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Abstract
Background—Ecological and epidemiological studies have identified an inverse association of
intensity and duration of sunlight exposure with prostate cancer, which may be explained by a
reduction in vitamin D synthesis. Pigmentation traits influence sun exposure and therefore may
affect prostate cancer risk. Because observational studies are vulnerable to confounding and
measurement error, we used Mendelian randomization to examine the relationship of sun exposure
with both prostate cancer risk and the intermediate phenotype, plasma levels of vitamin D.

Methods—We created a tanning, a skin color and a freckling score as combinations of SNPs that
have been previously associated with these phenotypes. A higher score indicates propensity to
burn, have a lighter skin color and freckles. The scores were tested for association with vitamin D
levels (25-hydroxyvitamin-D and 1,25-dihydroxyvitamin-D) and PSA-detected prostate cancer in
3123 white British individuals enrolled in the Prostate Testing for cancer and Treatment (ProtecT)
study.

Results—The freckling score was inversely associated with 25(OH)D levels (change in
25(OH)D per score unit −0.27; 95%CI: −0.52, −0.01), and the tanning score was positively
associated with prostate cancer risk (OR 1.05; 95%CI: 1.02,1.09), after adjustment for population
stratification and potential confounders.

Conclusions—Individuals who tend to burn are more likely to spend less time in the sun and
consequently have lower plasma vitamin D levels and higher susceptibility to prostate cancer.
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Impact—The use of pigmentation related genetic scores is valuable for the assessment of the
potential benefits of sun exposure with respect to prostate cancer risk.
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Introduction
Prostate cancer is rapidly becoming the most common male cancer, with over 500,000 new
cases each year worldwide(1). However, there is striking geographical variation, such that
regional intensity of exposure to solar ultraviolet radiation (UVR) is inversely associated
with prostate cancer incidence and mortality in fair-skinned populations(2). Furthermore,
inverse associations of cumulative UVR exposure, adult sunbathing, childhood sunburn and
regular holidays in sunny climates, with prostate cancer risk have been observed at the
individual level(3,4).

The effects of UVR on prostate cancer may be mediated by circulating vitamin D levels, the
main environmental source of which is sun exposure, which stimulates vitamin D synthesis
in the deeper layers of the epidermis(5). Circulating 25-hydroxyvitamin-D (25(OH)D)
results from the conversion of provitamin D (obtained from sun exposure or dietary intake)
by the enzyme 25-hydroxylase (CYP2R1)(6). 25(OH)D is then converted into 1,25
dihydroxyvitamin-D (1,25(OH)2D), the active form of the hormone, by the enzyme 1-α-
hydroxylase (CYP27B1)(7). Vitamin D synthesis is influenced by skin pigmentation, with
lighter skins producing more vitamin D than darker skins on exposure to sunlight(8). The
ability to pigment in response to UVR, usually measured as skin type on the Fitzpatrick
scale(9), has been both inversely and positively associated with prostate cancer(10–12). It
has also been suggested that UVR may exert its beneficial effects through other vitamin D
independent pathways(13,14).

Observational studies are prone to both confounding (by environmental and lifestyle factors
associated with the exposures and outcomes of interest) and measurement error (e.g. due to
the subjectivity and difficulty of measuring skin type and sun exposure over the
lifecourse(15)), precluding causal inference. Mendelian randomization (MR) is a natural
experiment which overcomes issues of confounding and measurement error by using genetic
variants associated with a modifiable exposure (in this case skin type and sun exposure) as
proxies for the latter in order to establish a causal relationship between exposure and
outcome (in this case prostate cancer). Since alleles are randomly allocated from parents to
offspring at gamete formation, associations between genotypes and outcome are not
generally confounded by behavioural/environmental exposures. Thus, observational studies
of genetic variants are similar (with some caveats) to intention-to-treat analyses in
randomised controlled trials, in which people are randomly allocated different genotypes
rather than therapeutic interventions(16). Similarly, those with genotypes related to skin type
and sun exposure will have been, in effect, randomly allocated to their skin type or sun
exposure levels across their lifecourse; hence genetic variation may be a better measure of
exposure over a lifetime than a single measurement(16–18). Here we examine genetic
factors strongly associated with pigmentation traits that affect response to sunlight, to
evaluate the relationship of lifecourse UVR exposure with both screen-detected prostate
cancer risk, and the potential intermediate phenotype, plasma levels of vitamin D.
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Materials and Methods
Subjects

