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Abstract: Use of hormonal contraceptives (HC) may influence total plasma concentrations 

of vitamin D metabolites. A likely cause is an increased synthesis of vitamin D binding 

protein (VDBP). Discrepant results are reported on whether the use of HC affects free 

concentrations of vitamin D metabolites. Aim: In a cross-sectional study, plasma 

concentrations of vitamin D metabolites, VDBP, and the calculated free vitamin D index in 

users and non-users of HC were compared and markers of calcium and bone metabolism 

investigated. Results: 75 Caucasian women aged 25–35 years were included during  

winter season. Compared with non-users (n = 23), users of HC (n = 52) had significantly 

higher plasma concentrations of 25-hydroxyvitamin D (25OHD) (median 84 interquartile 

range: [67–111] vs. 70 [47–83] nmol/L, p = 0.01), 1,25-dihydroxyvitamin D (1,25(OH)2D) 

(198 [163–241] vs. 158 [123–183] pmol/L, p = 0.01) and VDBP (358 [260–432] vs.  

271 [179–302] µg/mL, p < 0.001). However, the calculated free indices (FI-25OHD and 

FI-1,25(OH)2D) were not significantly different between groups (p > 0.10). There were no 

significant differences in indices of calcium homeostasis (plasma concentrations of 
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calcium, parathyroid hormone, and calcitonin, p > 0.21) or bone metabolism (plasma bone 

specific alkaline phosphatase, osteocalcin, and urinary NTX/creatinine ratio) between 

groups. In conclusion: Use of HC is associated with 13%–25% higher concentrations of 

total vitamin D metabolites and VDBP. This however is not reflected in indices of calcium 

or bone metabolism. Use of HC should be considered in the interpretation of plasma 

concentrations vitamin D metabolites. 

Keywords: hormonal contraceptives; 25hydroxyvitamin D; 1,25-dihydroxyvitamin D; 

vitamin D binding protein; parathyroid hormone; calcitonin; bone turnover;  

bone mineral density 

 

1. Introduction 

Vitamin D (calciferol) is obtained from endogenous synthesis in the skin in response to solar UV-B 

radiation and intake from the diet and supplements [1,2]. Once in the circulation, calciferol is 

converted to 25-hydroxyvitamin D (25OHD) in the liver and, subsequently, to its circulating 

biologically active form 1,25-dihydroxyvitamin D (1,25(OH)2D) in the kidney [3]. This conversion 

may also occur in other tissues for auto- or paracrine actions [4]. It has been estimated that 85% to 

90% of 25OHD and 1,25(OH)2D is bound to vitamin D binding protein (VDBP) [5], 10% to 15% to 

albumin, whereas only a very small fraction (<0.1%) circulates in its free form [5,6]. VDBP binding 

protects vitamin D metabolites from hydroxylase-mediated catabolism, affects their cellular uptake, 

and modulates their biological activity [5,6]. 

Total plasma concentrations of 25OHD are considered an indicator of vitamin D status due to its 

long plasma half-life (approximately 15–35 days) and lack of hormonal control of the hepatic  

25-hydroxylase [3]. 

Vitamin D is known to affect several health outcomes. Classically, low vitamin D concentrations 

are known to be associated with an increased risk of myopathy, rickets or osteomalacia, and low bone 

mineral density and fracture. In a number of recent studies, an impaired vitamin D status has also been 

associated with various adverse non-skeletal health outcomes such as an increased risk of malignancies 

or cardiovascular diseases [1].  

Plasma 25OHD concentrations are influenced by many factors. In addition to variations in  

UVB-exposure and dietary intake, 25OHD concentrations are influenced by several host factors such 

as age, adiposity [2,7,8], ethnicity, and skin tone as well as certain genotypes [8,9], and plasma VDBP 

concentrations [5].  

