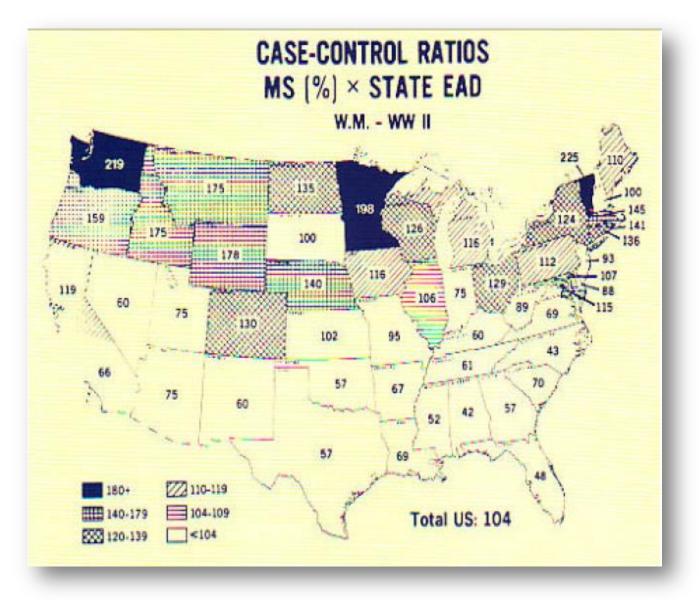
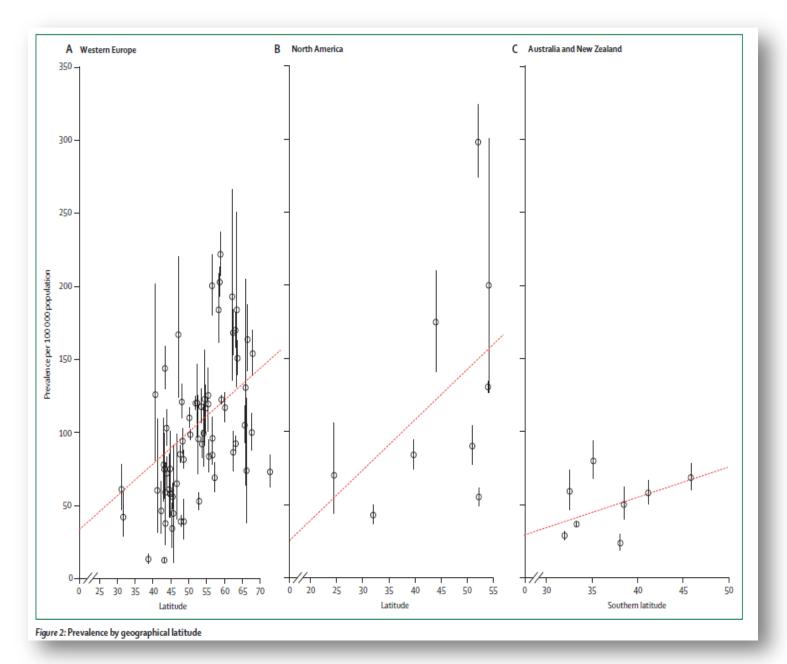


Vitamin D and MS

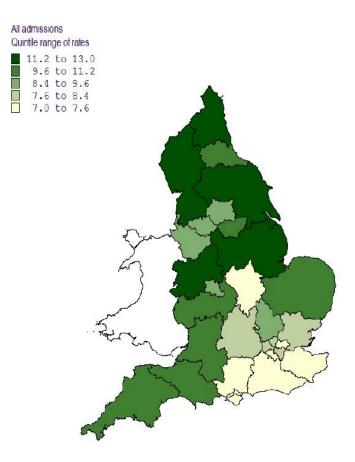
Gavin Giovannoni

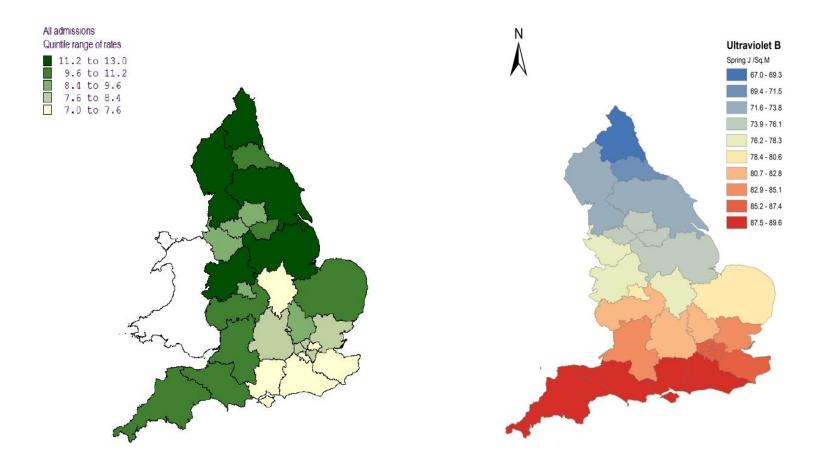
Latitude


Geographical Distribution of MS


- First study of geographical distribution of MS prevalence by Davenport
- Key finding: Geographical variation in MS prevalence, implying population (genetic) and environmental contributions to MS risk

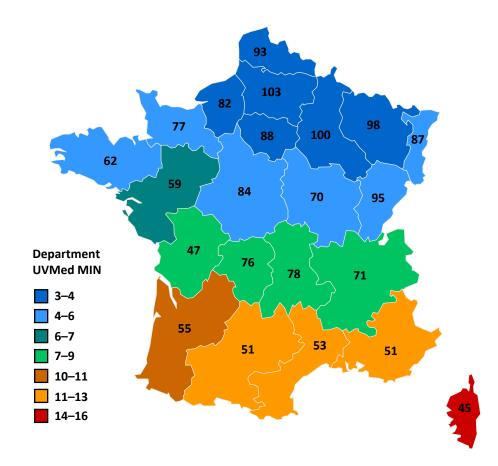
This article was published in *McAlpine's Multiple Sclerosis* 4th edition. Compston A. ed. London Churchill Livingstone Elsevier 2006;55 Fig 1.33 Copyright Elsevier (2007)


Prevalence of MS in the USA



Koch-Henriksen and Sorenson, 2010

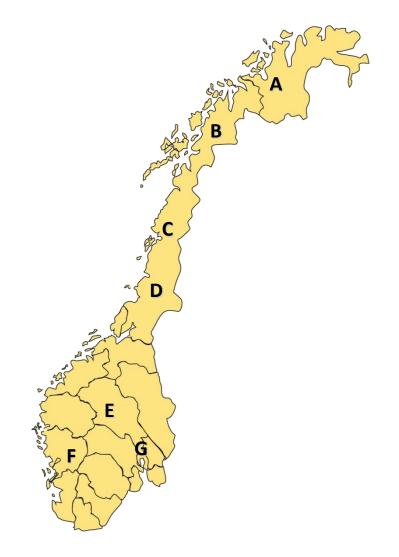
MS-related hospital admissions England



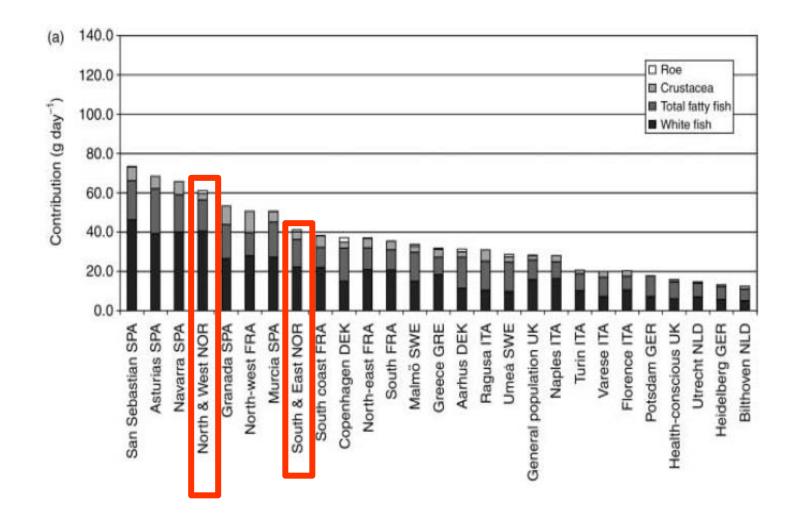
Relationship of MS prevalence to ultraviolet exposure

