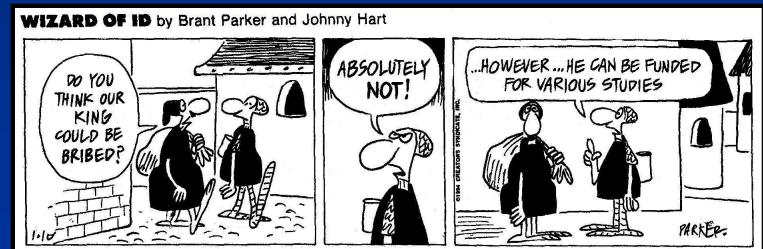
Vitamin D in Allergic and Immune Disorders

Mitchell R. Lester, MD Fairfield County Allergy, Asthma, and Immunology Associates Norwalk, CT



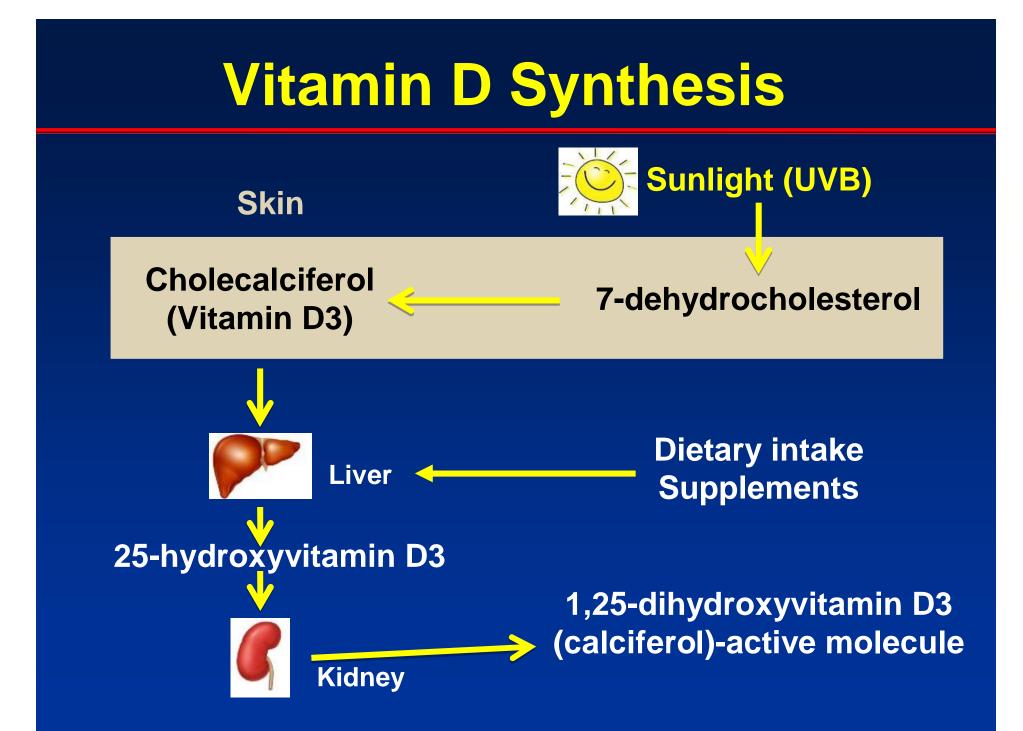
ACAAI Meet the Professor Breakfast (S3) November 10, 2013

mrlester@optonline.net

I have no potentially relevant financial interests, conflicts of interest, or other affiliations with any corporate organizations relevant to the subject of my presentation. I do not intend to discuss off label use of medications or devices.

Disclosure

I take 1400 IU of vitamin D q.d. Hopefully, this topic will interest you enough to read more on your own including some of the references.


The handout can serve as a framework for our discussion.

Learning Objectives

At the conclusion of this CME activity, the participant will be able to:

- 1. Define levels of sufficient, insufficient, and deficient vitamin D.
- 2. Describe associations vitamin D levels and atopic diseases.