Pregnancy is known to be associated with an increase in VDBP through its oestrogen mediated 

increase in synthesis [10,11]. Plasma concentrations of 25OHD are reported to be unaltered and 

1,25(OH)2D to be elevated compared to non-pregnant women [12–14]. The use of hormonal 

contraceptives (HC) may also affect 25OHD concentrations and metabolism due to their oestrogenic 

components. The limited data on the effects of HC on 25OHD concentrations report no change or an 

increase in total 25OHD [9,12,15–17], whereas most studies consistently report an increase in levels of 

1,25(OH)2D and VDBP [10,15,18–20]. 
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These data suggest that HC may cause differential effects on 25OHD and 1,25(OH)2D; the free 

25OHD index (the molar ratio of 25OHD- to VDBP-concentrations) may be decreased due to an 

absence of a parallel increase in VDBP and 25OHD, whereas the free index of 1,25(OH)2D may 

remain unchanged. 

In order to study the possible effects of HC, we compared plasma concentrations of 25OHD, 

1,25(OH)2D, VDBP, and the calculated free vitamin D index in users and non-users of HC. In 

addition, we assessed possible impacts of HC on calcium homeostasis and bone metabolism. 

2. Subjects and Methods 

This paper reports a secondary analysis of the effects of HC on vitamin D metabolism in a subset of 

women participating in a population based controlled cohort study, using cross-sectional data obtained 

at baseline. The design of the study has previously been reported in detail [12,21]. In brief, we 

included 153 healthy Caucasian women, aged 25–35 years, trying to conceive, and 75 age-matched 

women not planning a pregnancy for the next 21 months. All women were recruited by direct mailing 

of 11,175 randomly selected women from a population of 21,317 women aged 25–35 years living in 

the community of Aarhus, Denmark. We obtained names and addresses from the Danish Civil 

Registration System. A total of 561 wished to participate, from which 333 were excluded as based on 

predefined exclusion criteria (Pregnant or breastfeeding at the start of the study (n = 85), known 

infertility (n = 46), miscarriage within last 6 months (n = 3), withdrawal or moved residence (n = 84), 

age, illness, foreign origin (n = 25), or responded after closure of recruitment (n = 90)). Analyses 

reported in this paper only include data obtained in the group of women (n = 75) not planning a 

pregnancy, of which 52 were using hormonal contraception (including oral, subdermal contraceptive 

implant, or hormonal spiral methods). They were all included between October 2006 and April 2007. 

The study was performed according to The Helsinki Declaration II. The study was notified to the 

Danish Data Protection Agency (#2004-41-4737) and approved by the Regional Scientific Ethical 

Committee of Aarhus County (#20040186). 

2.1. Measurements 

Standing height and body weight were measured (Seca, Sa-med, Kvistgaard, Denmark) wearing 

indoor clothing. Incident diseases and the use of drugs were recorded. Participants were asked to fill in 

a questionnaire on medical conditions, smoking habits, and dietary intake of calcium as well as use of 

calcium and vitamin D containing supplements. Dietary intake of calcium was assessed as previously 

described [22] and total calcium intake was calculated as dietary intake plus intake from supplements. 

2.2. Biochemistry 

A non-fasting blood sample was drawn between 8 a.m. and 2 p.m. according to standardized 

procedures and centrifuged at 4 °C with a relative centrifugal force of 2500 g for 10 min. Plasma was 

separated and stored at −80 °C until analyzed. Urine and plasma samples were assessed in batches, i.e., 

all samples from each participant were analyzed in the same run, except for analysis of calcium, 

creatinine, and phosphate, which were analyzed within two hours after collection. A second void 
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morning urine sample was collected at home. Urine samples were collected under fasting conditions or 

before any consumption of calcium rich foods. Plasma 25-hydroxyvitamin D (25OHD) concentrations 

were measured by isotope dilution liquid chromatography–tandem mass spectrometry (LC-MS/MS) by 

a method adapted from Maunsell et al. [23,24]. The method separately quantifies 25OHD2 and total 

25OHD3 (including the 3-epimer). The total 25OHD concentration was calculated and used for further 

analyses. Calibrators traceable to NIST SRM 972 (Chromsystems, DE) were used. The inter-assay CV 

was <10%, at plasma concentrations of 23.4 nmol/L (25OHD2) and 24.8 nmol/L (25OHD3). We 

determined plasma 1,25-dihydroxyvitamin D (1,25(OH)2D) concentrations by a radioimmunoassay 

(Gamma-B 1,25-Dihydroxy Vitamin D, Immunodiagnostic Systems (IDS) Ltd., Boldon, England). 

