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The association between variation in the fat mass and obesity-associated (FTO) gene and adulthood body mass
index (BMI; weight (kg)/height (m)2) is well-replicated. More thorough analyses utilizing phenotypic data over the
life course may deepen our understanding of the development of BMI and thus help in the prevention of obesity.
The authors used a structural equation modeling approach to explore the network of variables associated with BMI
from the prenatal period to age 31 years (1965–1997) in 4,435 subjects from the Northern Finland Birth Cohort
1966. The use of structural equation modeling permitted the easy inclusion of variables with missing values in the
analyses without separate imputation steps, as well as differentiation between direct and indirect effects. There
was an association between the FTO single nucleotide polymorphism rs9939609 and BMI at age 31 years that
persisted after controlling for several relevant factors during the life course. The total effect of the FTO variant on
adult BMI was mostly composed of the direct effect, but a notable part was also arising indirectly via its effects on
earlier BMI development. In addition to well-established genetic determinants, many life-course factors such as
physical activity, in spite of not showing mediation or interaction, had a strong independent effect on BMI.

body mass index; molecular epidemiology; structural equation model

Abbreviations: BMI, body mass index; CI, confidence interval; FTO, fat mass and obesity-associated; MET, metabolic equivalent;
SD, standard deviation; SEM, structural equation modeling.

The prevalence of obesity is rapidly increasing in both
developed and developing countries. Obesity predisposes
people to many chronic diseases, such as the metabolic
syndrome, type 2 diabetes, and cardiovascular disease (1).
Recent progress in genome-wide association studies has led
to the discovery of novel genetic variants associated with
body mass index (BMI; weight (kg)/height (m)2) and
increased risk of obesity (2–5). The strongest signals dis-
covered to date are located in the fat mass and obesity-
associated (FTO) gene, which was originally found within
a study on type 2 diabetes genes, but the association was
mediated by BMI (6). Since then the association between
FTO and BMI has been replicated in several studies (3, 4,

7, 8). The association between FTO and BMI growth
throughout the life course is still somewhat unclear, but
some studies suggest that the effect starts to show at least
as early as approximately age 7 years (9–11).

Genetic variants discovered so far explain only a small
proportion of the variability in body weight. For instance,
in the Northern Finland Birth Cohort 1966, variants in the
FTO and melanocortin 4 receptor (MC4R) genes explain
only 0.55% of the total variation in adult BMI (12). The
heritability of BMI has been estimated to be moderate-to-
high (40%–80%) (13, 14), so there are probably many
common single nucleotide polymorphisms of comparable
effect sizes yet to be identified and obviously stronger
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underlying rare variants that wait to be discovered (4).
Meanwhile, it is important to study the interplay between
life-course factors and the genetic variants discovered
so far.

It has been suggested that the FTO gene plays a role in
appetite regulation (15) and that it is associated with energy
expenditure (16), energy intake (17, 18), and diminished
satiety (19), whereas 2 recent studies found no evidence
for an association between nutrition and FTO (20, 21). In
several studies, investigators have also reported a significant
effect of interaction between FTO and physical activity on
BMI (22–26). However, in 1 relatively large study, Jonsson
et al. (27) found no evidence for interaction between FTO
and physical activity.

To identify mediators or modifiers of the genetic associ-
ations, carefully characterized cohorts are needed (28), as
well as appropriate statistical methods for dealing with
complex relations. Multiple regression analysis has often
been used as a standard method, yet a model with several
terms may produce biased and unstable estimates because of
sparse data and multicollinearity (29). Standard multiple
regression also ignores the presumed causal and temporal
ordering of exposure variables and their interrelations (30)
and thus can provide information only on direct effects con-
ditional on all of the other variables in the model (31),
whereas an appropriate path analysis can provide deeper
insight into the interrelations of the variables, that is, indi-
rect effects and mediation.

Structural equation modeling (SEM), which includes path
analysis and latent variables (32), can be used to study as-
sociations between variables thought to be causally ordered
along the life course. Within this modeling approach, vari-
ables are subdivided into background factors, such as paren-
tal characteristics; intermediate outcomes, such as BMI at
birth and BMI during childhood; and distal outcomes, such
as adult BMI. Formally, relations among these factors are
specified via simultaneous equations, and then the covari-
ance structure of the assumed model is estimated.

We used SEM to examine the effects of the FTO
rs9939609 variant on adult BMI in a large, prospectively
followed birth cohort on which we had data from the pre-
natal period to adulthood. Our aim was to obtain more in-
formation on the networks around the variables along the
life course and a better understanding of the mechanisms by
which the FTO polymorphism plays a role in weight gain,
together with other factors. We also hypothesized that the
effect of the FTO variant might be mediated or modified
through behavioral factors that have been suggested to be
associated with FTO, such as diet and physical activity.