UVB and MS prevalence in France

MS Prevalence by Department Against UVMED Minimum

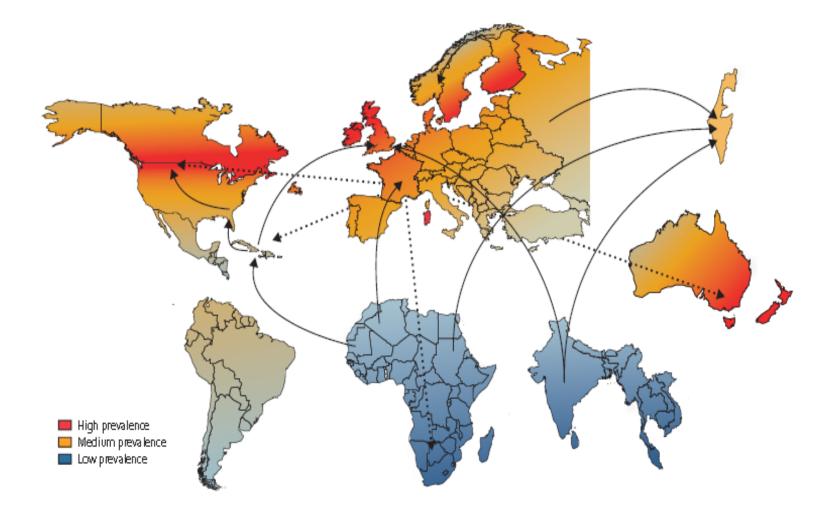


Prevalence of MS in Norway

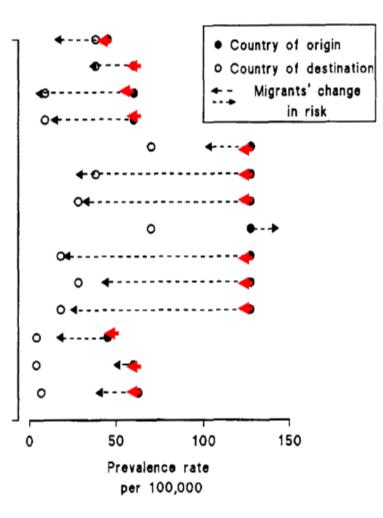

• Prevalence data for counties in Norway (/10⁵):

A Fi	nnmark ¹ (2003)	>83
B Tr	⁻ oms ¹ (2003)	>104
CΝ	ordland (1999)	106
D N	ord Trøndelag (1999)	164
ΕO	ppland ² (2002)	190
FΗ	ordaland (2003)	151
GΟ	slo² (2005)	154

- In Norway, MS prevalence does not rise with increasing latitude, unlike other northern European countries and the USA
- As expected, measured UV radiation levels decrease with increasing latitude



Fish consumption


Migration

Migration studies

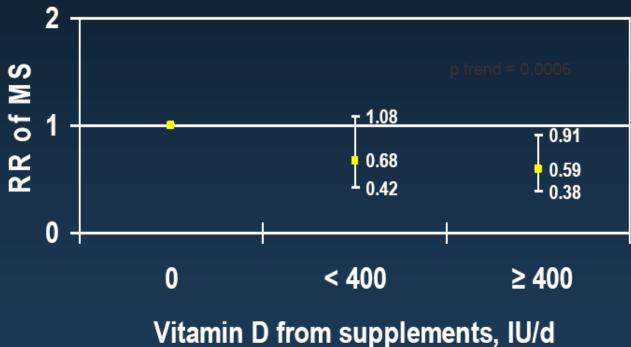
The effect of migration on MS prevalence

S Europe to S Australia (crude) UK to S Australia (crude) Europe to Queensland, Aust. (crude) UK/Ireland to Queensland, Aust. (crude) Europe to Hobart, Tasmania Europe to Newcastle, Australia Europe to Perth, Australia England to Hobart, Tasmania Europe to Queensland, Australia England to Perth, Australia England to Queensland, Australia S Europe to Israel (crude) N & C Europe to Israel (crude) UK to South Africa

Prevention

vD supplementation

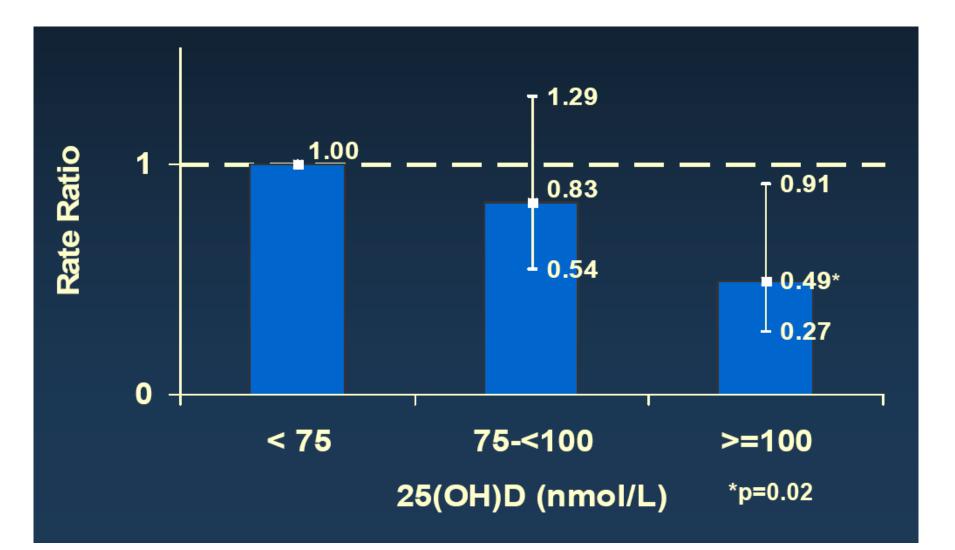
Vitamin D and MS


Nurses' Health Study (n=121,700; 30-55 yrs)

Munger et al, 2004

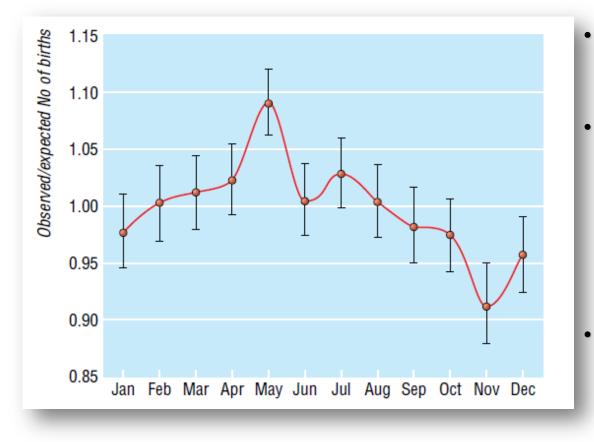
Vitamin D and MS

RR of MS according to use of vitamin D supplements


vD levels

Vitamin D and MS

- >40 million serial blood samples since 1990 from over 8 million US military personnel
- Cases (n=257) identified via Physical Disability Agencies
- Controls (n=514) matched by age, sex, race/ethnicity, dates of blood collection


Vitamin D and MS

Munger et al, 2006

When to supplement?

Vitamin D and MS- Month of Birth

- Role of light exposure in MS supported by month of birth effect
- In northern hemisphere, significantly more people with MS are born in May (less light during pregnancy) than November (more light during pregnancy)
- Birth month effect is inverse in the southern hemisphere

RESEARCH ARTICLE

Month of birth, vitamin D and risk of immunemediated disease: a case control study

Giulio Disanto^{1,2†}, George Chaplin^{3†}, Julia M Morahan^{1,2}, Gavin Giovannoni⁴, Elina Hyppönen⁵, George C Ebers^{1,2*} and Sreeram V Ramagopalan^{1,2,4,6*}

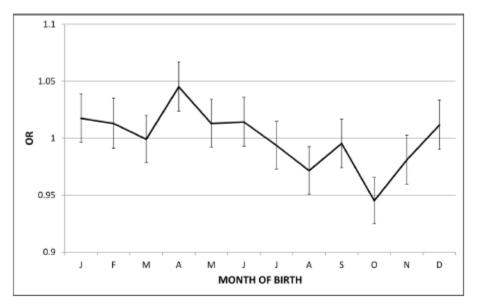


Figure 1 Odds ratio distribution with 95% CI based on month of birth in all immune-mediated diseases (n = 115,172) versus general population. April peak and October trough of risk can be observed.

Month	All immun	All immune-mediated diseases			<u>clerosis</u>		Rheumato	Rheumatoid arthritis		
	Birth %	OR	95% CI	Birth %	OR	95% CI	Birth %	OR	95% CI	
Jan	8.63	1.02 +	0.99 to 1.04	8.51	1.01	0.97 to 1.05	8.44	0.99	0.95 to 1.03	
Feb	7.90	1.01	0.99 to 1.04	7.76	0.99	0.95 to 1.03	7.94	1.02	0.98 to 1.06	
Mar	8.88	1.00	0.98 to 1.02	8.67	0.97	0.93 to 1.01	8.99	1.01	0.98 to 1.05	
Apr	8.77	1.05 +	1.02 to 1.07	8.79	1.05 +	1.002 to 1.09	8.78	1.05 +	1.01 to 1.08	
May	8.83	1.01	0.99 to 1.03	9.41	1.08 +	1.04 to 1.13	8.64	0.99	0.95 to 1.03	
Jun	8.44	1.01	0.99 to 1.04	8.70	1.04	1.01 to 1.09	8.47	1.02	0.98 to 1.06	
Jul	8.49	0.99	0.97 to 1.01	8.51	0.99	0.95 to 1.04	8.37	0.98	0.94 to 1.01	
Aug	8.16	0.97 -	0.95 to 0.99	8.20	0.98	0.94 to 1.02	8.14	0.97 -	0.93 to 1.00	
Sep	8.12	1.00	0.97 to 1.02	7.94	0.96	0.92 to 1.01	8.10	1.00	0.96 to 1.03	
Oct	8.05	0.95 -	0.92 to 0.97	8.08	0.96 -	0.92 to 1.00	8.20	0.96 -	0.93 to 0.99	
Nov	7.61	0.98	0.96 to 1.00	7.43	0.96 -	0.91 to 1.00	7.65	0.99	0.95 to 1.02	
Dec	8.11	1.01	0.99 to 1.03	8.01	1.00	0.96 to 1.04	8.30	1.04 +	1.00 to 1.07	
Month	Ulcerative colitis			Systemic	Systemic lupus erythematosus			Crohn's disease		
	Birth %	OR	95% CI	Birth %	OR	95% CI	Birth %	OR	95% CI	
Jan	8.63	1.02	0.97 to 1.06	9.57	1.14 +	1.03 to 1.27	8.99	1.06 +	1.01 to 1.11	
Feb	8.07	1.04 +	0.99 to 1.09	7.86	1.00	0.90 to 1.13	7.84	1.01	0.96 to 1.06	
Mar	8.90	1.00	0.96 to 1.05	8.75	0.98	0.88 to 1.09	8.94	1.01	0.96 to 1.06	
Apr	8.92	1.06 +	1.02 to 1.11	8.85	1.05	0.95 to 1.18	8.54	1.02	0.97 to 1.07	
May	8.73	1.00	0.96 to 1.05	9.71	1.12 +	1.01 to 1.24	8.40	0.96 -	0.91 to 1.01	
Jun	8.25	0.99	0.94 to 1.04	7.61	0.90	0.81 to 1.02	8.44	1.02	0.97 to 1.07	
Jul	8.44	0.99	0.94 to 1.03	8.58	1.00	0.90 to 1.12	8.75	1.03	0.98 to 1.08	
Aug	8.15	0.97 -	0.93 to 1.02	8.40	1.00	0.90 to 1.12	8.13	0.97	0.92 to 1.02	
			0.05 - 1.05	7.51	0.91 -	0.81 to 1.02	8.45	1.04 +	0.99 to 1.10	
Sep	8.18	1.00	0.96 to 1.05	7.51	0.21					
-	8.18 7.91	1.00 0.93 -	0.96 to 1.05 0.88 to 0.97	7.93	0.94	0.84 to 1.05	7.89	0.92 -	0.87 to 0.97	
Sep										