The inter- and intra-assay CV was 9.0% and 8.0%, respectively, at 220 pmol/L. 

Vitamin D binding protein concentration was determined by ELISA (R & D Systems, Abingdon, 

UK) with both an inter- and intra-assay CV < 6%. Assay performance was monitored using kit and  

in-house controls and under strict standardization according to ISO 9001:2000. 

The free fraction of 25OHD and 1,25(OH)2D were calculated as the free 25OHD index (FI-25OHD) 

and the free 1,25(OH)2D index (FI-1,25(OH)2D) using the molar ratio of 25OHD and 1,25(OH)2D to 

VDBP [11]. 

We determined plasma and urinary concentrations of calcium and creatinine (Cr) by standard 

laboratory methods and calculated the albumin adjusted calcium concentration according to the 

formula: plasma calcium, adjusted [mmol/L] = plasma calcium, total [mmol/L] + 0.00086 × (650-plasma 

albumin µmol/L) [22]. 

Calcitonin was measured by a radioimmunoassay as described by Schifter [25]. The plasma 

concentrations of intact parathyroid hormone (PTH) and osteocalcin were measured with  

electro-chemiluminescence immunoassays using an automated instrument (Cobas 601e, Roche 

Diagnostics, GmbH, Mannheim, Germany). We measured plasma bone specific alkaline phosphatase 

concentrations by an immunoassay (METRA BAP EIA kit, Quidel Corporation, San Diego, CA, 

USA). The renal excretion of cross-linked N-terminal telopeptide of type 1 collagen (NTx) was 

quantified by ELISA using an automated instrument (Vitros ECI, Ortho Clinical Diagnostics, 

Amersham, UK). Results were expressed relative to creatinine (Cr) excretion (NTx/Cr), as nmol of 

bone collagen equivalents (nMmol BCE) per mmol of creatinine. The CV was 9.6% at 41.5 nmol 

BCE/mmol Cr. 

We measured bone mineral density (BMD) of the whole body, the lumbar spine, and total hip. Total 

body fat and lean mass were measured. All DXA scans were performed using a Hologic Discovery 

scanner (Hologic, Waltham, MA, USA). We assessed long-term stability through daily scans of an 

anthropometrical phantom. Precision error for BMD was 1% at the lumbar spine and 2% at the total hip.  

2.3. Statistics  

The majority of the data were non-normally distributed, therefore descriptive statistics are reported 

as medians with the 25 and 75-percentile (p25; p75), unless stated otherwise. We explored the 

differences between groups using chi-square tests for categorical variables and a Mann-Whitney U-test 

for continuous variables. Spearman’s rho correlation was used to calculate the magnitude and direction 

of the correlations between measured variables. 



Nutrients 2013, 5 3474 

 
Vitamin D status was described according to plasma 25OHD concentrations categorized into  

three groups: 25OHD < 50 nmol/L; 25OHD between 50.1 and 75 nmol/L, 25OHD > 75.1 nmol/L [26]. 

All statistical analyses were performed using the Statistical Package for Social Sciences (SPSS 17, 

Chicago, IL, USA) for Windows. P-values below 0.05 were considered statistically significant. 

3. Results 

Table 1 shows characteristics of the 75 included women. Anthropometric-, diet-, and  

lifestyle-characteristics did not differ between women using hormonal contraceptives (HC) (n = 52) 

and non-users (n = 23), except that daily calcium intake was slightly higher in users- compared with 

non-users of HC (p = 0.02). 