MATERIALS AND METHODS

Participants

The study population consisted of persons belonging
to the Northern Finland Birth Cohort 1966. Initially, all
mothers with expected delivery dates in 1966 who were
living in the 2 northernmost provinces of Finland, Oulu
and Lapland, were invited; over 96% participated (12,055
mothers with 12,058 liveborn children) (33). Data on the

prenatal and perinatal period were collected via question-
naires administered by local midwives in the antenatal
clinics. In 1980, at the age of 14 years, all living cohort
members with known addresses received postal question-
naires containing questions on their growth, health habits,
and family situation. An abridged version of the question-
naire was sent to the parents in cases where the adolescent
did not respond or to the school health nurse if neither the
child nor the parent responded. The postal questionnaire was
returned by 94% (n ¼ 11,010) of the adolescents, 52% (n ¼
389) of the parents, and 97% (n ¼ 354) of the nurses. In
1997, at the age of 31 years, the subjects received a postal
questionnaire including questions on their health, lifestyle,
and occupation, and it was returned by 75% (n ¼ 8,767). At
the same time, those subjects living in the original target
area (northern Finland) or in the capital area (Helsinki) were
invited to undergo a clinical examination, and 71% (n ¼
6,033) of those invited participated (34). At this point, blood
samples were drawn and DNA was extracted for 5,753 sub-
jects. For the present study, we included persons who had
both genotype data and measured BMI data available at age
31 years. After exclusion of multiple births, 4,435 persons
(2,137 men and 2,298 women) remained for analysis.

All participants gave their written, informed consent
when DNA was taken at age 31 years. The University of
Oulu ethics committee approved the study.

Genotyping

Genotyping of the samples was performed using the
TaqMan single nucleotide polymorphism genotyping assay
(Applied Biosystems, Warrington, United Kingdom) accord-
ing to the manufacturer’s protocol. Genotyping was carried
out for 5,365 samples from the cohort. The allele frequencies
of the single nucleotide polymorphism rs9939609 were not
observed to deviate essentially from Hardy-Weinberg equi-
librium (P ¼ 0.33). The duplicate concordance rate was
99.9%, and the genotype success rate in the sample was
88% (n ¼ 4,701).

Phenotypic, behavioral, and environmental variables

Data on variables related to the prenatal period or birth
were obtained from the questionnaire targeted toward the
mothers during pregnancy and supplemented after delivery.
Maternal prepregnancy BMI and gestational age were
treated as continuous variables in the analyses. The catego-
rizations of parity, maternal smoking after the second month
of pregnancy, familial socioeconomic status (based on the
father’s occupation, or on the mother’s if single), and ma-
ternal hypertension during pregnancy are shown in Table 1.

Regarding variables assessed at age 14 years, we calcu-
lated BMI from self-reported height and weight and classi-
fied the adolescent’s smoking status into 1) nonsmoker
(never smoked or had tried smoking), 2) occasional smoker
(smoked occasionally or about twice a week), and 3) regular
smoker (smoked daily) (35). Alcohol consumption was
classified into 1) nonconsumer (never drank alcohol, had
merely tasted it, or had consumed alcohol occasionally)
and 2) regular consumer (drank alcohol monthly or more
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Table 1. Characteristics of the Northern Finland Birth Cohort 1966

Study Sample, 1965–1997

Characteristic Total No. % Mean (SD)

FTO rs9939609 genotype 4,435

TT 1,678 37.8

AT 2,068 46.6

AA 689 15.5

Prenatal factors

Maternal BMIa 4,052 23.2 (3.2)

Maternal age, years 4,427 28.2 (6.6)

Parity 4,424

0 1,384 31.3

1–3 2,193 49.6

�4 847 19.2

Maternal smoking during
second month of
pregnancy

4,325

Nonsmoker 3,715 85.9

1–10 cigarettes/day 510 11.8

>10 cigarettes/day 100 2.3

Blood pressure during
pregnancy

4,344

Normotensive 2,418 55.7

Gestational
hypertensionb

779 17.9

Elevated systolic blood
pressure

361 8.3

Elevated diastolic blood
pressure

338 7.8

Not determined/not
known

448 10.3

Family SES 4,403

I þ II (professional) 1,027 23.3

III (skilled worker) 1,476 33.5

IV (unskilled worker) 951 21.6

V (farmer) 949 21.6

Characteristics at birth

Sex 4,435

Male 2,137 48.2

Female 2,298 51.8

BMI 4,404 13.8 (1.3)

Gestational age, weeks 4,278 40.1 (1.8)

Characteristics at age 14 years

BMI 3,957 19.4 (2.5)

Frequency of participation
in sports

4,191

Daily 738 17.6

Every other day 821 19.6

Twice a week 934 22.3

Once a week 688 16.4

Less than once
a week

1,010 24.1

Table continues

Table 1. Continued

Characteristic Total No. % Mean (SD)

Alcohol consumption 4,238

Nonregular intake 4,125 97.3

Regular intake 113 2.7

Smoking 4,243

Nonsmoker 3,515 82.4

Occasional smoker 463 10.9

Regular smoker 265 6.3

Family SES 4,260

I þ II (professional) 1,223 28.7

III (skilled worker) 1,463 34.3

IV (unskilled worker) 935 22.0

V (farmer) 639 15.0

Characteristics at age 31 years

BMI 4,435 24.7 (4.3)

Quartile of physical activity,
MET-hours per week

4,022 14.8 (14.6)

0–3.7 1,106 27.5

3.8–10.8 1,155 28.7

10.9–20.5 1,080 26.9

�20.6 681 16.9

Tertile of alcohol
consumption, g/day

4,296 9.2 (15.8)

