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Abstract
A series of studies have reported a constant global rise in the incidence of type 1 diabetes.

Epidemiological and immunological studies have demonstrated that environmental factors

may influence the pathogenesis, leading to a cell-mediated pancreatic b-cell destruction

associated with humoral immunity. The search for the triggering factor(s) has been going on

for the past century, and yet they are still unknown. This review provides an overview of

some of the most well-known theories found in the literature: hygiene, viral, vitamin D

deficiency, breast milk and cow’s milk hypotheses. Although the hygiene hypothesis appears

to be the most promising, positive evidence from animal, human and epidemiological

studies precludes us from completely discarding any of the other hypotheses. Moreover, due

to contrasting evidence in the literature, a single factor is unlikely to cause an increase in the

incidence of diabetes all over the world, which suggests that a multifactorial process might

be involved. Although the immunological mechanisms are still unclear, there seems to be

some overlap between the various hypotheses. It is thought that the emphasis should be

shifted from a single to a multifactorial process and that perhaps the ‘balance shift’

model should be considered as a possible explanation for the rise in the incidence of

type 1 diabetes.
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Introduction
Type 1 diabetes has been on the rise since the 20th

century. Gale (2002b) demonstrated how the data point

towards a stable and low incidence in the first half of the

century, followed by a clear rise in the second half.

Onkamo et al. (1999) reported that the global incidence

of type 1 diabetes is increasing by 3% per year. The

DIAMOND Project Group (2006) estimated a global

annual increase in incidence of 2.8% from 1990 to 1999.

There has been a lot of debate, and contrasting ideas

have been brought forward in the literature to explain this

rapid increase in the incidence of type 1 diabetes. A variety

of hypotheses try to explain this lability in the immune

system, which leads to autoimmunity of the pancreatic

b-cells. This review attempts to explore and summarise

the current evidence in the literature.
Hygiene hypothesis

One of the most credited theories is the hygiene

hypothesis brought forward by Strachan (1989). The

results have shown that exposure to a variety of infectious

agents during early childhood might be protective

(Strachan 1989) and not only in asthma, but in

type 1 diabetes as well (Kolb & Elliott 1994). Strong

evidence from a variety of epidemiological studies has

indicated a constant increase in the incidence of type 1

diabetes (Gale 2002b, DIAMOND Project Group 2006,

Soltesz et al. 2007), contrasted by a gradual decrease in the

incidence of infectious diseases, such as tuberculosis,

mumps, measles, hepatitis A and enterovirus infections

(Bach 2002, Tracy et al. 2010).

http://jme.endocrinology-journals.org/
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Studies have shown that non-obese diabetic (NOD)

mice develop type 1 diabetes at a greater rate when bred

among pathogen-free environment-bred animals. Further-

more, the incidence increases (40–80%) when they are bred

in isolation (Bach 2002). The development of diabetes in

NOD mice can be prevented following infection with a

variety of pathogens, such as mycobacteria (Qin et al. 2004),

lymphocytic choriomeningitis viruses (LCMVs; Christen

et al. 2004a), lactate dehydrogenase viruses (Takei et al.

1992) and parasites such as Schistosoma (Cooke et al. 1999).

The underlying mechanisms are still unclear, but

an attempt will be made to summarise the current

evidence (Fig. 1).
Bystander suppression

An infectious epitope may induce the suppression of

autoreactive T cells by interacting on the same antigen-

presenting cell (APC) with both regulatory T cells (Tregs)
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Figure 1

A schematic summary of the possible immunological mechanisms under-

lying the hygiene hypothesis. APC, antigen-presenting cell; Tregs,

regulatory T cells; Th1, type 1 helper T cell; NKT, natural killer T cell; TLR,
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and autoreactive T cells. Tregs can act as well by producing

IL10 and TGFb (TFGB1), which down-regulate T-helper 1

(Th1) cells. This process has been observed in animal

models, such as the NOD mice, where Tregs can be induced

by oral antigen administration. These T cells act via TGFb

and cause active suppression in a non-specific fashion,

therefore causing bystander suppression (Bach 2005).
Toll-like receptors

Ligand binding to toll-like receptors (TLRs) causes the

stimulation of APCs. This causes the activation of

transcription factors that lead to the production of

cytokines and chemokines and up-regulation of costimu-

latory molecules CD80 and CD86. This up-regulation

leads to the expression of major histocompatibility

complex (MHC), which in turn will increase the activation

of naı̈ve CD4CT cells. Ligand binding to TLRs causes the

stimulation of mononuclear cells, which produce
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toll-like receptor; MHC, major histocompatibility complex. Full colour

version of this figure available via http://dx.doi.org/10.1530/JME-13-0067.