Table 2 Birth percentages and monthly odds ratios with 95%CI for each and all immune-mediated diseases

+ and - indicate highest and lowest odds ratios, respectively. CI: confidence intervals; OR: odds ratio.

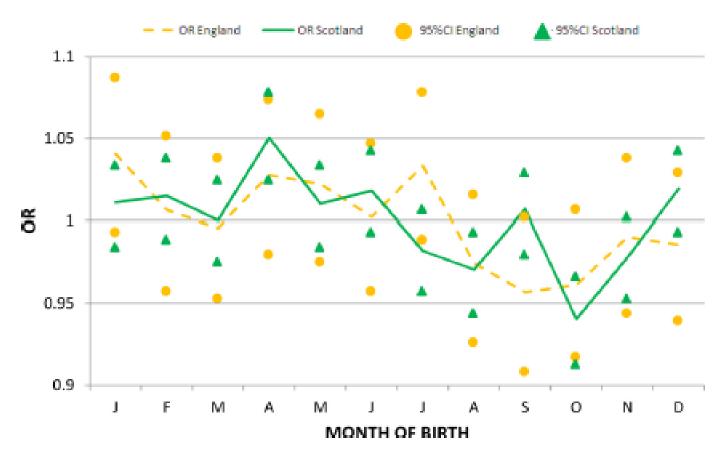
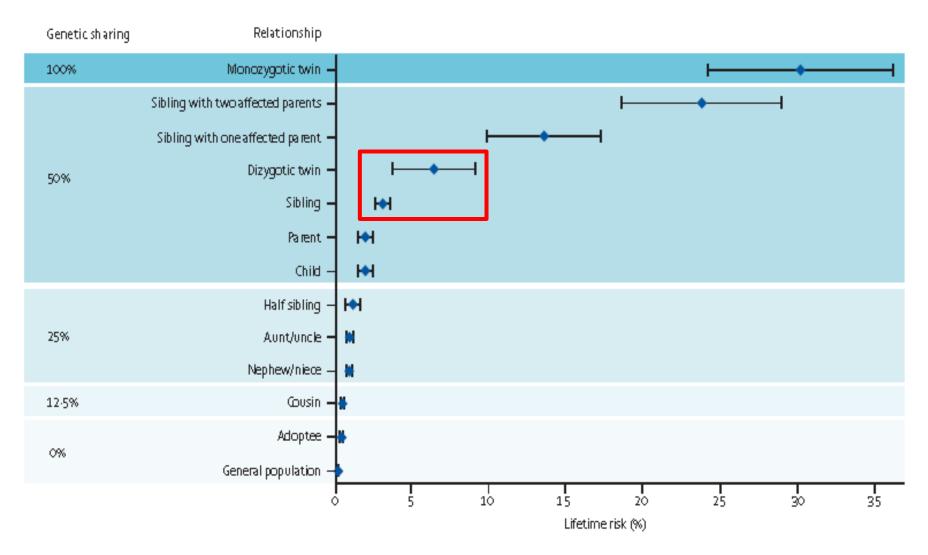
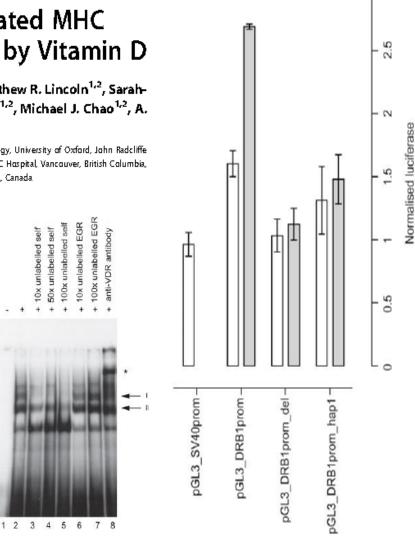



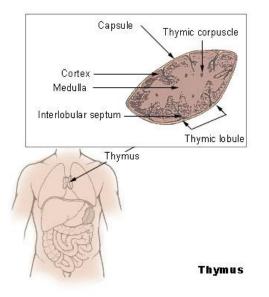
Figure 2 Odds ratio distribution based on month of birth in England and Scotland. The highest and lowest odds ratios are observed in Scotland but 95%CI substantially overlap.

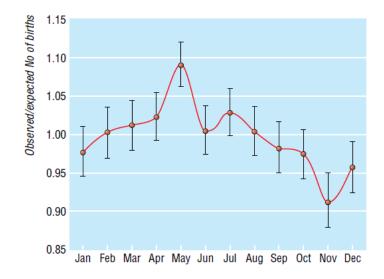
Familial risk

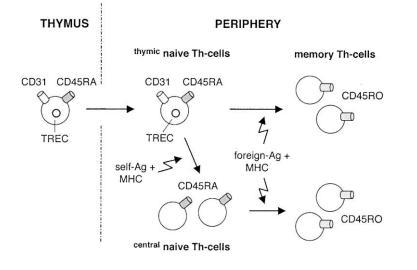

Expression of the Multiple Sclerosis-Associated MHC Class II Allele HLA-DRB1*1501 Is Regulated by Vitamin D

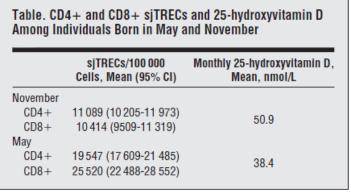
Sreeram V. Ramagopalan^{1,2®}, Narelle J. Maugeri^{1®}, Lahiru Handunnetthi^{1,2}, Matthew R. Lincoln^{1,2}, Sarah-Michelle Orton^{1,2}, David A. Dyment^{1,2}, Gabriele C. DeLuca^{1,2}, Blanca M. Herrera^{1,2}, Michael J. Chao^{1,2}, A. Dessa Sadovnick^{3,4}, George C. Ebers^{1,2}*, Julian C. Knight¹*

1 Welkome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom, **2** Department of Clinical Neurology, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom, **3** Department of Medical Genetics, Division of Neurology, University of British Columbia, UBC Hospital, Vancouver, British Columbia, Canada, **4** Faculty of Medicine, Division of Neurology, University of British Columbia, UBC Hospital, Vancouver, British Columbia, Canada