Abstainer 405 9.4

0.1–2.5 1,283 29.9

2.6–8.7 1,298 30.2

�8.8 1,310 30.5

Smoking 4,162

Nonsmoker 2,385 57.3

1–10 cigarettes/day 887 21.3

>10 cigarettes/day 890 21.4

Unhealthy diet scorec 4,395

0–1 1,380 31.4

2–3 2,495 56.8

4–5 520 11.8

SES 4,387

I þ II (professional) 1,039 23.7

III (skilled worker) 1,354 30.9

IV (unskilled worker) 1,113 25.4

V (farmer) 159 3.6

VI (other) 722 16.5

Abbreviations: BMI, body mass index; FTO, fat mass and obesity-

associated; MET, metabolic equivalent; SD, standard deviation; SES,

socioeconomic status.
a Weight (kg)/height (m)2.
b Includes gestational hypertension, chronic hypertension, pre-

eclampsia, and superimposed preeclampsia.
c An unhealthy diet was defined as daily or almost daily consump-

tion of sausage and less frequent (twice a week or less often) con-

sumption of rye bread or crisp bread, fresh vegetables and salads,

and berries or fruit. One point was given for each of these counts, and

scores could range from 0 to 5.
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often) (36). The subjects were asked how often they partic-
ipated in sports after school hours and were classified into
5 physical activity groups: 1) daily, 2) every other day,
3) twice a week, 4) once a week, and 5) less than once a week
(37). Familial socioeconomic status was coded similarly to
prepregnancy socioeconomic status.

Weight and height at age 31 years were measured at the
clinical examination, and BMI was calculated from those
measurements. Data on other background variables were
obtained from the postal questionnaire filled in at the same
age. Smoking during the past year was categorized as 1) non-
smoker, 2) 1–10 cigarettes/day, or 3) >10 cigarettes/day.
Alcohol consumption was measured with several questions
on type, amount, and frequency of alcohol consumption, and
the information was validated against 7-day food diaries. It
was transformed into daily intake (g/day) (34) and was fur-
ther classified into abstainers and consumers divided ac-
cording to tertile of daily intake (Table 1). Frequencies of
consumption of various types of food were also ascertained,
and an unhealthy diet was defined as daily or almost daily
consumption of sausage and less frequent (twice a week or
less often) consumption of rye bread or crisp bread, fresh
vegetables and salads, and berries or fruit. One point was
given for each of these counts (38), and the unhealthy diet

score, ranging from 0 to 5, was used in the analyses. The
subjects were also asked about the frequency and duration of
light and brisk physical activities. These data were trans-
ferred into metabolic equivalent (MET)-hours per week (39)
and further classified into quartiles. In the calculations, an
intensity value of 3 METs was used for light physical ac-
tivity and 5 METs was used for brisk physical activity. The
subject’s own socioeconomic status was based on occupa-
tion and employment data. It was classified from I (high) to
IV (low), plus farmers and others (student, pensioner, long-
term unemployed, or not defined).

Statistical analyses

Associations between FTO rs9939609 and maternal pre-
pregnancy BMI, BMI at birth, BMI at age 14 years, and
BMI at age 31 years, respectively, were first analyzed with
multiple linear regression models assuming an additive
model for genotype. All of the outcome variables were nat-
ural logarithm-transformed to reduce skewness, and the
analyses were adjusted for sex (BMI at ages 14 and 31 years)
or sex and gestational age (BMI at birth). Results are pre-
sented as geometric mean values and 95% confidence
intervals.

Figure 1. Relation between the fat mass and obesity-associated (FTO) rs9939609 genotype and A) maternal body mass index (BMI; weight (kg)/
height (m)2); B) the subject’s own BMI at birth; C) BMI at age 14 years; and D) BMI at age 31 years in the Northern Finland Birth Cohort 1966, 1965–
1997. Data are presented as geometric mean values (circles) with back-transformed 95% confidence intervals (bars). Results were adjusted for sex
and gestational age (for birth BMI) or sex only (for BMI at ages 14 and 31 years).
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A SEM approach was used to model the assumed under-
lying relations between the studied variables. Four simulta-
neous equations were fitted with maternal prepregnancy
BMI, BMI at birth, BMI at age 14 years, and BMI at age
31 years as the outcome variables and assuming additive
models for the effect of FTO rs9939609. All data on the
outcome variables were natural logarithm-transformed;
hence, the results are presented as percentage changes with
95% confidence intervals. Estimation of the parameters
was carried out by the method of maximum likelihood,
assuming normal distributions for the outcome variables.
The expectation-maximization algorithm (40) implemented
in Mplus (41) was used in the analyses of incomplete
data. The expectation-maximization algorithm relies on
the assumption that data are missing at random (42). For
comparison, we also estimated model parameters for com-
plete cases only (data not shown). Model evaluations were
carried out on the basis of the following goodness-of-fit
indices: the comparative fit index and the root mean square
error of approximation. The comparative fit index is a fit
index that is independent of sample size, and the model is
thought to have a good fit if the index exceeds 0.95 (43,
44). The root mean square error of approximation mea-
sures the discrepancy between the model and the observed
covariance matrix and is expressed per degree of freedom,
thus taking into account the complexity of the model. A
value less than 0.05 indicates a good fit (45). Modification
indices (46) were used in detecting model misspecifica-
tions. All of the analyses were conducted with SAS,
version 9.1.3 (SAS Institute Inc., Cary, North Carolina)
and Mplus, version 3.12 (41). All P values reported are
2-sided.