Table 1. Characteristic of the 75 studied women stratified by use of hormonal 

contraceptives. Median with interquartile (p25; p75) ranges unless otherwise indicated. 

 All, n = 75 

Users of 
hormonal 
contraceptive 
(n = 52) 

Non-users of 
hormonal 
contraceptives 
(n = 23) 

p value 1 

Age, mean 29 (27; 32) 29 (27; 32) 29 (26; 33) 0.81 
Weight, kg  67 (60; 77) 69 (63; 77) 63 (57; 80) 0.12 
Height, cm 168 (163; 172) 167 (162; 172) 169 (163; 172) 0.61 
BMI 24 (22; 27) 25 (23; 27) 23 (20; 27) 0.12 
Total calcium intake, mg/day 800 (660; 975) 850 (700; 1000) 700 (500; 853) 0.02 
Use of vitamin D 
supplements, n (%) 
Vitamin D intake from 
supplements (µg/day) 

24 (32) 
5 (5; 9) 

17 (33) 
5 (5; 10) 

7 (30) 
5 (5; 5) 

1.00 

Smoking, n (%) 11 (15) 7 (14) 4 (17) 0.71 
1 Independent-Samples Mann-Whitney U Test. 

Of the 52 HC users, 44 used oral HC, six used intrauterine hormonal device, one used sub-dermal 

contraceptive implant, and one used a vaginal ring. No differences in biochemical markers were seen 

between the 44 using oral HC and the six using intrauterine hormonal device (data not shown). 

Physical activity, time spend outdoor, and the time of the day for blood sampling did not differ 

between the HC users and no-users of HC (data not shown). The number of women with a BMI above 

25 was not different between users- and non-HC users. BMD at whole body, lumbar spine, and total 

hip, as well as fat and lean mass did not differ between the HC users and no-users of HC (data not 

shown). However, given the sample size of 23 non-HC users and 52 users our statistical power to 

detect a 5% difference between groups in lumbar spine BMD (2α = 0.05 and β = 0.20) was only 

approximately 60%. 

When all data were pooled, the plasma concentrations of 25OHD was significantly and positively 

correlated with VDBP (rs = 0.26, p = 0.03) (Figure 1A) and further with 1,25(OH)2D (rs = 0.43,  

p < 0.01). 
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Figure 1. (A) Scatter plot of linear relations between plasma 25OHD and VDBP in  

75 healthy Caucasian women stratified by use of hormonal contraceptives; (B) Scatter plot 

of linear relations between plasma 1,25OH2D and VDBP in 75 healthy Caucasian women 

stratified by use of hormonal contraceptives. 

Plasma 1,25(OH)2D was significantly and positively correlated with VDBP concentrations  

(rs = 0.39, p < 0.01) when data for all women (HC users and non users) were pooled (Figure 1B). 
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3.1. The Effect of Use of Hormonal Contraceptives on P-25OHD, P-1,25OH2D, and  

P-VDBP Concentrations  

Table 2 details the biochemical indices measured as stratified by whether studied women used HC. 

Table 2. Biochemical characteristics as stratified by use of hormonal contraceptives. Data 

are presented as Median with interquartile (p25; p75) ranges unless otherwise indicated. 

 All, n = 75 

Users of hormonal 

contraceptive 

users 

(n = 52) 

Non-users of 

hormonal 

contraceptives  

(n = 23) 

p value 1

Plasma vitamin D binding protein, µg/mL 305 (251; 404) 358 (260; 432) 271 (179; 302) <0.001 

Plasma 25-hydroxyvitamin D, nmol/L 79 (64; 104) 84 (67; 111) 70 (47; 83) 0.01 

Free index 25-hydroxyvitamin D (×10−3) 14 (10; 19) 14 (10; 19) 15 (10; 17) 0.84 

Plasma 1,25-dihydroxyvitamin D, pmol/L 185 (156; 224) 198 (163; 241) 158 (123; 183) 0.01 

Free index 1,25-dihydroxyvitamin D (×10−6) 31 (26; 41) 29 (25; 41) 36 (27; 43) 0.10 