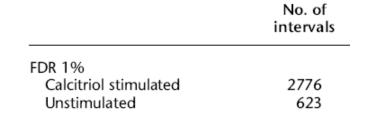

Protei

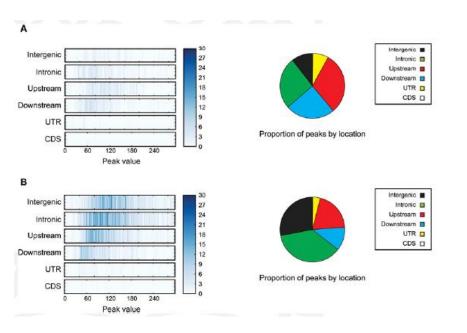

AGTTCTCCCTGAGTGAGACTTGCCTGCTTCTCTGGCCCCCTGGTCCTGTC

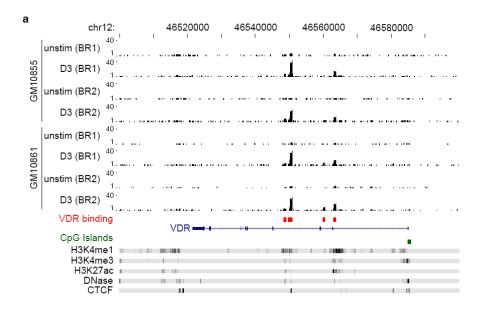



3

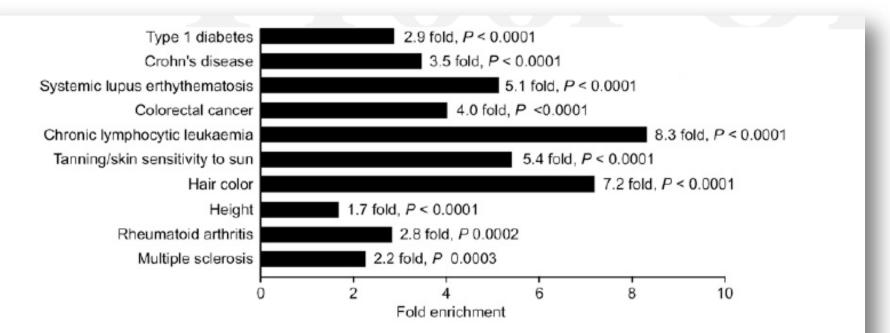
Thymic Education Hypothesis

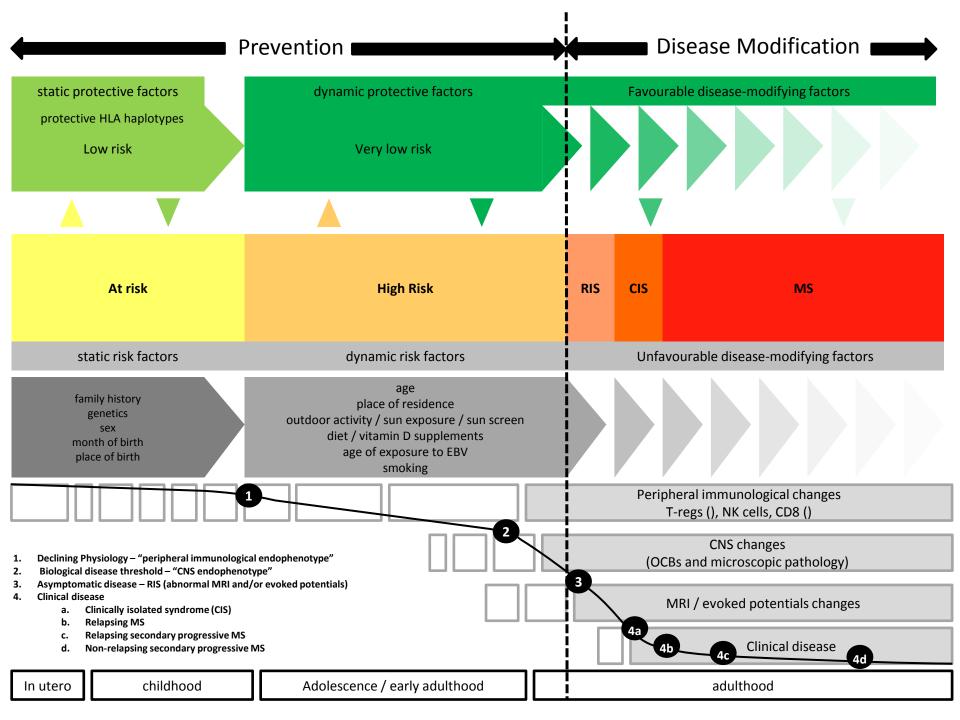



Abbreviation: sjTRECs, signal joint T-cell receptor excision circles.


Disanto et al. JAMA Neurol. 2013 Apr;70(4):527-8.

Genome-wide vitamin D receptor mapping using ChIP-seq in Lymphoblastoid Cell Lines




Ramagopalan et al, 2010

Enrichment for genes associated to autoimmune disease and cancer

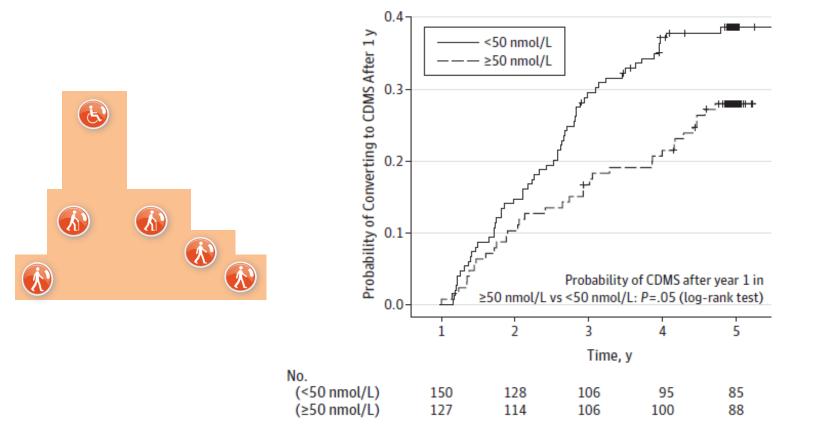
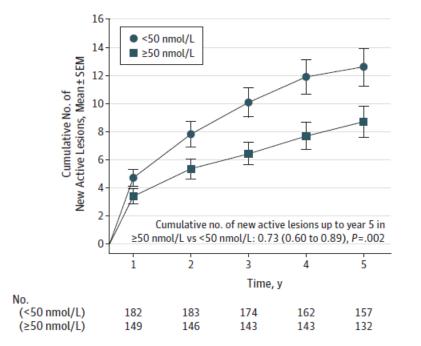
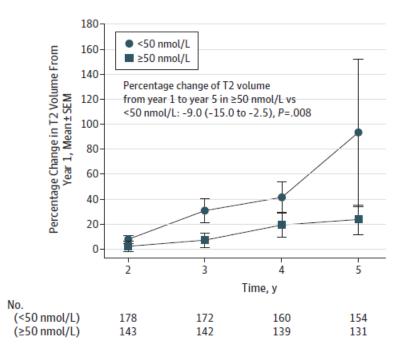
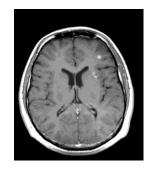
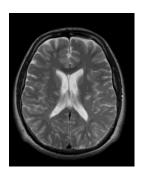


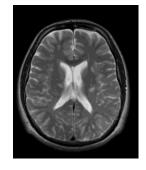
Figure 3. Common traits showing enrichment of VDR binding within intervals identified by GWAS. A total of 47 common diseases and traits were analyzed (see Methods and Supplemental Table 5) and those showing significant enrichment of VDR binding defined by ChIP-seq in two LCLs after calcitriol stimulation with a 1% FDR are shown.

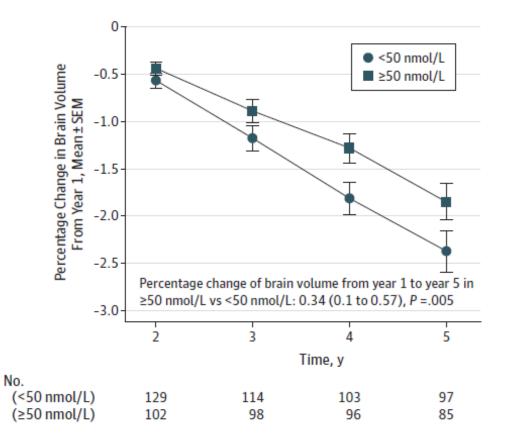

Can vD be used as a MS disease modifying therapy?

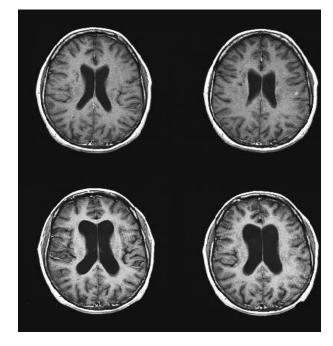


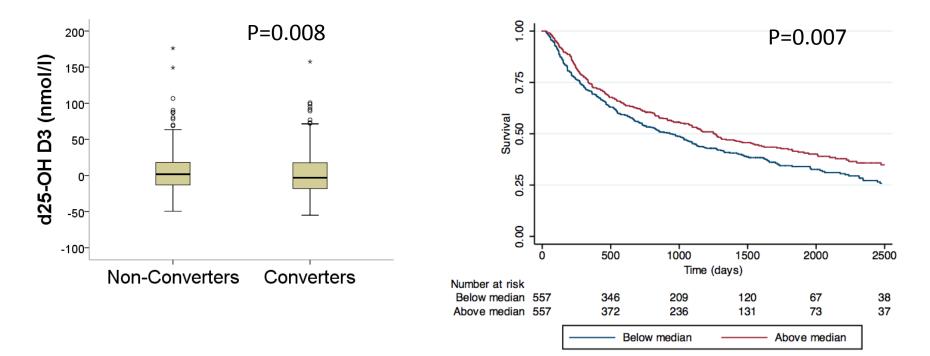

Vitamin D as an early predictor of MS activity and progression




Vitamin D as an early predictor of MS activity and progression

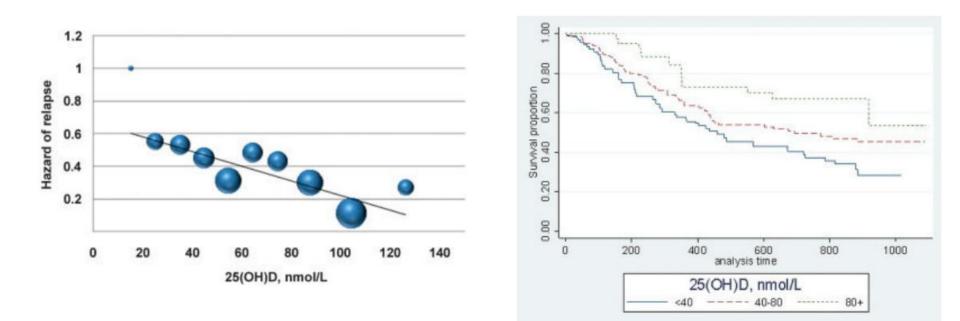






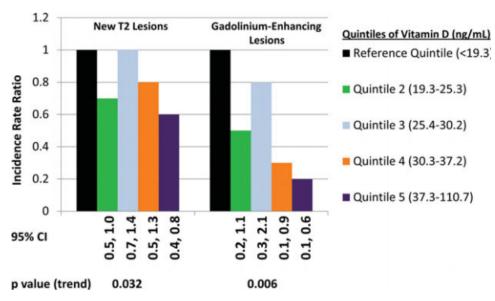
Vitamin D as an early predictor of MS activity and progression

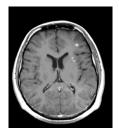
Multivariate International CIS risk factor study - 25-OH D3

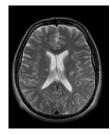

Median Survival:

935 days vs. 1262 days

Conversion to CDMS]	HR	95% CI	P value
25-OH D ₃	0.996	0.993-0.999	0.01


Kuhle et al. submitted 2014.