RESULTS

The distributions of FTO rs9939609, BMI, and background
factors are presented in Table 1. Of the 4,435 study subjects,
46.6% were heterozygous for the risk A allele and 15.5% were
AA homozygous. Data on maternal BMI were available for
4,052 subjects, with a mean of 23.2 (standard deviation (SD),
3.2). The subjects’ mean BMIs were 13.8 (SD, 1.3) at birth, 19.4
(SD, 2.5) at age 14 years, and 24.7 (SD, 4.3) at age 31 years.

Figure 1 shows the geometric mean BMIs and back-
transformed 95% confidence intervals according to FTO
rs9939609 genotype. Because the Northern Finland Birth
Cohort 1966 was part of the database used in the replication
of the original FTO finding, these associations between BMI
at ages 14 years and 31 years were reported previously by
Frayling et al. (6). We additionally included maternal BMI
and BMI at birth in the analyses. Carrying the risk A allele
was associated with a 1.40% (95% confidence interval (CI):
0.72, 2.09) higher BMI at age 31 years (per A-allele change
from an adjusted additive model corresponding to a 0.34-
unit (95% CI: 0.18, 0.51) higher BMI, P ¼ 5.1 3 10�5) and
a 0.58% (95% CI: 0.00, 1.16) higher BMI at age 14 years
(0.11-unit higher BMI (95% CI: 0.00, 0.22), P ¼ 0.05).
Weaker evidence of effects pointing in the same direction
on maternal BMI and BMI at birth were also observed (ma-
ternal BMI: 0.55% (95% CI: �0.05, 1.14), corresponding to
0.11 units (95% CI: �0.01, 0.22), P ¼ 0.07; BMI at birth:
0.32% (95% CI: �0.09, 0.72), corresponding to 0.04 units
(95% CI: �0.01, 0.10), P ¼ 0.12).

The SEM fitted to the data is depicted in Figure 2. It
shows the relations we assumed to be underlying among
the available variables in our study sample, based on

Figure 2. Structural equation model of relations between the fat mass and obesity-associated (FTO) rs9939609 genotype and body mass index
(BMI; weight (kg)/height (m)2) fitted to data from the Northern Finland Birth Cohort 1966, 1965–1997. Four simultaneous equations were fitted using
maternal BMI, BMI at birth, BMI at age 14 years, and BMI at age 31 years as the outcome variables. SES, socioeconomic status.
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previous knowledge of the associations (38, 47) and the
correlation structure of the variables. Note that we also
specified a relation between child’s genotype and maternal
BMI, because half of the child’s genotype is inherited from
the mother, and thus it partly represents the mother’s geno-
type. The initial model was modified by removing nonsig-
nificant associations whose inclusion would have worsened
the overall model fit considerably and by adding new paths
based on modification indices. Although we hypothesized
that the FTO effect may be mediated through diet, unfortu-

nately it was not possible to examine this adequately with
our rather crude diet measurement, which showed no asso-
ciation with the FTO variant. Including a mediating path
through diet would also have considerably worsened the
overall model fit in terms of the comparative fit index
(a drop from 0.92 to 0.74). Additionally, we tested for an
interaction between the FTO variant and physical activity,
but no evidence for it was observed (P > 0.20 for all interac-
tion terms); thus, the terms were omitted from the final model.
All of the mediating paths through BMI measurements were

Table 2. Results From Structural Equation Modeling of Relations Between the Fat Mass and Obesity-Associated (FTO) rs9939609 Genotype

and Life-Course Data in the Northern Finland Birth Cohort 1966, 1965–1997

Model
b

(31023)

Standard
Error

(31023)

Standardized
b

P Value
Change,

‰
95% CI

Corresponding
Change in Mean

BMI, g/m2
95% CI

Maternal BMIa,b

FTO rs9939609 (additive
model)

6.00 2.73 0.031 0.03 6.18 0.64, 12.0 143 14.9, 279

Maternal age, years 6.53 0.39 0.325 <0.001 6.75 5.94, 7.56 157 138, 176

Parity

0 Referent

1–3 20.1 4.34 0.150 <0.001 22.2 12.3, 33.1 516 285, 768

�4 50.2 7.86 0.376 <0.001 65.2 41.6, 92.7 1,512 965, 2,150

Family SES at birth

I þ II (professional) Referent

III (skilled worker) 4.46 4.77 0.034 0.35 4.56 �4.78, 14.8 106 �111, 344

IV (unskilled worker) 11.8 5.76 0.088 0.04 12.5 0.51, 26.0 290 11.9, 602

V (farmer) 25.8 5.79 0.192 <0.001 29.4 15.5, 44.9 682 360, 1,042

BMI at birthb

FTO rs9939609 (additive
model)

2.56 1.91 0.018 0.18 2.60 �1.18, 6.52 35.8 �16.3, 90.0

Sex (female vs. male) �6.00 2.70 �0.062 0.03 �5.83 �10.7, �0.71 �80.4 �147, �9.80