Published by Bioscientifica Ltd.

http://dx.doi.org/10.1530/JME-13-0067
http://jme.endocrinology-journals.org/
http://dx.doi.org/10.1530/JME-13-0067


Jo
u
rn
a
l
o
f
M
o
le
cu

la
r
E
n
d
o
cr
in
o
lo
g
y

Review F M EGRO Why is type 1 diabetes
increasing?

51 :1 R3
cytokines. These might cause a down-regulation in the

autoimmune process. Studies have shown that protection

from diabetes in NOD mice can be achieved by the use of

CpG motif associated with a DNA construct, encoding

heat shock proteins. The production of IL10 by monocytes

might play a role as well (Quintana et al. 2000).
Natural killer T cells

These cells are thought to have a regulatory role in the

immune system by producing IFNg (IFNG) and other

cytokines such as IL2, IL4 and TNFa (TNF). Poulton et al.

(2001) identified a major natural killer T (NKT) cell

deficiency in NOD mice thymus, suggesting a possible

involvement in the susceptibility of diabetes. Further-

more, studies have shown that Cd1dK/K (Cd1d1K/K) NOD

mice present a diminished protective state compared with

the wild-type mice. CD1D is a glycoprotein expressed on

the surface of APCs and is involved, in association with

MHC, in the presentation of antigens to NKT cells.

Therefore, if CD1D is not present, APCs cannot present

antigens to NKT cells, therefore reducing their regulatory

and protective role in the development of type 1 diabetes

(Bach 2005).
Competition for immune cells

Anti-infectious responses may compete for APCs, for

binding of antigenic peptides to MHC molecules or for

cytokines, which are needed for lymphocyte differentiation

and homoeostasis. We can, therefore, hypothesise that

stronger immune responses, in this case anti-infectious, will

compete for homoeostatic signals against weaker responses,

such as those against autoantigens (Theofilopoulos et al.

2001). Evidence for this hypothesis has been reported in a

study on NOD mice, where complete Freund’s adjuvant, an

adjuvant composed of inactivated mycobacteria, exhibited

an anti-homoeostatic effect by inhibiting the production

of unrelated T cells (King et al. 2004).
Autoreactive T-cell diversion

Autoreactive T cells might be kept away from the site of

autoimmunity by infection. Studies have shown that

LCMV infection has a protective effect on prediabetic

NOD and LCMV-immune RIP-LCMV mice. Interestingly,

lymphocytic islet infiltration was decreased following

LCMV secondary infection, and a more than fivefold

increase in the expression of IP10 (CXCL10) occurred in

the pancreatic draining lymph nodes than in the islets.
http://jme.endocrinology-journals.org � 2013 Society for Endocrinology
DOI: 10.1530/JME-13-0067 Printed in Great Britain
This demonstrated that T-cell recruitment occurred from

the islets to the pancreatic lymph nodes, via the

expression of chemokine IP10, leading to the abrogation

of type 1 diabetes (Christen et al. 2004a).
Autoreactive T-cell hyperactivation

Christen et al. (2004a) showed that viral titre influences

the antigen load in pancreatic draining lymph nodes,

suggesting that antigens drive the induction of apoptosis

of autoreactive T cells, reducing the number of these

species. Thus, hyperactivation of autoreactive lympho-

cytes might result in protective effects against type 1

diabetes. Further evidence comes from a study carried out

by Qin et al. (2004), where administration of a Bacille

Calmette–Guérin (BCG) mycobacterial preparation

resulted in a protective effect by early up-regulation of

IFNg and TNFa, which led to apoptosis of autoreactive

T cells via the TNF-induced and Fas–FasL-mediated

pathways. This leads to the abrogation of diabetes.
Helminth eradication

In humans, helminths reduce insulitis by inducing the

secretion of Th2-type cytokines (skewing T cells towards

the production of IL4, IL10 and IL13 associated with

eosinophilia and high IgE antibody levels; Liu et al. 2009,

Zaccone et al. 2010) In 1947, Stoll stated that the

prevalence of helminth infections was 31% in the USA

and 36% in Europe. The most common species was

Enterobius vermicularis (also known as pinworm). Unfor-

tunately, there is no exact value indicating today’s

prevalence. However, Gale (2002a) reported a series of

studies that provide evidence of a decline in the

incidence of helminth infections. This decrease is

associated (not necessarily causally) with improved

hygiene, protection by a high number of people in the

household, early social mixing and pets. All these factors

and the geographical distribution fit in with the hygiene

hypothesis. In fact, helminths might be protective

agents, since a Th2-helminth-induced response might

balance the autoimmunity-enhanced Th1 response.
Viral hypothesis

Another much credited hypothesis is the viral hypothesis,

which states that a variety of viruses (including entero-

virus, rubella virus, mumps virus, rotavirus and cyto-

megalovirus (CMV)) may initiate or accelerate the

autoimmune process of type 1 diabetes.
Published by Bioscientifica Ltd.
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The question as to how these pathogens cause the

destruction of islet b-cells is still uncertain. However, a

variety of mechanisms have been put forward and are

summarised in Fig. 2.
Direct infection

Viral infection of the b-cells induces cell cytolysis, which

leads to a raised immune response and inflammation.
Molecular mimicry

Sequences between foreign and self-peptides are similar and

are sufficient enough to result in the cross-activation of

autoreactive T or B cells by pathogen-derived peptides. In

this case, viral peptides would lead to the destruction of

b-cells via the cross-activation of autoreactive T cells

(Honeyman et al. 2010). Interestingly, Christen et al.