This study is nested within a multicenter randomized controlled trial of treatments for
localized disease: the Prostate Testing for cancer and Treatment (ProtecT) study
(ISRCTN20141297). During recruitment to the ProtecT study (between 2001 and 2009)
over 100,000 men aged 50–69 years at 337 general practices in nine UK centers
(Birmingham, Bristol, Cambridge, Cardiff, Edinburgh, Leeds, Leicester, Newcastle,
Sheffield) were offered a PSA test at a community-based “prostate check clinic”, and those
with raised levels (≥ 3 ng/ml) were offered a diagnostic biopsy. Detected tumors were all
histologically confirmed and clinically staged using the TNM system(19). Cancer stages T1-
T2 were categorized as “localized”; and T3-T4 as “locally advanced”, because few tumours
had metastasized. Histologic material obtained at biopsy was assigned a Gleason score by
specialist uropathologists following a standard proforma and, for the purposes of this study,
categorized as low- (score < 7) or high- (score ≥ 7) grade cancers. All men without evidence
of prostate cancer were eligible for selection as controls; that is, men with a PSA test < 3 ng/
mL or a raised PSA (≥ 3 ng/mL) combined with at least one negative biopsy and no
subsequent prostate cancer diagnosis during the follow-up protocol for negative biopsies.
We selected one stratum-matched control for each case from those men who had provided a
nonfasting blood sample at the prostate check clinic. Controls were randomly selected from
the same stratum—i.e., 5-year age-band (age at PSA test) and GP/family practice—as cases.
All men provided written informed consent prior to inclusion in the study. Trent Multicenter
Research Ethics Committee (MREC) approved the ProtecT study (MREC/01/4/025) and the
associated ProMPT study which collected biological material (MREC/01/4/061).

Exposure data
Pigmentation and sun exposure variables—A self-administered diet, health and
lifestyle questionnaire, completed at the prostate check clinic (i.e. typically prior to
knowledge of the PSA level or diagnosis), included questions about pigmentation (skin
reaction to sun, and skin and hair color) and behaviors affecting the level of sun exposure,
such as total time spent outside in summer and use of sunscreen in the 2 years prior
attendance to the prostate check clinic(12). Sunscreen use was categorized as: always,
mostly, sometimes, seldom and never, in response to the question “When out in the sun for
two hours or more, did you normally protect your skin from sun with clothes or sunscreen?”

‘Time spent outside in summer’ was derived from the questionnaire as the summation of the
weighted number of hours spent outside in the summer across different ages (5-12, 13-19,
20-29, 30-39, 40-49 and 50-69 years) (weights: < 1hour/day = 0.5 hours; 1-3hours = 2
hours; >3 hours = 6 hours). Missing answers to any of these questions were assigned to zero.
The distribution of this score was then split into thirds and labelled ‘low’, ‘medium’ and
‘high’, where ‘high’ indicates greater sun exposure(12).