3. Identify the potential role of vitamin D in immune modulation.

RDA for Vitamin D

Age (years)	0-1	1-13	14-18	19-50	51-70	>70
IU/d	400	600	600	600	600	800
Pregnancy and lactation			600	600		

ods.od.nih.gov/factsheets/vitamind-healthprofessional/ (6/24/11)

Sources of Vitamin D

Source	Serving size	IU per serving	% RDV (1-70 yrs.)
Milk, fortified	8 oz.	120	20
Cod liver oil	15 ml.	1360	227
OJ, fortified	8 oz.	137	23
Salmon	3 oz.	447	75
Egg, large	One	41	7
Skin	Up to 30'	20,000	3333

ods.od.nih.gov/factsheets/vitamind-healthprofessional/ (6/24/11) NEJM. 2011;364:248-54., and others.

25-OH-D3 Levels and Health

ng/mL	nmol/L**	Health status	
<12	<30	DEFICIENT: Associated rickets in infants and children and osteomalacia in adults.	
12–19	30–49	INSUFFICIENT: Generally considered inadequate for bone and overall health in healthy individuals	
≥20	≥50	SUFFICIENT: Generally considered adequate for bone and overall health in healthy individuals	
20-29	50-75	INSUFFICIENT	
30-50	≥75	SUFFICIENT	
>50	>125	Emerging evidence links potential adverse effects to such high levels, particularly >60 ng/mL (>150 nmol/L)	

ods.od.nih.gov/factsheets/vitamind-healthprofessional/ (6/24/11) NEJM. 2011;364:248-54. <u>Allergy Asthma</u> Proc. 2011;32:438-44. ** Conversion: 1 ng/ml=2.496 nmol/L

Who is at Risk of Vitamin D Deficiency?

Dark complexion. **Older children/teenagers.** Girls. **Obesity.** More screen time. More time indoors **Extremes of latitude.** Low milk consumption. **Breast fed babies.** Malabsorption.

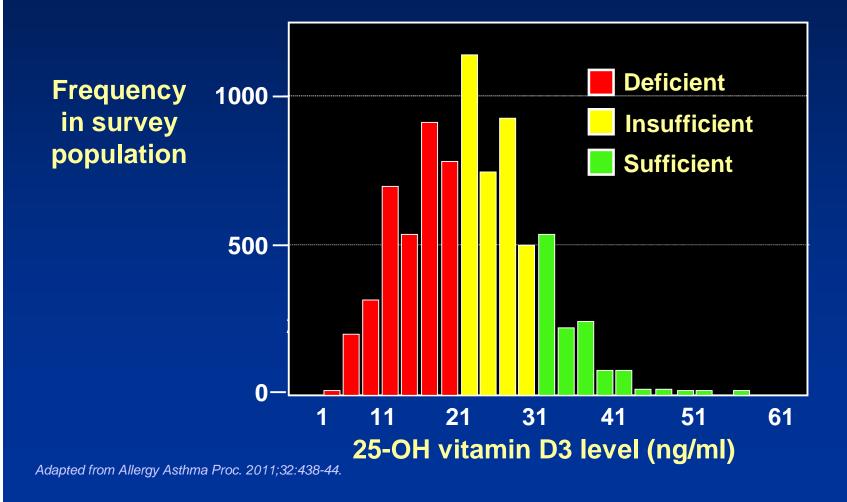
Vitamin D Deficiency is More Common than You Think

Estimates of 30-80% deficiency reported.

NHANES (2001-2004) study of 6000 1-21 year olds:

- 9% vitamin D deficient (<15 ng/ml).
- 61% vitamin D insufficient (<30 ng/ml).
- Lower in older children, female, African and Mexican Americans, drank milk < once/week, >4 hours per day in front of screens.

Adolescents (72% Black or Hispanic):


- 24% vitamin D ≤ 15 ng/ml.
- 42% vitamin D ≤ 20 ng/ml.

Infants and toddlers 8-24 months (90% Black or Hispanic):

- 12% vitamin D ≤ 20 ng/ml.
- 40% vitamin D \leq 30 ng/ml.

Pediatrics. 2009;124:e362-70. Arch Pediatr Adolesc Med. 2004;158:531-7. Arch Pediatr Adolesc Med. 2008;162:505-12.