Gestational age, weeks 15.2 0.89 0.288 <0.001 16.4 14.4, 18.5 227 199, 255

Log maternal BMI 0.11 0.01 0.155 <0.001 0.11 0.09, 0.14 1.60 1.20, 1.90

Maternal age, years �0.51 0.31 �0.035 0.09 �0.51 �1.10, 0.09 �7.00 �15.2, 1.20

Parity

0 Referent

1–3 30.8 3.42 0.316 <0.001 36.0 27.2, 45.4 497 375, 627

�4 43.6 5.53 0.447 <0.001 54.6 38.7, 72.3 753 534, 997

Maternal smoking

Nonsmoker Referent

1–10 cigarettes/day �11.9 4.45 �0.124 0.01 �11.2 �18.7, �3.16 �155 �257, �43.6

>10 cigarettes/day �31.0 8.99 �0.317 0.001 �26.6 �38.5, �12.5 �367 �531, �172

Maternal blood pressure

Normotensive Referent

Gestational
hypertensionc

�18.1 4.04 �0.185 <0.001 �16.5 �22.9, �9.63 �228 �316, �133

Elevated systolic
blood pressure

8.11 4.98 0.083 0.10 8.44 �1.64, 19.6 117 �22.7, 270

Elevated diastolic
blood pressure

�1.68 5.52 �0.019 0.76 �1.66 �11.8, 9.57 �23.0 �162, 132

Not determined/not
known

�3.57 4.81 �0.036 0.46 �3.51 �12.2, 6.03 �48.4 �168, 83.1

Table continues
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left in the model, although some of these paths showed only
weak evidence of a direct association (the effect of FTO
rs9939609 on BMI at birth and BMI at age 14 years).

Because of the categorical nature of several variables in our
analysis, we did not allow for correlations between variables
and did not specify associations between sex, alcohol, smok-
ing, and physical activity, for instance. When we conducted
the analyses separately for men and women (data not shown),
we observed sex differences in the estimated effects of these
variables on BMI, but these differences did not influence the
estimated effect of the FTO variant on BMI, which was our

main interest in this study. Thus, we report results from the
analysis conducted for men and women together.

For cross-validation of our results, we randomly assigned
study subjects to a training sample and a validation sample
(48); we first conducted the analyses in the training sample
and then validated them in the other sample. Because the
results did not differ substantially between the samples (data
not shown), we merged the samples and report the results for
the whole sample.

The model gave a good fit in terms of the root mean
square error of approximation (0.025) and an adequate fit

Table 2. Continued

Model
b

(31023)

Standard
Error

(31023)

Standardized
b

P Value
Change,

‰
95% CI

Corresponding
Change in Mean

BMI, g/m2
95% CI

Family SES at birth

I þ II (professional) Referent

III (skilled worker) �10.3 3.65 �0.106 0.01 �9.82 �16.1, �3.12 �136 �222, �43.1

IV (unskilled worker) �15.6 4.19 �0.161 <0.001 �14.5 �21.2, �7.13 �199 �293, �98.3

V (farmer) �15.3 4.29 �0.156 <0.001 �14.1 �21.1, �6.61 �195 �291, �91.2

BMI at age 14 yearsb

FTO rs9939609 (additive
model)

4.83 2.88 0.026 0.09 4.95 �0.82, 11.1 96.1 �15.8, 214

Sex (female vs. male) 8.07 4.11 0.062 0.05 8.40 0.02, 17.5 163 0.40, 339

Log birth BMI 0.11 0.02 0.080 <0.001 0.11 0.06, 0.15 2.10 1.20, 2.90

Log maternal BMI 0.17 0.02 0.175 <0.001 0.17 0.14, 0.20 3.30 2.60, 3.90

Frequency of
participation in
sports at age
14 years

Daily Referent

Every other day 1.60 6.47 0.013 0.80 1.61 �10.5, 15.4 31.3 �204, 298

Twice a week 0.99 6.21 0.007 0.87 1.00 �10.6, 14.1 19.3 �205, 273

Once a week 5.55 7.14 0.043 0.44 5.71 �8.11, 21.6 111 �157, 419

Less than once a week �1.61 6.75 �0.012 0.81 �1.60 �13.8, 12.3 �31.0 �267, 239

Alcohol consumption at
age 14 years

Nonregular intake Referent

Regular intake 31.6 12.6 0.248 0.01 37.2 7.18, 75.6 721 139, 1,467

Smoking at age 14 years

Nonsmoker Referent

Occasional smoker 18.0 6.27 0.138 0.004 19.7 5.86, 35.4 382 114, 686

Regular smoker 7.38 9.06 0.058 0.42 7.66 �9.85, 28.6 149 �191, 554

Family SES at age
14 years

I þ II (professional) Referent

III (skilled worker) 2.08 4.86 0.017 0.67 2.10 �7.18, 12.3 40.8 �139, 239

IV (unskilled worker) �5.21 5.86 �0.041 0.37 �5.07 �15.4, 6.49 �98.4 �298, 126

V (farmer) �1.76 6.13 �0.014 0.77 �1.75 �12.9, 10.8 �33.9 �250, 210

BMI at age 31 yearsb

FTO rs9939609 (additive
model)

9.22 2.88 0.040 0.001 9.66 3.63, 16.0 239 89.6, 396

Sex (female vs. male) �44.8 4.77 �0.278 <0.001 �36.1 �41.8, �29.8 �891 �1,032, �737