Vitamin D levels—A thousand three hundred and ninety-six individuals (699 cases and
697 controls) had their vitamin D levels measured in blood. Plasma samples drawn into
heparinized tubes at the prostate check clinic were allowed to clot at room temperature, and
then were centrifuged for 20 minutes within 2 hours of collection at 1,640 relative
centrifugal force. Samples were stored at −80°C, until required for use. 25(OH)D2 and
25(OH)D3 were measured in plasma on a Tandem MS system as described previously in
detail(20). The assay was standardized using NIST aligned standard material obtained from
Chromsystems (UK). Between batch coefficients of variation for 25(OH)D2 were 4.2–5.5%,
and for 25(OH)D3 were 4.5–5.7%, across the assay working range. Circulating
concentrations of 25(OH)D2 and 25(OH)D3 were measured in nanograms per milliliter (ng/
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ml) where 1 ng/ml = 2.5 nmol/l (nanomoles per liter). Total 25(OH)D (ng/ml) was
calculated as the summation of 25(OH)D2 and 25(OH)D3. 1,25(OH)2D samples were
quantified by immunoassay(21) over a 2 month period using a single batch of reagents.
1,25(OH)2D was measured in picomoles per litre (pmol/L) where 1pg/mL=2.6pmol/L.

Genotyping—Pigmentation-related single nucleotide polymorphisms (SNPs) were
obtained from genomewide genotyping of ProtecT samples, carried out on 3,390 individuals
at the Center National de Génotypage, Evry, France, using the Illumina Human660W-
Quad_v1_A array (Illumina, Inc., San Diego, CA).

The quality control process performed before imputation excluded individuals on the basis
of the following: sex mismatches, minimal (<0.325) or excessive heterozygosity (>0.345),
disproportionate levels of individual missingness (>3%), cryptic relatedness measured as
proportion of identity by descent (IBD > 0.1), and insufficient sample replication (IBD <
0.8). The remaining individuals were assessed for evidence of population stratification by
multidimensional scaling analysis and compared with HapMap II (release 22) European
descent (CEU), Han Chinese (CHB), Japanese (JPT) and Yoruba (YRI) reference
populations; all individuals with non-European ancestry were removed. SNPs with a minor
allele frequency below 1%, a call rate of < 95% or evidence for violations of Hardy-
Weinberg equilibrium (p < 5×10−7) were discarded.

Autosomal genotypic data were subsequently imputed using Markov Chain Haplotyping
software (MACH v.1.0.16(22)) and phased haplotype data from CEU individuals (HapMap
release 22, Phase II NCBI B36, dbSNP 126) based on a cleaned dataset of 3,186 individuals
and 514,432 autosomal SNPs. After imputation, all SNPs with indication of poor imputation
quality (r2 hat < 0.30) were removed. X chromosome imputation was performed on a
cleaned dataset of 3,186 individuals and 10,092 X chromosome SNPs, using MACH v.
1.0.16 and MiniMac v 4.4.3, in conjunction with phased haplotype data from CEU
individuals (HapMap 3 release 2, NCBI B36, dbSNP 126). The working dataset consisted of
3,123 individuals (1,136 cases and 1,791 controls, and 196 individuals with missing status).
Genotypic dosages, which represent the expected number of one of the alleles and range
from 0 to 2, were derived from genomewide data and used in the analysis. Dosages are
continuous variables that incorporate the uncertainty of the imputation process.

Genetic scores—We computed 3 genetic scores from SNPs (selected a priori) that have
previously been reported to be reliably associated with our pigmentation-related phenotypes
of interest: skin color (skin color score = SCS), tanning ability (tanning score = TS) and
freckling (freckling score = FS) ((23) and references therein). SNPs chosen had a minor
allele frequency ≥ 0.05 in the CEU population, and the risk allele had been clearly
established.

In the analysis scores are used instead of individual genetic variants because they are likely
to explain a larger proportion of trait variability and thus represent strong, unconfounded
proxies for the modifiable phenotype. Scores were calculated by summing up the dosages of
all appropriate SNPs in each individual, after making sure that the ‘risk’ allele was the allele
being counted in the dosage and there were no missing SNP data. Risk alleles were those
associated with lighter skin color, burning rather than tanning, and having more freckles.
Polymorphisms included in each score are shown in Table 1.