Higher 25-OH vD is associated with lower relapse risk



Simpson et al. Ann Neurol. 2010;68:193–203.

vD status predicts new brain MRI activity in MS

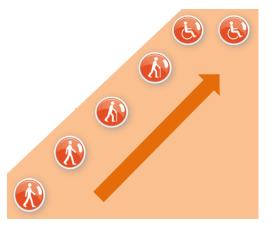
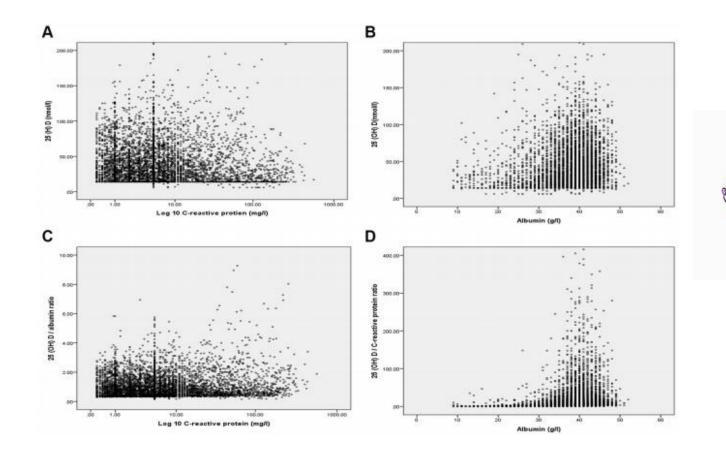
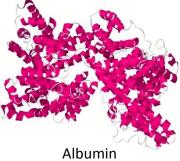



FIGURE: Magnetic resonance imaging outcomes associated with quintiles of vitamin D. CI = confidence interval.

- EPIC is a 5-year longitudinal MS cohort study at the UCSF.
- 469 subjects annual clinical evaluations, brain MRI, and biomarkers.
- Each 10ng/ml higher vitamin D level was associated with lower subsequent disability (-0.047; 95% CI = -0.091 to -0.003; *p* = 0.037).

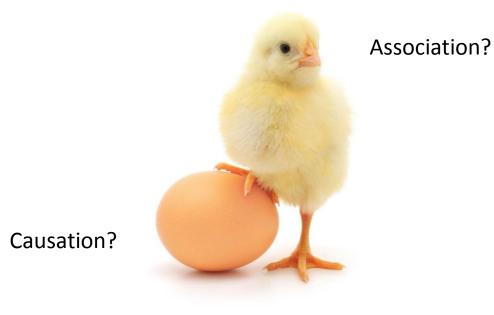

Chicken or Egg



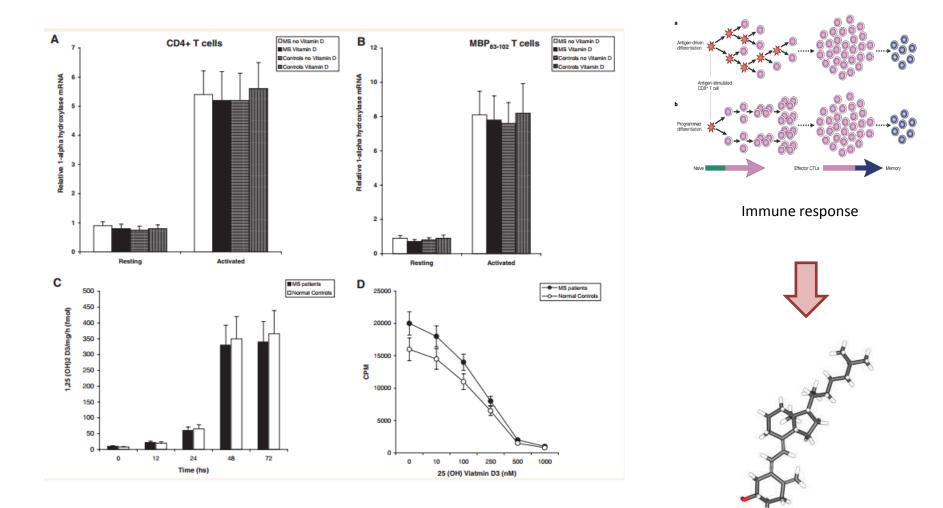

Association?

Causation?

The effect of the systemic inflammatory response on plasma vitamin 25 (OH) D concentrations adjusted for albumin



Ghashut et al. PLoS One. 2014 Mar 25;9(3):e92614.


Hypothesis

"Hypovitaminosis D3 is a consumptive vitaminopathy."

Therefore, the association between low vD levels and disease is due to reverse causation.

Immunomodulatory effects of vD in MS

Vitamin D3

Correale et al. Brain 2009: 132; 1146-1160.

Seasonal Effects

Seasonal patterns in optic neuritis and MS: a meta-analysis

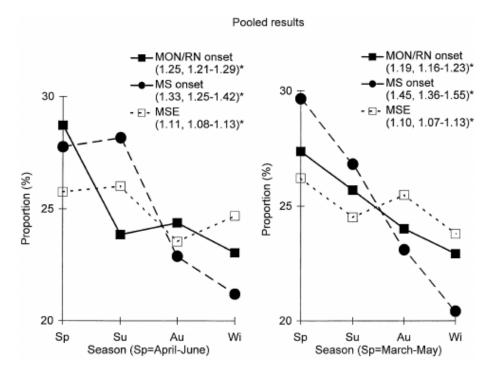
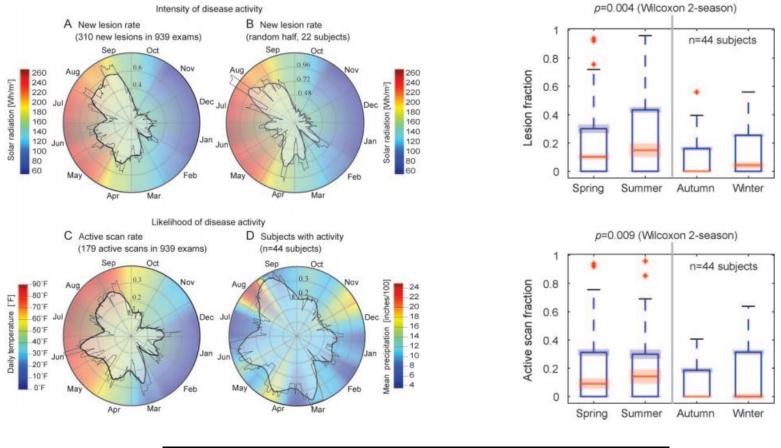
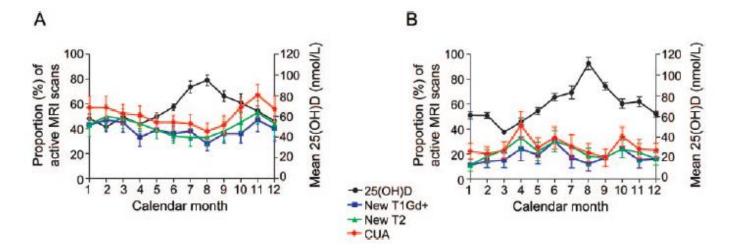
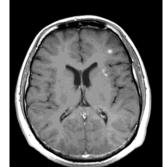



Fig. 3. Seasonal proportion in pooled MON/RN, MS onsets and MSE. Sp=Spring; Su=Summer; Au=Autumn; Wi=Winter. *HL ratio and 95% CI.