Table continues
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in terms of the comparative fit index (0.92). The regression
coefficients conditional on all of the variables in the SEM
analysis are shown in Table 2. Note that because of some
very small effect sizes, the estimates are presented in 10�3

scale, the changes are presented in per mils (per 1,000), and
the corresponding changes in mean BMI are presented in
g/m2 instead of the conventional kg/m2. The standardized b
coefficients are used to compare the relative importance of
the independent variables, since they describe the change in
the outcome variable in SD units per a 1-SD change in the
continuous predictor and per the change from 0 to 1 in a bi-
nary predictor. These standardized coefficients suggest that
FTO rs9939609 would have a modest effect on BMI in
comparison with some of the early background exposures,
which show a much stronger independent effect (e.g., the
standardized regression coefficients for maternal BMI were
0.031 SD units for the FTO variant and 0.325 SD units for

maternal age). However, for outcomes in adulthood, the
estimated effect of the FTO variant on BMI was comparable
with that of smoking and socioeconomic status (for exam-
ple). The model including both genetic and life-course fac-
tors explained 20% of the total variation in maternal BMI
and explained 16%, 5%, and 34% of the variation in BMI at
birth, age 14 years, and age 31 years, respectively.

Table 3 shows the estimated indirect, direct, and total
effects of the FTO variant on BMI, calculated assuming that
the relations depicted in Figure 2 are correct. The total
effects of FTO rs9939609 on maternal BMI, BMI at birth,
and BMI at age 14 years were strengthened in comparison
with the cross-sectional explorative analyses shown in
Figure 1. For BMI at age 31 years, the evidence for the
association remained strong (P ¼ 5.0 3 10�5). The esti-
mated direct effect of a per-A-allele change (conditional
on all of the other variables in the model) on adult BMI

Table 2. Continued

Model
b

(31023)

Standard
Error

(31023)

Standardized
b

P Value
Change,

‰
95% CI

Corresponding
Change in Mean

BMI, g/m2
95% CI

Log maternal BMI 0.11 0.02 0.095 <0.001 0.11 0.08, 0.15 2.80 2.00, 3.60

Log BMI at age 14 years 0.66 0.03 0.529 <0.001 0.66 0.60, 0.72 16.4 14.9, 17.9

Quartile of physical
activity, MET-hours
per week

0–3.7 26.5 6.83 0.165 0.001 30.4 14.0, 49.0 750 347, 1,211

3.8–10.8 15.1 5.98 0.093 0.01 16.3 3.41, 30.7 402 84.1, 759

10.9–20.5 2.39 5.59 0.015 0.67 2.42 �8.21, 14.3 59.8 �203, 353

�20.6 Referent

Tertile of alcohol
consumption, g/day

Abstainer Referent

0.1–2.5 �3.70 8.39 �0.022 0.66 �3.63 �18.2, 13.6 �89.7 �451, 336

2.6–8.7 �7.56 8.16 �0.048 0.35 �7.29 �21.0, 8.80 �180 �519, 217

�8.8 8.93 8.43 0.054 0.29 9.34 �7.32, 29.0 231 �181, 716

Smoking at age 31 years

Nonsmoker Referent

1–10 cigarettes/day 3.86 5.53 0.024 0.49 3.93 �6.74, 15.8 97.1 �167, 391

>10 cigarettes/day �9.52 5.94 �0.059 0.11 �9.08 �19.1, 2.14 �224 �471, 52.8

Unhealthy diet scored 4.65 2.01 0.033 0.02 4.76 0.70, 8.97 118 17.3, 222

SES at age 31 years

I þ II (professional) Referent

III (skilled worker) 15.4 5.67 0.094 0.01 16.6 4.34, 30.3 410 107, 749

IV (unskilled worker) 11.1 5.21 0.069 0.04 11.8 0.90, 23.8 290 22.3, 587

V (farmer) 18.7 11.3 0.118 0.10 20.5 �3.48, 50.5 507 �86.0, 1,248

VI (other) 19.8 6.88 0.124 0.004 21.9 6.52, 39.5 541 161, 976

Abbreviations: BMI, body mass index; CI, confidence interval; FTO, fat mass and obesity-associated; MET, metabolic equivalent; SES,

socioeconomic status.
a Weight (kg)/height (m)2.
b The outcome variables maternal BMI and BMI at birth, age 14 years, and age 31 years were natural logarithm-transformed.
c Includes gestational hypertension, chronic hypertension, preeclampsia, and superimposed preeclampsia.
d An unhealthy diet was defined as daily or almost daily consumption of sausage and less frequent (twice a week or less often) consumption of

rye bread or crisp bread, fresh vegetables and salads, and berries or fruit. One point was given for each of these counts, and scores could range

from 0 to 5.
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was 0.97% (95% CI: 0.36, 1.60), which corresponds to an
increase of 0.24 units (95% CI: 0.09, 0.40) in mean BMI.
Indirect effects of the FTO variant were observed through
maternal BMI, BMI at birth, and BMI at age 14 years
(Figure 2, Table 3). The effects through BMI at birth were
modest, since the association between the FTO variant and
BMI at birth was of small magnitude (0.26%, 95%
CI: �0.12, 0.65). Adding all of the indirect effects together,
an increase of 0.49% (95% CI: 0.08, 0.92) in adult BMI was
observed, which is equivalent to 0.12 units (95% CI: 0.02,
0.23). The total effect, which is the sum of the indirect and
direct effects, was then 1.50% (95% CI: 0.75, 2.30), corre-
sponding to a 0.37-unit (95% CI: 0.19, 0.57) increase in
mean BMI.