Population stratification—The top 10 principal components that reflect the population’s
genetic structure were estimated according to Price et al.(24) from genomewide SNPs
genotyped, imputed and cleaned as described above. All 10 PCs were included as covariates
in the regression models to account for confounding by population stratification.
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Statistical analysis
The association of genetic scores with pigmentation and sun exposure variables, and plasma
vitamin D levels, was assessed using one way ANOVA and linear regression. The analyses
that involved vitamin D were adjusted for age (continuous variable), study center location
(binary variable - North: Sheffield, Newcastle, Edinburgh, Leeds; or South: Bristol, Cardiff,
Birmingham, Leicester, Cambridge) and season of blood draw (4 categories - winter:
January, February, March; spring: April, May, June; summer: July, August, September; or
autumn: October, November, December). Logistic regression was used to investigate the
association of genetic scores with prostate cancer status, stage and grade, with adjustment
for age at recruitment and population structure. Scores were included in the regression
models as continuous variables in the majority of analyses, but we also assessed them as
categorical variables (i.e. tertiles) in relation to prostate cancer risk. Stratification by time
spent outside in the summer was carried out for plasma vitamin D and prostate cancer
outcomes, to determine if we could replicate earlier studies which have shown that in men
with low sunbathing scores, skin type I (always burn/never tan) was inversely associated
with prostate cancer(10,11). A Wald test of interaction between genetic scores and sun
exposure was performed. Numbers of individuals included in each analysis correspond to
those with complete data on outcome, exposure and confounder variables. All analyses were
carried out in Stata 12 (StataCorp LP, 2012, College Station, TX).

Results
Genetic scores

All scores were normally distributed. The skin color score ranged from 1.0 to 10.1, the
tanning score from 4.0 to 19.0, and the freckling score from 2.0 to 14.3, a higher score
indicating lighter skin color, skin that burns instead of tanning, and a greater likelihood of
having freckles. Scores were correlated with each other after adjustment for population
stratification (TS vs SCS, coefficient of determination R2 = 0.18; TS vs FS R2 = 0.25; SCS
vs FS R2 = 0.01; p<0.001), and mainly with the first principal component (all R2 ~ 0.02;
p<0.001) (Supplementary Table S1).

All scores were associated with study centre location (Supplementary Table S2). None of
the scores was associated with age at recruitment and season of blood draw (data not
shown).

Genetic scores, pigmentation and sun exposure variables
Associations between genetic scores and self-reported skin color, skin reaction and sun
exposure are shown in Table 2. The strongest association was observed between the tanning
score and skin reaction, although the skin color score and the freckling score were also
associated with skin reaction in the direction expected, i.e. the lighter the skin and the higher
the probability of having freckles, the greater the likelihood of burning when exposed to the
sun. The tanning score was the best predictor of skin color, followed by the skin color and
freckling scores. Sunscreen use in the two years preceding the clinic visit was strongly
associated with the tanning score and weakly with the skin color score. No association was
found between time spent outside in summer and any of the genetic scores.

Genetic scores and vitamin D levels
Table 3 shows associations of genetic scores with plasma 25(OH)D, adjusted for age, center,
season of blood draw and principal components, with stratification by time spent outside in
the summer. There was some evidence that the freckling was associated with levels of
vitamin D (albeit weakly). Individuals with a higher score (i.e. more likely to have freckles)
showed lower concentrations of 25(OH)D (change in vitamin D levels per unit increase in
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freckling score −0.27 ng/ml; 95% CI −0.52, −0.01; p = 0.04). Little evidence of association
with the tanning and skin color scores was observed. There was evidence of an interaction (p
= 0.02) between the tanning score and time spent outside in the summer with respect to
25(OH)D levels, that showed an effect for individuals in the ‘medium’ and ‘high’ strata of
sun exposure consistent with that obtained for the whole population; however, for those who
experienced little exposure to sunlight, the effect appeared reversed. The scores were not
associated with plasma 1,25(OH)2D (data provided on request).