Vitamin D Levels in a Random Population (NHANES 2005-06)

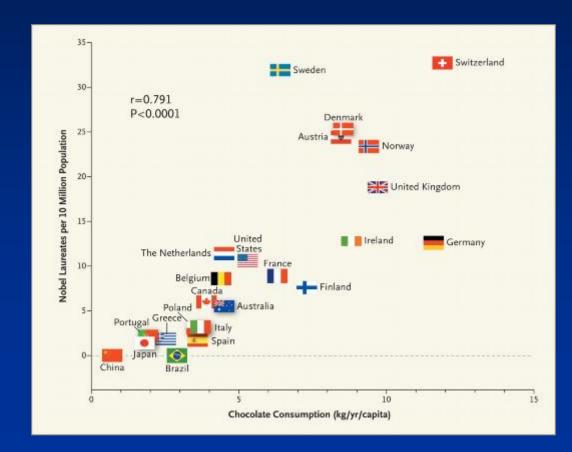
Non-Calcemic Roles of Vitamin D

Vitamin D receptor (VDR) and α -1-hydroxylase have been found on and in most cell types and tissues of the body.

Numerous conditions have been associated with vitamin D deficiency:

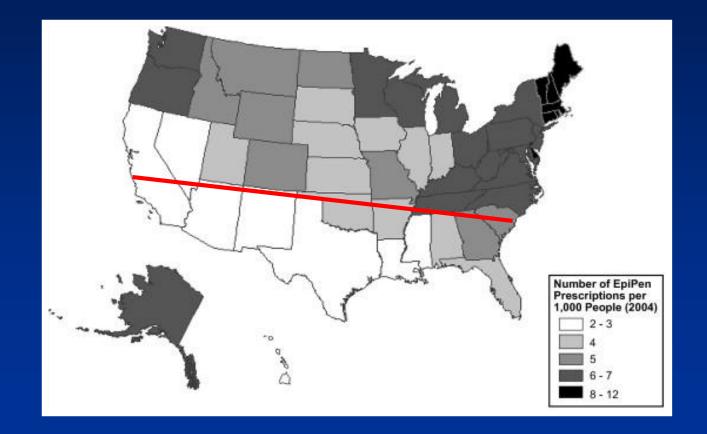
- Atherosclerosis.
- Cardiac contractility.
- Autoimmunity.
- Neoplasm
 - Breast
 - Colon
 - Prostate

Impaired insulin synthesis.In the PICU:

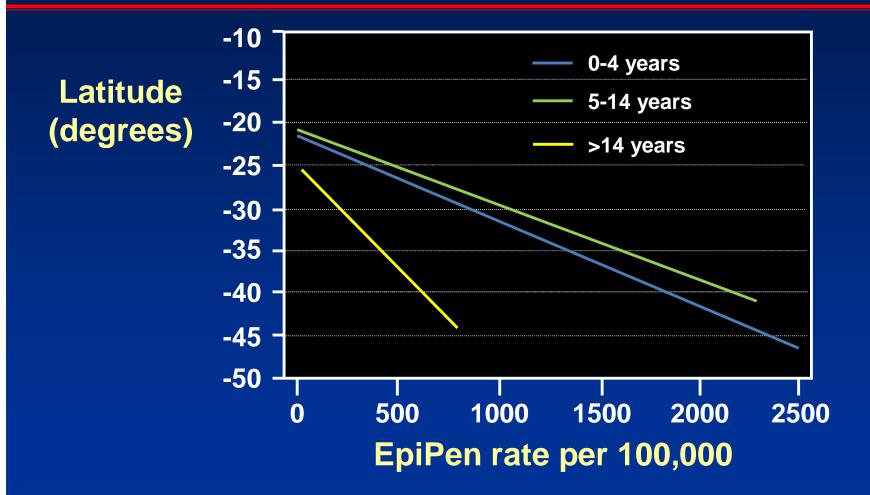

- More critical illness
- Longer admission.
- Pressor need.
- Risk of septic shock