Seasonal prevalence of MS disease activity



vD and disease activity in MS before and during IFN-beta treatment

Treatment effects

The effect of vitamin D-related interventions on multiple sclerosis relapses: a meta-analysis

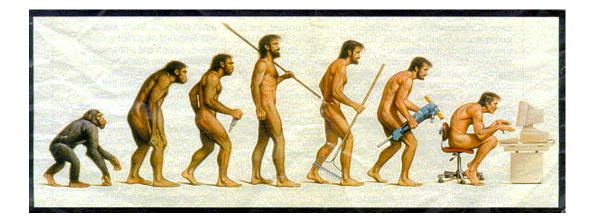
	Experim	ental	Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95%	CI IV, Random, 95% CI
Burton 2010	4	24	9	23	21.3%	0.31 [0.08, 1.21]
Kampman 2012	6	35	4	33	21.2%	1.50 [0.38, 5.88	s] — — — — — — — — — — — — — — — — — — —
Shayganeejad 2012	8	25	9	25	25.5%	0.84 [0.26, 2.70	
Soilu-Hanninen 2012	8	34	7	32	25.9%	1.10 [0.35, 3.48	s]
Stein 2012	4	11	0	12	6.0%	15.00 [0.70, 319.52	
Total (95% CI)		129		125	100.0%	0.98 [0.44, 2.17]	1 +
Total events	30		29				
Heterogeneity: Tau ² = 0.29; Chi ² = 6.24, df = 4 (P = 0.18); l ² = 36%							
Test for overall effect: Z = 0.05 (P = 0.96)0.010.1110100Favours experimentalFavours control							

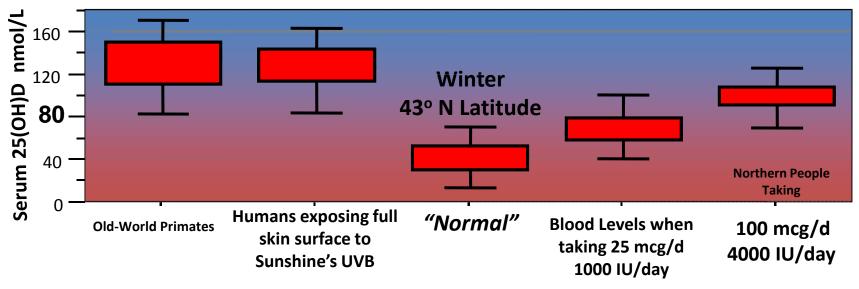
James et al. Mult Scler. 2013 Oct;19(12):1571-9.

The effect of vitamin D-related interventions on multiple sclerosis relapses: a meta-analysis

Table 4. Characteristics of currently on-going trials.

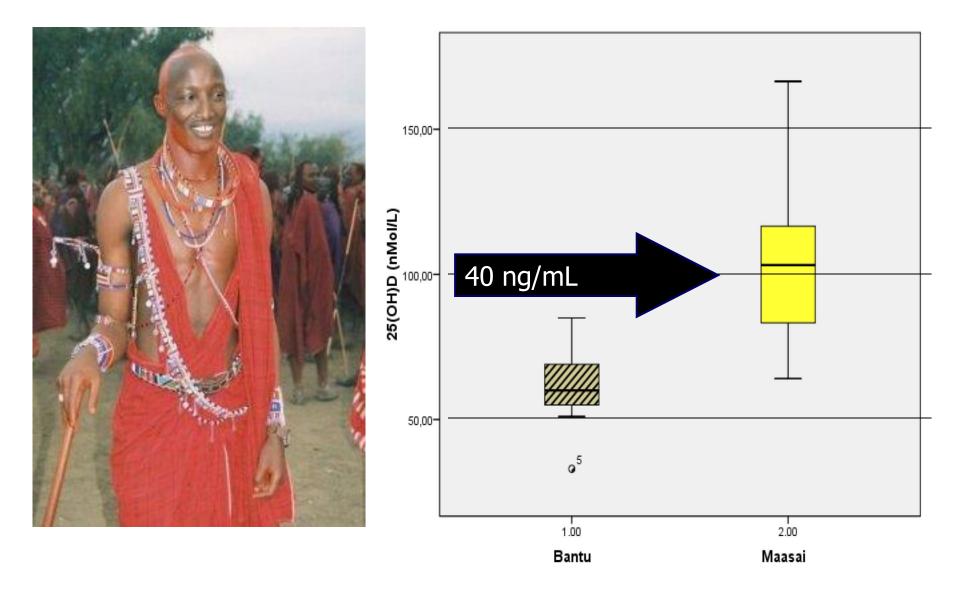
Clinicaltrials.gov identifier	Vitamin D group intervention	Placebo group intervention	Study duration [weeks]	Estimated enrolment
NCT01198132	100,000IU/month vitamin D3 Rebif 3×/week	Rebif 3×/week	96	250
NCT01490502	5000IU/day vitamin D3 Copaxone	600IU/day vitamin D3 Copaxone	104	172
NCT01024777	10,000IU/day vitamin D3	400IU/day vitamin D3	26	40
NCT01285401	6670IU/day (4 weeks), 14,007IU/day (92 weeks) vitamin D3 Rebif 3×/week	Rebif 3×/week	96	358
NCT01440062	20,400IU alternate day vitamin D3. Interferon B1b.	400IU alternate day vitamin D3. Interferon β1b	78	80


James et al. Mult Scler. 2013 Oct;19(12):1571-9.


Clir	nicalTri	als.gov	Search for studies		'Heart attack" AN	ID "Los Angeles"	Search
		ational Institutes of Health			d Search Help	Studies by Topic	
Find	Studies	About Clinical Studies	Submit Studies Reso	ources	About This	Site	
Home	> Find Studies >	Search Results					Text Size 🔻
			udies found for: Vitamin D n lify this search How to Use				
		Mod	ing this search i now to use	Search Rea	suits		
L	List By Top	ic On a Map Search	Details				
+ Shov	w Display Optic	ons			다 Down	load 🔊 Subscr	ibe to RSS
		udies Exclude studies with	unknown status				
Rank	Status	Study					
1	Not yet		ucing the Relapse Rate in Pa	atients Wi	th Multiple Sc	lerosis	
	recruiting		Multiple Sclerosis Dietary Supplement: Vitamin D)3: Dietan	/ Supplement: P	lacebo	
		interventioner	blotary copplement. Vitamin's	io, biotary		10000	
2	Completed		Effect of Low Dose Versus			n Multiple Sclerosi	s
Conditions: Multiple Sclerosis; Vitamin D Deficiency Intervention: Drug: Cholecalciferol							
_							
3	Completed		 Oral Vitamin D3 With Calciu Multiple Sclerosis 	im in Mult	tiple Sclerosis		
			Dietary Supplement: Vitamin D)3			
4	Completed	Vitamin D3 Supplements	ation and the T Cell Compar	tment in I	Multiple Sclere	neis (MS)	
-	completed		Multiple Sclerosis	unonum	inditipic scient	5313 (1113)	
		Intervention:	Dietary Supplement: vitamin D	3			
5	Recruiting	Pharmacokinetics of Vit	amin D in Multiple Sclerosis	s and in He	ealth		
	-	Condition:	Multiple Sclerosis, Relapsing-	remitting			
		Intervention:	Dietary Supplement: Vitamin D)3			
6	Terminated	The Effects of Interferor Patients	n Beta Combined With Vitan	nin D on R	elapsing Rem	itting Multiple Scle	rosis
		Condition:	MULTIPLE SCLEROSIS				
		Intervention:	Dietary Supplement: Vitamin D)3			
7	Recruiting	Correlation Between Re	lapses in Multiple Sclerosis	s (MS) and	I Vitamin D Int	ake	
			Multiple Sclerosis				
		Intervention:					
8	Completed	Vitamin D Pilot Study in	Patients With Multiple Scler	osis			
			Relapsing Remitting Multiple S	clerosis			
		Intervention:	Drug: 19 nor vitamin d				
9	Recruiting	Vitamin D Supplementat	ion in Multiple Sclerosis				
			Relapsing Remitting Multiple S	clerosis			
		Intervention:	Drug: Vitamin D3				

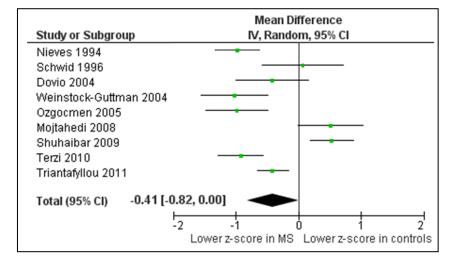
What dose of vitamin D?

Vitamin D Status in Primates and Early Humans

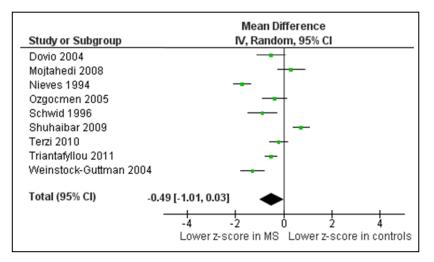


Physiological adult intake

Slide adapted from Reinhold Vieth


Sources, include Cosman, Osteoporosis Int 2000; Fuleihan NEJM 1999; Scharla Osteoporosis Int 1998; Vieth AJCN 1999, 2000

Maasai median 25(OH)D = 104 nmol/L = 41 ng/mL



Osteopaenia: z-scores are lower in MSers

Lumbar spine

Femoral neck (NS)

Dobson et al. Mult Scler. 2012 Nov;18(11):1522-8.