Genetic scores and prostate cancer
The tanning score exhibited a strong association with prostate cancer susceptibility.
Individuals with higher scores had a 5% (95% CI: 2%, 9%) increased risk of disease per unit
increase in tanning score (p = 0.004) (Table 4). A similar association was observed with the
skin color score but the statistical evidence was weaker (p = 0.08). Additional adjustment for
center location made no difference to the results (data not shown). Examination of tertiles of
genetic scores showed considerably greater ORs for prostate cancer among individuals in
the highest tertile compared to individuals in the lowest tertile for all scores although there
was strong statistical evidence only for the tanning score (p-value for trend = 0.02)
(Supplementary Table 3).

There was no association between any of the scores and disease stage or grade, except for a
suggestive protective effect of the tanning score on Gleason grade. As with vitamin D levels,
there was evidence of an interaction (p = 0.05) between the tanning score and time spent
outside in the summer on prostate cancer risk, where being more prone to burning appeared
to protect against prostate cancer among individuals with reduced sun exposure but
increased disease risk if sun exposure was higher.

Discussion
Main findings

In this study we have used genetic polymorphisms associated with tanning ability, freckling
and skin color to determine first, how well they correlate with the observational variables
currently being used to assess skin color, skin reaction, and sun exposure; second, whether
they are associated with 25(OH)D plasma levels; and third, whether they are associated with
PSA-detected prostate cancer. We found strong associations between all three scores and
skin reaction, and of the tanning and skin color scores with skin color, suggesting that they
could potentially be used as proxies for self-assessed pigmentation variables. As expected,
the use of sunscreen in the two years before recruitment was better explained by the tanning
score than the other two scores. Individuals who reported always using sunscreen had higher
propensity to burn. However, none of the scores was associated with total time spent in the
sun. We found that having a higher freckling score was associated with lower 25(OH)D
levels, but there was not enough statistical evidence to support a similar effect of the tanning
and the skin color score. The effects uncovered were consistent, particularly those of the
tanning and freckling scores. In accordance with our findings on vitamin D, participants
with higher scores, exhibited higher rates of prostate cancer, with the tanning score showing
the strongest association. When stratified by time spent outside in the summer, there was
some indication that the relationship of tanning ability with vitamin D, and of tanning ability
with prostate cancer risk, may be affected by how much an individual was exposed to
sunlight during life.

Because prostate cancer rates vary by ethnicity and so do the allele frequencies of the SNPs
that make up the scores there is the potential of obtaining spurious association results if the
population under study is stratified(25). To overcome this problem we adjusted the
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regression models for the first 10 principal components that summarize the population’s
variability. Effects were similar after adjustment suggesting that UVR exposure may play a
causal role of on prostate cancer risk.

Comparison with previous literature
Prior assessment of the relationship of skin pigmentation with vitamin D has indicated that a
lighter skin color is associated with higher levels of plasma vitamin D among individuals
living in Australia, Canada and New Zealand(26–29). On the other hand, studies conducted
in the UK and Denmark reported, in agreement with our findings, that fair skin types are
more at risk of vitamin D deficiency or present with lower vitamin D levels than participants
with darker skin(30,31). A possible explanation for these and our results is that fair-skinned
sun-sensitive individuals tend to avoid the sun (and/or protect themselves with clothing and
sunscreen) to prevent sunburn and skin cancer. Our findings also agree with earlier work
that established that facultative (i.e. tanning ability) and not constitutive (i.e. skin color)
pigmentation was an indicator of sunlight exposure and an important determinant of vitamin
D(28).

Berry and colleagues(32) investigated the association of pigmentation SNPs and plasma
vitamin D in the UK and found an effect of one OCA2 polymorphism (rs7495174), which
regressed towards the null after adjustment for a number of confounders, including time
spent outside.