Attrition and missing data

The subset of Northern Finland Birth Cohort 1966 sub-
jects who participated in the clinical examination at age
31 years has been shown to be well-representative of the
original study population (49). We further compared the
distributions of all of the variables used in the present study
between subjects who had complete data on all of the se-
lected variables (n ¼ 2,761) and those who had missing
information on at least 1 of the variables (n ¼ 1,674). With
regard to the maternal characteristics, subjects with missing
values on any of the variables used in the analyses were
more likely to have a slightly older mother (mean age at
delivery ¼ 28.5 years vs. 28.0 years), a mother with more

Table 3. Direct, Indirect, and Total Effects of Fat Mass and Obesity-Associated (FTO) Genotype rs9939609 on Body Mass Index During the Life

Course in the Northern Finland Birth Cohort 1966, 1965–1997

Model
b

(31023)

Standard
Error

(31023)

Standardized
b

P Value
Change,

‰
95% CI

Corresponding
Change in Mean

BMI, g/m2
95% CI

Maternal BMIa

Total effect 6.00 2.73 0.031 0.03 6.18 0.64, 12.0 143 14.9, 279

BMI at birth

Total effect 3.24 1.94 0.023 0.09 3.30 �0.56, 7.30 45.5 �7.71, 101

Total indirect effect 0.68 0.32 0.005 0.03 0.68 0.06, 1.31 9.42 0.84, 18.1

1) FTO–maternal
BMI–birth BMI

0.68 0.32 0.005 0.03 0.68 0.06, 1.31 9.42 0.84, 18.1

Direct effect 2.56 1.91 0.018 0.18 2.60 �1.18, 6.52 35.8 �16.3, 90.0

BMI at age 14 years

Total effect 6.19 2.95 0.033 0.04 6.39 0.41, 12.7 124 7.88, 23.5

Total indirect effect 1.36 0.55 0.007 0.01 1.37 0.28, 2.47 26.6 5.52, 47.8

1) FTO–maternal
BMI–BMI at 14

1.02 0.48 0.005 0.03 1.02 0.08, 1.97 19.8 1.55, 38.3

2) FTO–birth
BMI–BMI at 14

0.27 0.21 0.001 0.19 0.27 �0.14, 0.68 5.28 �2.67, 13.3

3) FTO–maternal
BMI–birth BMI–
BMI at 14

0.07 0.04 0.000 0.05 0.07 0.00, 0.14 1.40 �0.01, 2.81

Direct effect 4.83 2.88 0.026 0.09 4.95 �0.82, 11.1 92.1 �15.8, 214

BMI at age 31 years

Total effect 14.0 3.45 0.060 5.0 3 10�5 15.0 7.50, 23.1 371 185, 570

Total indirect effect 4.78 2.04 0.021 0.02 4.90 0.79, 9.17 121 19.6, 227

1) FTO–maternal
BMI–BMI at 31

0.69 0.33 0.003 0.04 0.69 0.04, 1.34 17.0 1.02, 33.1

2) FTO–BMI at
14–BMI at 31

3.20 1.90 0.014 0.09 3.25 �0.53, 7.17 80.2 �13.0, 177

3) FTO–maternal
BMI–BMI at 14–
BMI at 31

0.67 0.32 0.003 0.03 0.67 0.05, 1.30 16.7 1.20, 32.2

4) FTO–birth BMI–
BMI at 14–BMI
at 31

0.18 0.14 0.001 0.19 0.18 �0.09, 0.45 4.45 �2.28, 11.2

5) FTO–maternal
BMI–birth BMI–
BMI at 14–BMI
at 31

0.05 0.02 0.000 0.05 0.05 0.00, 0.10 1.19 0.02, 2.35

Direct effect 9.22 2.88 0.040 0.001 9.66 3.63, 16.0 239 89.6, 396

Abbreviations: BMI, body mass index; CI, confidence interval; FTO, fat mass and obesity-associated.
a Weight (kg)/height (m)2.
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children (mean parity ¼ 3.2 vs. 2.8), a mother belonging to
a lower socioeconomic status group (proportion of unskilled
workers ¼ 25% vs. 20%), and a mother who was a heavy
smoker during pregnancy (3.6% smoking >10 cigarettes/
day vs. 1.6%) in comparison with subjects with complete
data. The subjects with missing data on any of the variables
used in the analyses were themselves more likely to be male
(52% vs. 47%), to be physically inactive at age 14 years
(28% vs. 22%), to be a regular smoker both at age 14 years
(7.2% vs. 5.8%) and at age 31 years (28% vs. 18%), and to
come from a lower socioeconomic status group both at age
14 years (proportion of unskilled workers ¼ 25% vs. 20%)
and at age 31 years (30% vs. 23%).