Vitamin D status, N (%) 

<50 nmol/L 

50–75 nmol/L 

>75 nmol/L 

 

12 (16) 

19 (25) 

44 (59) 

 

6 (12) 

12 (23) 

34 (65) 

 

6 (50) 

7 (37) 

10 (23) 

 

0.15 2 

Plasma PTH, pmol/L 3.6 (2.9; 4.6) 3.3 (2.5; 4.3) 3.8 (3.4; 4.6) 0.36 

Plasma calcium total,  

albumin adjusted, mmol/L 
2.45 (2.42; 2.52) 2.46 (2.43; 2.51) 2.45 (2.40; 2.53) 0.94 

Plasma phosphate, mmol/L 1.00 (0.93; 1.12) 0.97 (0.89; 1.09) 1.03 (0.95; 1.21) 0.05 

Plasma creatinine, µmol/L 64 (57; 72) 65 (57; 73) 61 (58; 69) 0.22 

Plasma calcitonin, pmol/L 10 (9; 12) 10 (9; 12) 9 (8; 11) 0.21 

Plasma bone specific  

alkaline phosphatase, U/L 
17.9 (14.8; 23.0) 16.5 (14.6; 21.0) 21.1 (14.8; 23.8) 0.22 

Plasma osteocalcin, µg/L 26.9 (19.3; 30.9) 25.9 (19.0; 29.6) 29.6 (20.6; 39.2) 0.07 

Urine NTx/creatinine ratio (mmol/mmol) 42.6 (30.9; 53.0) 39.3 (29.5; 50.8) 48.7 (38.8; 57.8) 0.11 

Urine calcium/creatinine-ratio (mmol/mmol) 0.2 (0.1; 0.4) 0.2 (0.1; 0.4) 0.3 (0.1; 0.4) 0.52 
1 Independent-Samples Mann-Whitney U Test; 2 Chi-Square Tests. 

Compared with the non-users, HC users has a significantly higher plasma concentrations of 

25OHD, 1,25(OH)2D, and VDBP (p < 0.01). The median plasma concentrations of 25OHD, 

1,25(OH)2D, and VDBP were respectively 16%, 13%, and 25%, higher in users compared to  

non-users of HC. However, FI-25OHD and FI-1,25(OH)2D did not differ between groups. 

Adjustment for between group differences in body weight did not change results. 

The prevalence of a 25OHD concentration below 50 nmol/L was equal between groups, whereas 

there were three times as many users with a 25OHD concentration above 75.1 nmol/L as non-users of 

HC (Table 2). 

The correlation between the plasma concentration of 25OHD and 1,25(OH)2D was near significant 

in both users of HC (rs = 0.31, p = 0.06) and in non-users of HC (r = 0.49, p = 0.07).  

However, 25OHD and VDBP concentrations were not significantly correlated when groups were 

analyzed separately (in HC users: rs = 0.15, p = 0.29 and in non-users: rs = 0.29, p = 0.18). Plasma 
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1,25(OH)2D tended to be positively correlated with VDBP in non-users of HC (rs = 0.52, p = 0.06), 

but not in HC users (rs = 0.21, p = 0.21) (Figure 1B).  

3.2. The Effect of Use of Hormonal Contraceptives on Calcium Homeostasis and Bone Turnover 

As shown in Table 2, plasma concentrations of phosphate and osteocalcin were borderline 

significant lower in users-compared with non-users of HC; whereas no other measured indices differed 

between groups.  

4. Discussion 

We have studied a group of healthy young Danish women among whom 52 used HC and 23 did 

not. Our analyses showed significantly higher plasma concentrations of 25OHD, 1,25(OH)2D and 

VDBP in users compared with non-users of HC, FI-25OHD and FI-1,25OH2D were however not 

different between groups. 