A previous study on sun exposure and prostate cancer risk in ProtecT reported that men with
olive/brown skin and those who burnt rarely/never had an increased risk of prostate cancer
overall(12). Other studies that also looked at skin type, found an association between ability
to tan and higher prostate cancer risk among those individuals with the lowest sun
exposures(10,11). In contrast, when pigmentation was measured using a reflectometer, in the
forehead (facultative pigmentation) and the upper underarm (constitutive pigmentation), it
was found that darker facultative pigmentation and increasing darkness was associated with
a reduced risk of prostate cancer(33). As far as we know, only two studies have considered
pigmentation gene polymorphisms in relation to prostate cancer(34,35). The analysis of fair-
skin associated SNPs TYR S192Y and MC1R R160W showed that while the TYR variant
conferred risk, the MC1R variant was protective. The former was included in our skin color
score, the latter has not been genotyped or imputed in the ProtecT samples, although we did
have another MC1R red-hair and fair-skin associated variant: R151C. We did not uncover
evidence of an effect of TYR S192Y or MC1R R151C (rs1805007) on vitamin D
concentrations or prostate cancer status.

Studies on vitamin D levels and prostate cancer risk to date have been inconsistent, with
several of them showing small or no effects(5), including one done on ProtecT samples that
used plasma vitamin D-related genetic scores(36). Even though we detected an association
of pigmentation scores with both vitamin D and prostate cancer risk, there is a possibility
that these effects are unrelated and we are identifying independent influences of exposure to
sunlight on vitamin D status and prostate cancer susceptibility. Because UVR may exert its
effects on cancer development via routes other than vitamin D synthesis(13,14), this violates
the exclusion restriction assumption in MR, of no link of the genotype with the outcome,
other than via the exposure. Thus pigmentation scores cannot be considered suitable
instruments for circulating vitamin D, only for skin color and response. Strong instruments
for plasma vitamin D have already been identified(37,38), which were validated in ProtecT
as well(36). The usefulness of pigmentation scores as instrumental variables for sun
exposure will depend on the complex interrelation of cultural attitudes towards sun worship,
skin cancer awareness, individual risk and behavior, and will have to be established for each
population specifically.
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Limitations
The amount of variability in each pigmentation-related trait explained by the scores is less
than 2%. Skin color associations with the scores were weaker than those of skin reaction,
even for the skin color score. This does not necessarily imply that the scores are weak
instruments but may indicate that self-reported skin complexion variables are not good
proxies for actual skin pigmentation and tanning potential. In fact, the lack of correlation
between recollection burning/tanning data and the minimal erythemal dose, which is the
threshold UVR dose that produces sunburn, has been described by Rampen and
colleagues(15) in the Netherlands.

Misclassification due to non-response to the questions related to time spent outside in the
summer could have influenced the results obtained in the analysis of this variable but only if
differential with respect to the genetic scores, which seems unlikely.

In addition, T3 and T4 tumours in ProtecT, while more locally advanced than the clinically
localized T1 and T2 tumours are not “advanced” in the sense that clinically apparent
tumours are. They were detected incidentally and were asymptomatic and it is difficult to
predict when they might have become apparent. This could potentially have an important
attenuating effect on whether an association between the genetic scores and cancer stage and
grade was found.

Although we have carefully taken into account the confounding role of population
stratification in a study such as this one, there is still a possibility of residual population
stratification underlying the results.

Finally, because of the potential direct link between UVR exposure and prostate cancer we
cannot determine unequivocally the role of vitamin D in this relationship.

