are extremely elevated

- Present during infancy, might not be diagnosed until adulthood.
- 50-70% of children have alopecia, range from alopecia areata to alopecia totalis.
- Epidermal cysts are less common
THANK YOU