Associations of Vitamin D Status with Things We Do for a Living

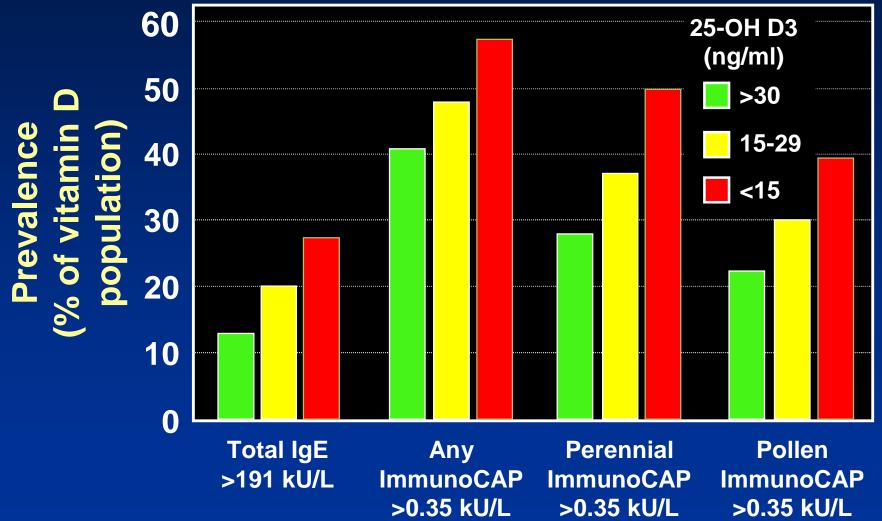
- Atopic diseases
 - Total and specific IgE At
 - Asthma
 - Atopic dermatitis
- Anaphylaxis
- Food Allergy
- Chronic urticaria?


- Infections
- JE Atopic dermatitis
 - Influenza, resp. viruses
 - Tuberculosis, HIV
 - Autoimmunity
 Type 1 diabetes mellitus
 Multiple sclerosis
 - Rheumatoid arthritis

An Association Does not Imply Cause and Effect. It is Merely a Place to Start Your Research.


N Engl J Med 2012;367:1562-1564

Latitude and Epinephrine Prescriptions


J Allergy Clin Immunol. 2007;120:131-6..

Latitude and Epinephrine (Southern Hemisphere)

Adapted from Ann Allergy Asthma Immunol. 2009;103:488-95.

Vitamin D Levels and Atopy

Adapted from J Allergy Clin Immunol. 2011;127:1195-202.

Vitamin D and Asthma Control

- Vitamin D levels are correlated with FEV₁, FVC, asthma control, and steroid responsiveness.
- Vitamin D level is inversely correlated with asthma symptoms, bronchial hyperreactivity, asthma exacerbations, steroid requirement, and bronchial smooth muscle mass.

 Vitamin D deficiency is a risk for asthma hospitalization and airway remodeling, and is associated with steroid resistant asthma.

Allergy Asthma Proc. 2011;32:438-44. J Allergy Clin Immunol. 2007;120:1031-5. Am J Clin Nutr. 2007. 85:788-95. Br J Nutr. 2010;104:1051-7. Ann Allergy Asthma Immunol. 2010;105:191-99. J Allergy Clin Immunol. 2007;120:1031-5. J Allergy Clin Immunol. 2010;125:995-1000. J Allergy Clin Immunol. 2010;126:52-8. Am J Resp Crit Care Med. 2011;184:1342-9. Eur Resp J. 2011;38:1320-7.

Asthma and Vitamin D Supplementation

- Vitamin D enhances T cell steroid responsiveness *in vitro*.
- Supplementation at 1 (cod liver oil) decreases risk of allergies and asthma at 31 years.

 In established and newly diagnosed asthma, vitamin D supplementation leads to better asthma control.

J Allergy Clin Immunol. 2010;125:995-1000. J Allergy Clin Immunol. 2007;120:1031-5. J Allergy Clin Immunol. 2011;1294-6. Ann Allergy Asthma Immunol. 2012;108:281-2.

Pre-, Peri, and Neonatal Vitamin D and Risks for Atopy

VDR polymorphisms.

 Low maternal vitamin D intake and levels and low cord levels of 25-OH-D3 are associated with increased risk of atopic dermatitis in infancy and for wheeze and/or asthma at 3, 5, and 9 years old.

• Breast fed babies at risk.