We fitted a SEM for complete cases only (n¼ 2,761; data
not shown) and compared the estimates with those obtained
from analysis including all cases. In general, all of the esti-
mates pointed in the same direction and were approximately
of the same magnitude as in the all-cases analysis, but the
effect of the FTO variant on BMI at age 14 years was atten-
uated in the complete-case analyses (b ¼ 1.22 3 10�3, 95%
CI: �7.46 3 10�3, 9.89 3 10�3) as compared with the all-
cases analyses (b ¼ 4.83 3 10�3, 95% CI: �2.60 3 10�3,
12.3 3 10�3). Note that the variables identified as influenc-
ing the missingness mechanisms were included in the model
used for the all-cases analysis, and therefore imbalances
between completers and noncompleters were implicitly
taken into account in the all-cases analyses.

DISCUSSION

We analyzed the effects of FTO rs9939609 on BMI in
a large sample with good representation of the general pop-
ulation of northern Finland using SEM, taking advantage of
data on a large selection of nongenetic exposures associated
with BMI during the life course. This study provided posi-
tive evidence for an association between the FTO variant
and adult BMI despite control for several factors during the
life course, and weaker evidence for associations with BMI
at age 14 years and maternal BMI.

In this study, we were not able to observe any mediation
or modification of the genetic effect through potentially
relevant health behavioral exposures. However, the study
showed that nongenetic life-course factors are important
determinants of BMI development in addition to genetic
factors, since many of these factors had a strong indepen-
dent effect on BMI. We identified mediation through earlier
BMI development, which is in line with previous findings
that the FTO polymorphism would start affecting BMI by
the time of adolescence (6, 9–11). However, the effect of the
FTO variant on adult BMI was not fully mediated via earlier
BMI development, indicating that the variant continues to
function actively over the later life course as well. This is an
important observation, since age-varying associations may
cause failure to replicate a genetic-association finding
(50, 51).

Our inability to find evidence for any mediation or mod-
ification through behavioral variables may be due to the low
precision of some of the variables available in the present
study. For instance, our rather crude measure of unhealthy
diet, which is a surrogate for total energy intake, was in-

adequate in the attempt to shed light on the contradictory
findings about the association between nutrition and FTO.
The quality of data seems to play a huge role in the detection
of gene-environment interaction analyses (52). In addition,
we acknowledge a need for bigger sample sizes, since com-
plicated models with several parameters require quite sub-
stantial sample sizes, as do gene-environment interaction
analyses (53, 54).

The estimation of indirect and direct effects assumes that
the specified model is correct (55). We aimed to build
a model that would be a good approximation of the reality
by including several relevant variables in the model. An
indication of successful selection and model-fitting, in spite
of some inaccuracies in variable measurement, was the fact
that (for instance) the assumed model explained 34% of the
total variation in adult BMI. However, one drawback of
these models is that they are difficult to replicate in other
cohorts as such, because not many cohorts have similar
data. Therefore, we conducted cross-validation within
the study population itself as a sensitivity check of the
estimates.

Our analyses were conducted using observations with
missing values via the expectation-maximization algorithm
in maximum likelihood estimation. This allowed us to use
the data to their full potential, with a noteworthy increase
in statistical power. This is important in studies utilizing
life-course data, since attrition and missing values are
common in data collected over a long period of time. The
expectation-maximization algorithm relies on the assump-
tion that data are missing at random, which cannot be tested
in practice (56). However, we conducted the analysis for
complete cases only, and the estimates obtained were of
a similar direction and, for most of the parameters, a similar
magnitude as those from the analysis using observations
with missing values. Only the estimated effect of the FTO
variant on BMI at age 14 years was notably attenuated in the
complete-case analyses as compared with the all-cases anal-
yses. However, the 95% confidence intervals for the param-
eter estimates from the analyses overlapped.

The other advantage of using SEM is that it deals with the
collinearity problem efficiently. We had repeated measure-
ments of several variables, and putting them into a single
equation in the multiple regression analysis could have pro-
duced problems in estimation due to collinearity, as demon-
strated in a similar kind of study including repeated BMI
measurements by Gamborg et al. (57). By using SEM, we
avoided this problem and also obtained interpretable esti-
mates of indirect and direct effects.

Recently, Mendelian randomization (58) has been widely
used to study the mediating effect of variables in genetic
epidemiology, and SEM has been very rarely used to address
causal questions. The commentary by Tu (59) also high-
lighted the underutilization of SEM in epidemiology. Tu con-
cluded that SEM might be a step in the right direction in the
field of epidemiology. Especially in the genetic field, the
advantages of SEM have been utilized in systems biology,
quantitative trait loci analysis, twin studies, animal models,
and linkage analyses (e.g., see Stein et al. (60)), but its use in
genetic epidemiology is still very limited. However, some
promising studies that have investigated gene-environment
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interactions using this method have already been published
(61, 62).

In conclusion, we estimated the effects of the FTO
rs9939609 variant on BMI measurements taken over the life
course in the largest study so far to collect extensive data
from early pregnancy to adulthood, using a SEM approach,
and we showed that the associations remain robust despite
controlling for several relevant factors during the life
course. Mediation of the FTO effect on adult BMI was
observed via body mass development but not via an inter-
action with physical activity. Evidence for mediation or
effect modification by diet could not be evaluated. More
analyses of this kind should be carried out in large cohort
studies with adequate statistical power that have carefully
collected information over the life course. SEM proved to be
an efficient analytical tool for modeling the complex net-
works around genetic and nongenetic variables.
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