HES data: risk ratio of fractures in MS

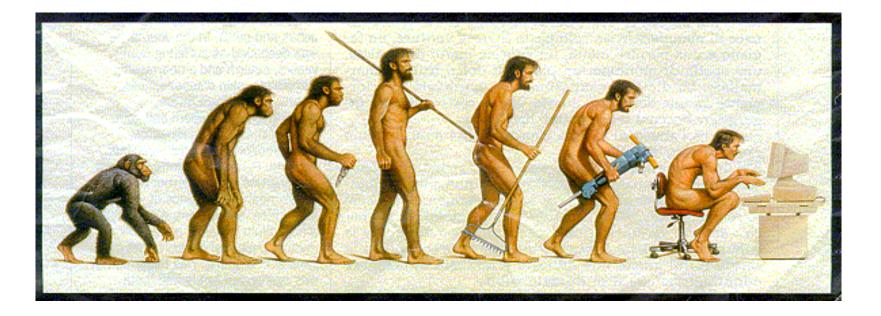
Fracture (ICD code*)	Observed	Expected	Rate Ratio (95% confidence interval)	P value
All fractures ⁺	4414	2238.3	1.99 (1.93-2.05)	<0.001
Ribs (S22.2-S22.4)	161	130	1.24 (1.06-1.45)	0.007
Clavicle (S42.0)	83	52.6	1.59 (1.26-1.97)	<0.001
Humerus (S42.2-S42.4, S42.7)	415	204.2	2.05 (1.86-2.26)	<0.001
Forearm (S52)	448	493.5	0.91 (0.82-1.00)	0.042
Wrist/Hand (S62)	157	188.1	0.83 (0.71-0.98)	0.025
Pelvis/Lumbar spine (S32.0- S32.8)	293	187.7	1.57 (1.39-1.76)	<0.001
Tibia/Ankle (S82)	1393	506.1	2.81 (2.66-2.96)	<0.001
Foot (S92)	194	95.5	2.05 (1.77-2.37)	<0.001
Femur - neck of (S72.0-S72.2)	1579	574.2	2.79 (2.65-2.93)	<0.001
Femur - other (S72.3-S72.8)	543	85.8	6.69 (6.12-7.29)	<0.001
Femur - unspecified (S72.9)	88	18.5	4.91 (3.92-6.08)	<0.001

Conclusions

- MS prevention
 - Population health-based initiatives
 - Targeted high-risk population studies (children and siblings of people with MS)
- Low vD levels are associated with MS disease activity
 - relapses, disease progression and MRI activity (Gd, T2 and brain volume loss)
- Possible reverse causation
 - The consumptive hypovitaminosis hypothesis
 - Arguments against consumptive hypovitaminosis hypothesis
 - Worldwide MS epidemiology (latitude, migration, sex ratio, changing incidence, MoB effects)
 - Seasonal variation of MS onset and disease activity
 - Current evidence-base regarding treatment is unconvincing
 - We need large well-controlled randomised clinical trials (easier said than done)
- We need more basic science to support the causation theory
- What dose?
 - Evolutionary medicine suggests we need to target a blood plasma level above 100nmol/L
- What advice?
 - To supplement to achieve a year long blood levels of > 100-120 nmol/L
 - In the UK we can't rely on diet or sun exposure to achieve these levels
 - EFSA or Vitamin D council recommendations
- Don't forget bone health as a justification to act now

Back-up slide

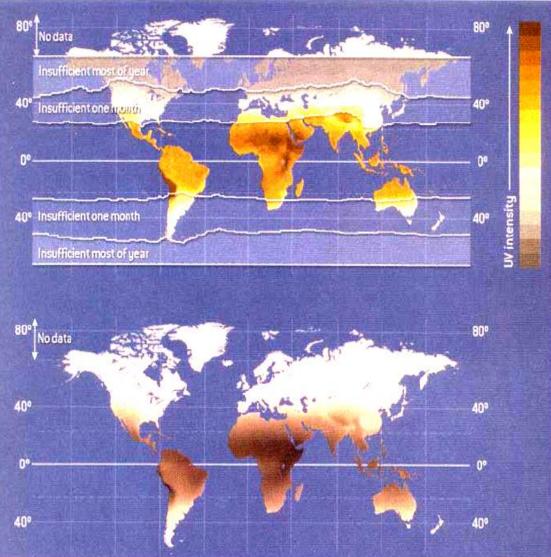
The effect of vitamin D-related interventions on multiple sclerosis relapses: a meta-analysis

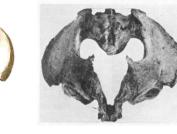

Table 3. Serum 25(OH)D levels at baseline and end of study for high dose vitamin D treated group and control group.

First author and year of publication	Mean high dose [nmol/L]	vitamin D 25(OH)D level	Mean control 25(OH)D level [nmol/l	
	Baseline	End of study	Baseline	End of study
Burton 2010	73	413*	83	N/A
Kampman 2012	55.56	123.17	57.33	61.8
Shayganeejad 2012	N/A	N/A	N/A	N/A
Soilu-Hänninen 2012 Stein 2012	54 59**	0 0**	56 54**	50 55**

25(OH)D – 25-hydroxyvitamin D. *Following the 40,000IU/day dosing period. **Median.

James et al. Mult Scler. 2013 Oct;19(12):1571-9.


The conditions for which our human genome was selected offer a reasonable basis for optimal nutrition.

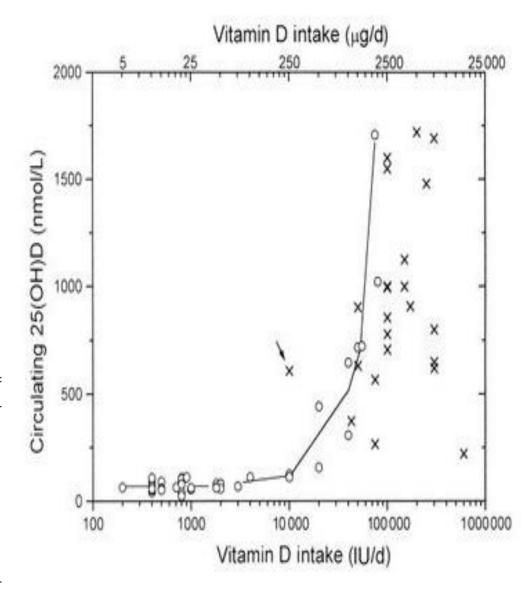

"Modern" humans have existed for 100,000 years

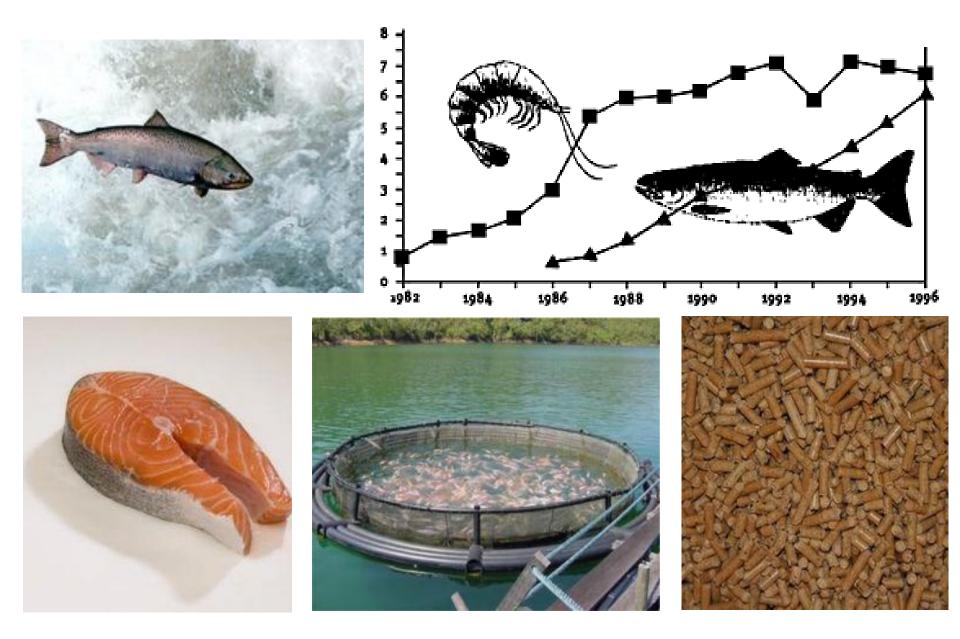
Slide adapted from Reinhold Vieth

What dose of vD depends where you live?

no vD for >6 mo/yr no vD for 1-6 mo/yr vD all year no vD for 1-6 mo/yr no vD for >6 mo/yr

Slide adapted from Reinhold Vieth


Level of vD supplementation


TABLE 1

25-Hydroxyvitamin [25(OH)D] concentrations under sun-rich living conditions

Reference, year, and subjects	Location	25(OH)D
		nmol/L
Haddock et al (23), 1982	Puerto Rico	
Hospital personnel ($n = 26$)		105
Farmers $(n = 18)$		135
Haddad and Kyung (24), 1971	St Louis	
Lifeguards ($n = 9$)		163
Better et al (25), 1980	Israel	
Lifeguards $(n = 34)$		148

Cultural changes

Cultural changes

SINCE KIEHL'S 188 Pos a Refuel Land at Kieder SPF 15 FACIAL FUEL SPF 15 SUNSCREEN ENERGIZING MOISTURE TREATMENT FOR MEN

Ar vitamin-enriched and energizing non-onosturizer wakens and uplifts dull, fatigue in while protecting it against the sun's hamiit rays. This "facial recovery accelerator" her intensist the effects of environmental stress is inherity, invigorated appearance. The formuin Vitamins C and E, Chestnut Extract at is helps waken tired-looking skin and her prove skin's look and texture. With use poannel feel refueled, re-energized and reviator is helps prevent sunburn. Higher SPF gin its suburn protection.