Our findings of increased VDBP concentrations in users of HC agrees with the findings in 

postmenopausal women receiving postmenopausal hormone substitution. In an earlier study from our 

group, initiation of postmenopausal oestrogen therapy caused a significant 8% increase in VDBP 

concentrations [19]. Similar results have been reported in pregnancy, during which an increase in 

VDBP concentration is observed [10,18]. 

Plasma 1,25(OH)2D is known to suppress the secretion of PTH, stimulate the synthesis of 

osteocalcin and enhance intestinal absorption of calcium and phosphate [27,28]. The latter may be 

reflected in an increase renal excretion of these minerals [27]. Despite a significant increase in plasma 

1,25(OH)2D our data did not show any significant effect of HC on indices of calcium and phosphate 

homeostasis or bone metabolism. These findings may support the notion of the free hormone 

hypothesis, i.e., that only the free fraction of the hormone has biological effects [29]. 

We assume based on our results and previous reports [5,10,15,18,19] that the estrogen component 

of HC may increase VDBP synthesis or decrease its catabolism. The concomitant increase in the total 

plasma 1,25(OH)2D concentration may mirror a compensatory adjustment to maintain an unaltered 

concentration of the free fraction [10,16,18]. 

VDBP binding protects vitamin D metabolites from hydroxylase-mediated catabolism; an increase 

in VDBP may therefore reduce further metabolism of vitamin D metabolites, increasing their half-life. 

An alternative explanation is that, in parallel with the up regulation of the 1,25(OH)2D concentration, 

the total 25OHD concentration is unregulated via unknown mechanisms, to maintain the free 

concentration of 25OHD, available to tissues. This may potentially explain the higher plasma 

concentration of the largely unregulated plasma concentration of 25OHD in HC users, however, this 

needs further investigation. 

An important limitation of our study is the relative small sample size and the fact that women were 

healthy and all had plasma 25OHD concentrations over 25 nmol/L. This may have limited our ability 

to detect further potential effects of HC on calcium homeostasis and bone metabolism through 

variations in VDBP, 25OHD, and 1,25(OH)2D in vitamin D deficiency (25OHD < 25 nmol/L). Further 

studies should therefore aim to investigate effects of HC in women with vitamin D deficiency. 
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Moreover, investigations in larger groups are needed to assess the effects of HC on vitamin D 

metabolites and its effect on muscle and bone, as well as other health outcomes. 

5. Conclusions 

In conclusion, use of HC is associated with an elevated plasma concentration of VDBP and 

concomitant higher plasma 25OHD and 1,25(OH)2D. The free-indices of these vitamin D metabolites 

are however similar to non-users of HC. The point of emphasis: the use of HC should be considered in 

the interpretation of 25OHD and 1,25(OH)2D vitamin D concentrations in women. Further studies 

should aim to clarify whether also in women with a low vitamin D supply, an HC induced increase in 

VDBP is accompanied by an increase in plasma 25OHD to maintain the free 25OHD level. Further 

research is also required to assess whether the free 25OHD index is a better marker of 25OHD tissue 

availability and has a higher correlation with indices of calcium homeostasis and bone metabolism 

than total 25OHD levels. 

Acknowledgements 

We are grateful for the financial support provided to the project from: The Danish Agency for 

Science, Technology and Innovation, The Aarhus University Research Foundation, AP Moeller 

Foundation for the Advancement of Medical Science, Svend Fældings Humanitære Fond, The 

Lundbeck Foundation, Aarhus University Fellowship, and Helga and Peter Kornings Foundation. Inez 

Schoenmakers and Shailja Nigdikar are supported through the core programme of the Nutrition and 

Bone Research group at MRC Human Nutrition Research funded by UK MRC (grant code U105960371). 

Conflicts of Interest 

The authors are not aware of any affiliations, memberships, funding, or financial holdings that 

might be perceived as affecting the objectivity of this study. 

References 

1. Holick, M.F. Vitamin D status: Measurement, interpretation, and clinical application.  

Ann. Epidemiol. 2009, 19, 73–78. 