Conclusions
Our results show that, among white British males, those who are more prone to burning than
tanning, are more likely to have freckles and lighter skin color, use more sunscreen, have
lower 25(OH)D levels and are at a higher risk of being diagnosed with PSA-detected
prostate cancer. We also show that pigmentation genetic scores can be used as instrumental
variables for skin reaction to overcome the problems generated by confounding and poor
recall of self-reported sun exposure sensitivity. Nonetheless, replication of these findings is
necessary before we can be certain of their importance.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Table 1

Skin color, tanning and freckling genetic scores.

skin color score

gene SNP chromosome chromosomal
location

major/minor
alleles

risk

allelea

IRF4 rs12203592 6p25.3 341321 C/T T

TYR rs1042602 11q14.3 88551344 C/A A

HERC2 rs12913832 15q13.1 26039213 G/A G

MC1R rs1805007 16q24.3 88513618 C/T T

ASIP rs4911414 20q11.22 32193105 G/T T

ASIP rs1015362 20q11.22 32202273 G/A G

tanning score

gene SNP chromosome chromosomal
location

major/minor
alleles

risk

allele b

PPARGC1B rs32579 5q32 149191041 G/A G

IRF4 rs12203592 6p25.3 341321 C/T T

IRF4/EXOC2 rs12210050 6p25.3 420489 C/T T

TYR rs1393350 11q14.3 88650694 G/A A

CALCOCO1/HOXC13 rs7969151 12q13.13 52445544 G/A A

PAPOLA/VRK1 rs17094273 14q32.2 96173560 G/A A

HERC2 rs12913832 15q13.1 26039213 G/A G

CPNE7/DPEP1 rs154659 16q24.3 88194838 T/C C

MC1R rs1805007 16q24.3 88513618 C/T T

DBNDD1 rs11648785 16q24.3 88612062 C/T C

ASIP rs4911414 20q11.22 32193105 G/T T

ASIP rs1015362 20q11.22 32202273 G/A G

PRDM15 rs7279297 21q22.3 42100984 A/G A

freckling score

gene SNP chromosome chromosomal
location

major/minor
alleles

risk

allele c

IRF4 rs12203592 6p25.3 341321 C/T T

BNC2 rs2153271 9p22.2 16854521 A/G A

TYR rs1042602 11q14.3 88551344 C/A C

TYR rs1393350 11q14.3 88650694 G/A A

MC1R rs1805007 16q24.3 88513618 C/T T

ASIP rs4911414 20q11.22 32193105 G/T T

ASIP rs1015362 20q11.22 32202273 G/A G

EIF6 rs619865 20q11.22 33331111 G/A A

a
The risk allele is the allele associated with lighter skin pigmentation.

b
The risk allele is the allele associated with higher propensity to burn.

c
The risk allele is the allele associated with a greater likelihood of having freckles.
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Table 2

Association between pigmentation genetic scores and self-reported skin color, skin reaction, and sun exposure.