Allergy Asthma Proc. 2011;32:438-44. J Allergy Clin Immunol. 2007;120:1031-5. Am J Clin Nutr. 2007. 85:788-95. Am J Resp Crit Care Med. 2011;184:1342-9. J Allergy Clin Immunol. 2007;120:1031-5. J Allergy Clin Immunol. 2010;125:995-1000. J Allergy Clin Immunol. 2010;126:52-8. Ann Allergy Asthma Immunol. 2010;105:191-99.

Pediatrics. 2012 ;130(5):1128-35. Eur Resp J. 2011;38:1320-7. Br J Nutr. 2010;104:1051-7.

Vitamin D and Infections

- Vitamin D supplementation maintains epithelial barrier and improves control of atopic dermatitis.
- Deficiency is associated with increased risk of sinusitis and increased rate of viral respiratory illnesses.
- Supplementation decreases rate of URIs and influenza (dose dependent).
- Vitamin D enhances immunity to M. tuberculosis.

Br J Dermatol. 2008;159:245-7. J Allergy Clin Immunol. 2008;122:415-7. Pediatrics. 2011;127:180-7. J Epidemiol Infect. 2007;135:1095-8. Clin Exp Med. 0012;8 (epub ahead of print) Clin Devel Immunol. 2012:430972. epub 7/5/12. PLoS One. 2012;7(7):e40692

National Jewish Hospital for Consumptives

How Can We Make Sense of All That?

It's easy.....

VDR and α-1-hydroxylase are everywhere!

They have to be there for a reason, not by accident.

VDR and α -1-hydroxylase are everywhere

• APCs (Dendritic cells, monos, macros, etc.):

- Exposure to lipopolysaccharide up-regulates VDR and α -1-hydroxylase.
- Vitamin D3 up-regulates toll-like receptors (TLR) for better response to microbes.
- Vitamin D3 up-regulates antimicrobial proteins, maintains epithelial barrier integrity in AD.
- Vitamin D3 enhances tolerance in adaptive immunity by up-regulating IL-10, IL-19, and TGF-β (enhances Treg [FoxP3+] cell development).
- Vitamin D3 down-regulates co-stimulatory molecules CD40 and CD80/86.

VDR and α -1-hydroxylase are everywhere

• Lymphocytes:

- Decreased proliferation.
- Inhibition of Th1 and Th2 cytokines by naïve (cord) T cells with enhanced Treg phenotype.
- Vitamin D3 enhances IL-2 production.
- Enhances steroid responsiveness and immunosuppressive effects.
- Decreased IL-6, decreased IL-12 induced IFN-γ synthesis.
- Decreased CD40 and CD80/86 on B cells→ Decreased T cell activation.
- Better response to SCIT.

VDR and α -1-hydroxylase are everywhere

Other cells we think about everyday: •Mast Cells

- Inhibition of maturation.
- Apoptosis.
- Decreased eosinophil recruitment.

Respiratory epithelium and smooth muscle.

Inhibits smooth muscle proliferation.

- Decreased RANTES (CCL5) production.
- •Decreases matrix metalloproteinase production.
- •Helps fetal lung growth (mice).

Complex Problem. Simple Solution?

www.enJokes.com

Selected References

- 1. Frieri M and Valluri A. Vitamin D deficiency as a risk factor for allergic disorders and immune mechanisms. *Allergy Asthma Proc.* 2011;32:438-44.
- 2. Sandhu MS and Casale TB. The role of vitamin D in asthma. Ann Allergy Asthma Immunol. 2010;105:191-99.
- 3. Litonjua AA and Weiss ST. Is vitamin D to blame for the asthma epidemic? *J Allergy Clin Immunol*. 2007;120:1031-5.
- Muehleisen B and Gallo RL. Vitamin D in allergic disease: Shedding light on a complex problem. *J Allergy Clin Immunol.* 2013;131:324-9.
- 5. Rosen CJ. Vitamin D insufficiency. *N Eng J Med.* 2011;364(3):248-54.
- 6. Vassalo MF and Camargo CA. Potential mechanisms for the hypothesized link between sunshine, vitamin D, and food allergy in children. *J Allergy Clin Immunol 2012;126:217-22.*