2. Mosekilde, L. Vitamin D and the elderly. Clin. Endocrinol. 2005, 62, 265–281. 

3. Holick, M.F. Resurrection of vitamin D deficiency and rickets. J. Clin. Investig. 2006, 116,  

2062–2072. 

4. Hewison, M.; Burke, F.; Evans, K.N.; Lammas, D.A.; Sansom, D.M.; Liu, P.; Modlin, R.L.; 

Adams, J.S. Extra-renal 25-hydroxyvitamin D3–1alpha-hydroxylase in human health and disease. 

J. Steroid Biochem. Mol. Biol. 2007, 103, 316–321. 

5. Bikle, D.D.; Gee, E.; Halloran, B.; Kowalski, M.A.; Ryzen, E.; Haddad, J.G. Assessment of  

the free fraction of 25-hydroxyvitamin D in serum and its regulation by albumin and the  

vitamin D-binding protein. J. Clin. Endocrinol. Metab. 1986, 63, 954–959. 



Nutrients 2013, 5 3479 

 
6. Bikle, D.D.; Siiteri, P.K.; Ryzen, E.; Haddad, J.G. Serum protein binding of  

1,25-dihydroxyvitamin D: A reevaluation by direct measurement of free metabolite levels. J. Clin. 

Endocrinol. Metab. 1985, 61, 969–975. 

7. Holick, M.F.; Chen, T.C. Vitamin D deficiency: A worldwide problem with health consequences. 

Am. J. Clin. Nutr. 2008, 87, 1080S–1086S. 

8. Chan, J.; Jaceldo-Siegl, K.; Fraser, G.E. Determinants of serum 25 hydroxyvitamin D levels in a 

nationwide cohort of blacks and non-Hispanic whites. Cancer Causes Control 2010, 21, 501–511. 

9. Nesby-O’Dell, S.; Scanlon, K.S.; Cogswell, M.E.; Gillespie, C.; Hollis, B.W.; Looker, A.C.; 

Allen, C.; Doughertly, C.; Gunter, E.W.; Bowman, B.A. Hypovitaminosis D prevalence and 

determinants among African American and white women of reproductive age: Third National 

Health and Nutrition Examination Survey, 1988–1994. Am. J. Clin. Nutr. 2002, 76, 187–192. 

10. Bouillon, R.; van Assche, F.A.; van Baelen, H.; Heyns, W.; de Moor, P. Influence of the  

vitamin D-binding protein on the serum concentration of 1,25-dihydroxyvitamin D3. Significance 

of the free 1,25-dihydroxyvitamin D3 concentration. J. Clin. Investig. 1981, 67, 589–596. 

11. Haddad, J.G., Jr.; Walgate, J. Radioimmunoassay of the binding protein for vitamin D and its 

metabolites in human serum: Concentrations in normal subjects and patients with disorders of 

mineral homeostasis. J. Clin. Investig. 1976, 58, 1217–1222. 

12. Møller, U.; Streym, S.; Heickendorff, L.; Mosekilde, L.; Rejnmark, L. Effects of 25OHD 

concentrations on chances of pregnancy and pregnancy outcomes. A cohort study in healthy 

Danish women. Eur. J. Clin. Nutr. 2012, 66, 862–868. 

13. Cross, N.A.; Hillman, L.S.; Allen, S.H.; Krause, G.F. Changes in bone mineral density and 

markers of bone remodeling during lactation and postweaning in women consuming high amounts 

of calcium. J. Bone Miner. Res. 1995, 10, 1312–1320. 

14. Ritchie, L.D.; Fung, E.B.; Halloran, B.P.; Turnlund, J.R.; van Loan, M.D.; Cann, C.E.; King, J.C. 

A longitudinal study of calcium homeostasis during human pregnancy and lactation and after 

resumption of menses. Am. J. Clin. Nutr. 1998, 67, 693–701. 

15. Aarskog, D.; Aksnes, L.; Markestad, T.; Rodland, O. Effect of estrogen on vitamin D metabolism 

in tall girls. J. Clin. Endocrinol. Metab. 1983, 57, 1155–1158. 