N=2913a skin color score tanning score freckling score

mean ± SD mean ± SD mean ± SD

skin color

fair/pale 5.20 ± 1.23 10.98 ± 2.12 6.20 ± 1.80

medium 5.06 ± 1.19 10.60 ± 2.04 6.09 ± 1.68

olive/brown 4.96 ± 1.03 10.68 ± 2.21 5.93 ± 1.88

p-value 0.004 1.34×10-5 0.11

F 5.61 11.16 2.18

R2 (%) 0.38 0.76 0.15

skin reaction

burns always/easily 5.31 ± 1.24 11.19 ± 2.10 6.33 ± 1.78

burns rarely/never 5.05 ± 1.19 10.63 ± 2.07 6.06 ± 1.75

p-value 4.13×10−8 7.26×10−12 7.28×10−5

F 30.25 47.34 15.78

R2 (%) 1.03 1.60 0.54

sunscreen use 2 years prior

always 5.20 ± 1.21 11.01 ± 2.12 6.19 ± 1.78

mostly 5.11 ± 1.19 10.76 ± 2.11 6.19 ± 1.76

sometimes 4.99 ± 1.24 10.60 ± 2.11 6.02 ± 1.68

seldom 5.24 ± 1.18 10.71 ± 1.96 6.08 ± 1.86

never 5.13 ± 1.23 10.72 ± 2.07 6.16 ± 1.73

p-value 0.02 0.004 0.45

F 2.83 3.92 0.86

R2 (%) 0.39 0.54 0.12

time spent outside in summer

low 5.14 ± 1.19 10.89 ± 2.00 6.18 ± 1.78

medium 5.16 ± 1.28 10.78 ± 2.21 6.15 ± 1.75

high 5.13 ± 1.19 10.81 ± 2.10 6.14 ± 1.76

p-value 0.91 0.53 0.90

F 0.09 0.64 0.10

R2 (%) 0.01 0.04 0.01

a
Includes 1040 cases, 1717 controls and 156 individuals with unknown disease status.
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Table 3

Association between pigmentation genetic scores and plasma vitamin D, adjusted for age, centre, season of
blood draw and population stratification; stratified by time spent outside in the summer.

vitamin D (ng/ml) skin color score tanning score freckling score

change in plasma 25(OH)D
per unit increase in genetic score −0.06 −0.16 −0.27

95% CI −0.42, 0.29 −0.37, 0.06 −0.52, -0.01

p-value 0.73 0.15 0.04

N=1396 (699 cases/697 controls)

low sun exposure

change in plasma 25(OH)D
per unit increase in genetic score 0.48 0.26 −0.31

95% CI −0.25, 1.21 −0.19, 0.72 −0.82, 0.19

p-value 0.20 0.26 0.22

N=362 (179 cases/183 controls)

medium sun exposure

change in plasma 25(OH)D
per unit increase in genetic score −0.51 −0.56 −0.20

95% CI −1.11, 0.09 −0.92, −0.21 −0.65, 0.26

p-value 0.10 0.002 0.40

N=401 (202 cases/199 controls)

high sun exposure

change in plasma 25(OH)D
per unit increase in genetic score −0.17 −0.15 −0.33

95% CI −0.71, 0.37 −0.47, 0.16 −0.70, 0.05

p-value 0.54 0.34 0.09

N=633 (318 cases/315 controls)

p-value for interaction 0.12 0.02 0.94
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Table 4

Association between genetic scores and prostate cancer status (stratified by time spent outside in the summer),
stage and grade, adjusted for age at recruitment and population stratification.

prostate cancer skin color score tanning score freckling score

status (cases/controls)

ORa 1.06 1.05 1.03

95% CI 0.99, 1.12 1.02, 1.09 0.99, 1.08

p-value 0.08 0.004 0.17

N=2927 (1136/1791)b

low sun exposure

ORa 0.97 0.98 1.01

95% CI 0.85, 1.10 0.91, 1.06 0.93, 1.10

p-value 0.61 0.67 0.74

N=790 (276/514)

medium sun exposure

ORa 1.06 1.11 1.03

95% CI 0.94, 1.19 1.03, 1.19 0.95, 1.13

p-value 0.37 0.004 0.47

N=734 (268/466)

high sun exposure

ORa 1.14 1.07 1.05

95% CI 1.03, 1.25 1.01, 1.13 0.98, 1.12

p-value 0.01 0.02 0.15

N=1233 (496/737)

p-value for interaction 0.11 0.05 0.74

stage
(0=localised/1=locally advanced)

ORa 0.99 0.99 1.02

95% CI 0.85, 1.15 0.90, 1.08 0.92, 1.13

p-value 0.91 0.77 0.77

N=1136 (1004/132)

Gleason grade (0:<7/1:≥7)

ORa 0.98 0.95 0.99

95% CI 0.88, 1.08 0.89, 1.01 0.92, 1.06

p-value 0.65 0.09 0.71

N=1135 (794/341)

a
Odds ratio = change in odds per unit increase in genetic score.

b
The difference in sample size with the full dataset (N = 3123) is due to the exclusion of 196 participants who lacked information on disease status.

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2013 October 01.