2.5 fl.oz. - 75 ml

EFSA Journal 2012;10(7):2813

SCIENTIFIC OPINION

Scientific Opinion on the Tolerable Upper Intake Level of vitamin D¹

EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA)^{2, 3}

European Food Safety Authority (EFSA), Parma, Italy

ABSTRACT

Following a request from the European Commission, the Panel on Dietetic Products, Nutrition and Allergies was asked to re-evaluate the safety in use of vitamin D and to provide, if necessary, revised Tolerable Upper Intake Levels (ULs) of vitamin D for all relevant population groups. The ULs for adults including pregnant and lactating women, children and adolescents were revised. For adults, hypercalcaemia was selected as the indicator of toxicity. In two studies in men, intakes between 234 and 275 µg/day were not associated with hypercalcaemia, and a no observed adverse effect level (NOAEL) of 250 µg/day was established. Taking into account uncertainties associated with these studies, the UL for adults including pregnant and lactating women was set at 100 µg/day. Despite a continuing paucity of data for high vitamin D intakes in children and adolescents, the UL was adapted to 100 µg/day for ages 11-17 years, considering that owing to phases of rapid bone formation and growth this age group is unlikely to have a lower tolerance for vitamin D compared to adults. The same applies also to children aged 1-10 years, but taking into account their smaller body size, a UL of 50 µg/day is proposed. For infants, the UL of 25 µg/day based on previously available data relating high vitamin D intakes to impaired growth and hypercalcaemia was retained as limited additional evidence has emerged since the previous risk assessment. Data on vitamin D intakes from surveys in 14 European countries indicate that intakes in high consumers are below the revised ULs for vitamin D for all population groups. © European Food Safety Authority, 2012

How much vitamin D do I need to take?

Different organizations recommend different daily intakes. Here are the recommendations from some organizations in the United States:

	Vitamin D Council	Endocrine Society	Food and Nutrition Board
Infants	1,000 IU/day	400-1,000 IU/day	400 IU/day
Children	1,000 IU/day per 25lbs of body weight	600-1,000 IU/day	600 IU/day
Adults	5,000 IU/day	1,500- 2,000 IU/day	600 IU/day, 800 IU/day for seniors

Recommended daily intakes from various organizations:

The Food and Nutrition Board recommended daily intakes are the official recommendations by the United States government.

Why are the recommendations so different? Some researchers believe that there isn't enough evidence to support taking higher amounts of vitamin D yet. On the other hand, some researchers believe that research is proving, or will prove, that taking lower amounts isn't enough.

Do I put my money where my mouth is?

W Common genetic determinants of vitamin D insufficiency: a genome-wide association study

Thomas J Wang*, Feng Zhang*, J Brent Richards*, Bryan Kestenbaum*, Joyce B van Meurs*, Diane Berry*, Douglas P Kiel, Elizabeth A Streeten, Claes Ohlsson, Daniel L Koller, Leena Peltonen†, Jason D Gooper, Paul F O'Reilly, Denise K Houston, Nicole L Glazer, Liesbeth Vandenput, Munro Peacock, Julia Shi, Fernando Rivadeneira, Mark I McCarthy, Pouta Anneli, Ian H de Boer, Massimo Mangino, Bernet Kato, Deborah J Smyth, Sarah L Booth, Paul F Jacques, Greg L Burke, Mark Goodarzi, Ching-Lung Cheung, Myles Wolf, Kenneth Rice, David Goltzman, Nick Hidiroglau, Martin Ladouceur, Nicholas J Wareham, Lynne J Hocking, Deborah Hart, Nigel K Arden, Cyrus Cooper, Suneil Malik, William D Fraser, Anna-Lisa Hartikainen, Guangju Zhai, Helen M Macdonald, Nita G Forouhi, Ruth J F Loos, David M Reid, Alan Hakim, Elaine Dennison, Yongmei Liu, Chris Power, Helen E Stevens, Laitinen Jaana, Ramachandran SVasan, Nicole Soranzo, Jörg Bojunga, Bruce M Psaty, Mattias Lorentzon, Tatiana Foroud, Tamara B Harris, Albert Hofman, John-Olov Jansson, Jane A Cauley, Andre G Uitterlinden, Quince Gibson, Marjo-Riitta Järvelin, David Karasik, David S Siscovick, Michael J Econs, Stephen B Kritchevsky, Jose C Florez, John A Todd*, Josee Dupuis*, Elina Hyppönen*, Timothy D Spector*

Summary

Lancet 2010; 376: 180-88 Published Opline

Background Vitamin D is crucial for maintenance of musculoskeletal health, and might also have a role in extraskeletal tissues. Determinants of circulating 25-hydroxyvitamin D concentrations include sun exposure and diet, but high heritability suggests that genetic factors could also play a part. We aimed to identify common genetic variants affecting June 10, 2010 DOE10.1016/50140vitamin D concentrations and risk of insufficiency. 6736(10)60588-0

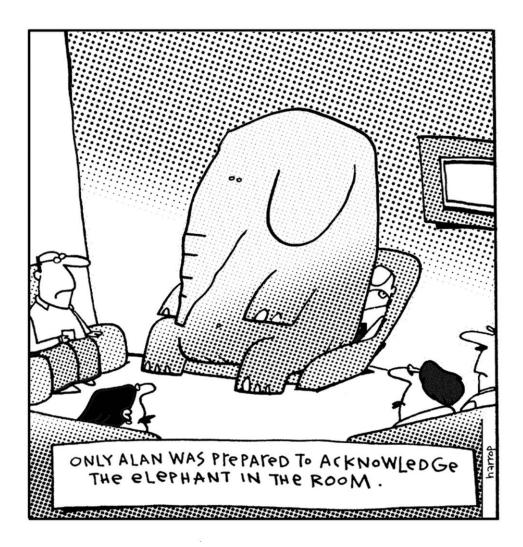
See Editorial page 142 See Comment page 148 *Authon contributed equally Prof Peltonen died in March, 2010 Division of Cardiology, Department of Medicine (T)Wang MD), Diabetes rch Center (Diabetes Unit) (JC Florez PhD), and Center for Human Genetic Research () C Florez), Massachusetts General Hospital, Boston, MA, USA; Hebrew SeniorLife, Institute for Aging Research, Genetic Epidemiology Program (D P Kiel MD, C-L Cheung PhD, D Karasik PhD), Harvard Medical School, Boston, MA, USA (TJWang, JCflorez); Framingham Heart Study, Framingham, MA, USA (T) Wang, D P Kiel, Prof R S Vasan DW, Prof I Dupuis PhDI: Department of Twin Research and Genetic Epidemiology, King's College London, London, UK (F Zhang PhD, M Mangino PhD, B Kato PhD, D Hart PhD, G Zhai PhD, N Second PhD. Prof T D Spector MDI: Inwish **General Hospital** () Brent Richards MD, M Ladouenur PhD), McGill University Health Centre (Prof D Goltzman MD).

Methods We undertook a genome-wide association study of 25-hydroxyvitamin D concentrations in 33 996 individuals of European descent from 15 cohorts. Five epidemiological cohorts were designated as discovery cohorts (n=16 125), five as in-silico replication cohorts (n=9367), and five as de-novo replication cohorts (n=8504). 25-hydroxyvitamin D concentrations were measured by radioimmunoassay, chemiluminescent assay, ELISA, or mass spectrometry. Vitamin D insufficiency was defined as concentrations lower than 75 nmol/L or 50 nmol/L. We combined results of genome-wide analyses across cohorts using Z-score-weighted meta-analysis. Genotype scores were constructed for confirmed variants.

Findings Variants at three loci reached genome-wide significance in discovery cohorts for association with 25-hydroxyvitamin D concentrations, and were confirmed in replication cohorts: 4p12 (overall p=1-9x10⁻¹⁰⁹ for rs2282679, in GC); 11q12 (p=2.1x10*27 for rs12785878, near DHCR7); and 11p15 (p=3.3x10*20 for rs10741657, near CYP2RI). Variants at an additional locus (20013, CYP24AI) were genome-wide significant in the pooled sample (p=6-0x10*10 for rs6013897). Participants with a genotype score (combining the three confirmed variants) in the highest quartile were at increased risk of having 25-hydroxyvitamin D concentrations lower than 75 nmol/L (OR 2-47, 95% CI 2-20-2-78, p=2-3x10-48) or lower than 50 nmol/L (1-92, 1-70-2-16, p=1-0x10-26) compared with those in the lowest quartile.

Interpretation Variants near genes involved in cholesterol synthesis, hydroxylation, and vitamin D transport affect vitamin D status. Genetic variation at these loci identifies individuals who have substantially raised risk of vitamin D insufficiency.

Funding Full funding sources listed at end of paper (see Acknowledgments).


Introduction

Vitamin D insufficiency affects as many as half of otherwise healthy adults in developed countries.3 The musculoskeletal consequences of inadequate vitamin D concentrations are well established, and include childhood rickets, osteomalacia, and fractures.² A growing number of other disorders have also been linked to vitamin D insufficiency, although causal associations Department of Medicine

Personal, social, and cultural factors are important determinants of vitamin D availability via their effects on sun exposure and diet. Sufficient exposure to ultraviolet light or adequate intake from diet or supplements is needed to maintain vitamin D status. Concentrations of the widely accepted biomarker for vitamin D, 25-hydroxyvitamin D, are highest in the summer and lowest in the winter in northern latitudes. However, only

Treat-2-Target

Interpretation Variants near genes involved in cholesterol synthesis, hydroxylation, and vitamin D transport affect vitamin D status. Genetic variation at these loci identifies individuals who have substantially raised risk of vitamin D insufficiency.