16. Harris, S.S.; Dawson-Hughes, B. The association of oral contraceptive use with plasma  

25-hydroxyvitamin D levels. J. Am. Coll. Nutr. 1998, 17, 282–284. 

17. Gagnon, C.; Baillargeon, J.P.; Desmarais, G.; Fink, G.D. Prevalence and predictors of vitamin D 

insufficiency in women of reproductive age living in northern latitude. Eur. J. Endocrinol. 2010, 

163, 819–824. 

18. Van Hoof, H.J.; de Sevaux, R.G.; van Baelen, H.; Swinkels, L.M.; Klipping, C.; Ross, H.A.; 

Sweep, C.G. Relationship between free and total 1,25-dihydroxyvitamin D in conditions of 

modified binding. Eur. J. Endocrinol. 2001, 144, 391–396. 

19. Rejnmark, L.; Lauridsen, A.L.; Brot, C.; Vestergaard, P.; Heickendorff, L.; Nexo, E.;  

Mosekilde, L. Vitamin D and its binding protein Gc: Long-term variability in peri- and 

postmenopausal women with and without hormone replacement therapy. Scand. J. Clin. Lab. 

Investig. 2006, 66, 227–238. 
  



Nutrients 2013, 5 3480 

 
20. Gravholt, C.H.; Leth-Larsen, R.; Lauridsen, A.L.; Thiel, S.; Hansen, T.K.; Holmskov, U.;  

Naeraa, R.W.; Christiansen, J.S. The effects of GH and hormone replacement therapy on serum 

concentrations of mannan-binding lectin, surfactant protein D and vitamin D binding protein in 

Turner syndrome. Eur. J. Endocrinol. 2004, 150, 355–362. 

21. Moller, U.K.; við Streym, S.; Mosekilde, L.; Rejnmark, L. Changes in bone mineral density and 

body composition during pregnancy and postpartum. A controlled cohort study. Osteoporos. Int. 

2012, 23, 1213–1223. 

22. Hermann, A.P.; Thomsen, J.; Vestergaard, P.; Mosekilde, L.; Charles, P. Assessment of kalcium 

intake. A quick method comparerd to a 7 days food diary. Calcif. Tissue Int. 1999, 64, S82. 

23. Maunsell, Z.; Wright, D.J.; Rainbow, S.J. Routine isotope-dilution liquid chromatography-tandem 

mass spectrometry assay for simultaneous measurement of the 25-hydroxy metabolites of 

vitamins D2 and D3. Clin. Chem. 2005, 51, 1683–1690. 

24. Hojskov, C.S.; Heickendorff, L.; Moller, H.J. High-throughput liquid-liquid extraction and 

LCMSMS assay for determination of circulating 25(OH) vitamin D3 and D2 in the routine 

clinical laboratory. Clin. Chim. Acta 2010, 411, 114–116. 

25. Schifter, S. A new highly sensitive radioimmunoassay for human calcitonin useful for 

physiological studies. Clin. Chim. Acta 1993, 215, 99–109. 

26. Mosekilde, L. Vitamin D requirement and setting recommendation levels: Long-term 

perspectives. Nutr. Rev. 2008, 66, S170–S177. 

27. Favus, M. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, 6th ed.; 

Bikle, D.D., Christakos, S., Goldring, S.R., Guise, T.H., Holick, M.F., Jan de Beur, S.,  

Kaplan, F.S., Kleerekoper, M., Langman, C.B., Lian, J.B., et al., Eds.; American Society for Bone 

and Mineral Research: Washington, DC, USA, 2006; pp. 50–132. 

28. Henry, H.L.; Norman, A.W. Vitamin D: Metabolism and biological actions. Annu. Rev. Nutr. 

1984, 4, 493–520. 

29. Mendel, C.M. The free hormone hypothesis: A physiologically based mathematical model. 

Endocr. Rev. 1989, 10, 232–274. 

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/Licenses/by/3.0/). 