(2004b) have demonstrated that viral epitopes do not

initiate type 1 diabetes, but may accelerate its development.
Bystander activation of autoreactive T cells

Viral infections cause the activation of APCs, which could

potentially activate preprimed autoreactive T cells by

the secretion of cytokines. This could have effects on the

enhancement of autoreactive T cells and increase the

production of Th1-like cytokines (such as IFNg and TNF),

leading to the damage of b-cells. In addition, virus-specific
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Figure 2

A schematic summary of the possible immunological mechanisms under-

lying the viral hypothesis. Full colour version of this figure available via

http://dx.doi.org/10.1530/JME-13-0067.
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T cells might be able to initiate bystander activation too.

For example, viral infections lead to anti-viral immune

responses that can also lead to the self-recognition of

b-cells. Once activated, virus-specific T cells may migrate

to infected areas (e.g. pancreas), where they are presented

viral epitopes via MHC class I and II molecules found on

infected cells. CD8CT cells then identify these infected

cells and release cytotoxic granules, leading to cell death.

Cytokines such as TNFa and TNFb and nitric oxide are

then released by the CD8CT cells, inflammatory cells

(macrophages) and dying cells, which may induce

apoptosis of the uninfected neighbouring cells, resulting

in further damage at the site of infection (Fujinami et al.

2006, van der Werf et al. 2007).
Change in self-presentation

This could lead to the recognition of b-cells as foreign by

the immune system, provoking autoimmunity. This may

be caused by the expression of viral antigens by b-cells,

increased exposure of these antigens to the immune

system or up-regulation of molecules such as costimula-

tory CD80 on APCs and CD28 on T cells and both MHC

class molecules expressed on the host’s cells (van der Werf

et al. 2007).
Down-regulation of self-tolerance

Alteration of the immune system is possibly caused by

the activation of polyclonal lymphocytes, leading to the

production of autoantibodies.

A summary of the evidence for individual pathogens is

presented here.
Enteroviruses

Evidence supports the theory that enteroviruses play a

major role in the development of type 1 diabetes (Yeung

et al. 2011), with coxsackie virus B4 (CVB4) being the most

common strain in prediabetic and diabetic patients.

Studies have reported an increase in the number of

enterovirus infections in prediabetic children associated

with an increase in the levels of viral RNA and autoanti-

bodies (islet-cell antibodies (ICAs) and glutamic acid

decarboxylase antibodies (GADAs); Lonnrot et al. 2000b).

Another study has prospectively examined a cohort of

children predisposed to develop type 1 diabetes. The study

has shown that enterovirus infections could be detected

before (6 months) the appearance of autoantibodies

against b-cells, providing further evidence of the role of
Published by Bioscientifica Ltd.
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enteroviruses in type 1 diabetes (Lonnrot et al. 2000a).

Furthermore, infections are more common in siblings

developing the disease than in sibling who do not, and

enterocyte antibodies are present during pregnancy in

those mothers who give birth to children developing

type 1 diabetes at a later stage (Filippi & von Herrath

2008). Dotta et al. (2007) analysed pancreatic specimens

obtained from six type 1 diabetic and 26 control organ

donors and identified CVB4 in three of the six diabetic

patients. Oikarinen et al. (2008) gave further evidence by

analysing upper intestinal biopsy specimens and identify-

ing enteroviruses in 75% of the cases (9 of 12 diabetic

patients). A series of mechanisms have been reported for

enteroviruses. Flodstrom et al. (2003) showed that acute

CVB3 infection leads to the cytolysis of b-cells when the

anti-viral IFN response is down-regulated, resulting in

type 1 diabetes. In addition, CVB infection has been

shown to lead to the expansion of autoreactive T cells

caused by the presentation of autoantigens to T cells

(Horwitz et al. 2004). A variety of studies have demon-

strated that molecular mimicry might be the underlying

mechanism for the development of type 1 diabetes.

Harkonen et al. (2002) identified in both NOD mice and

humans (7%) cross-reactivity between the autoantibodies

insulinoma antigen 2 (IA-2)/IAR and the capsid of

enteroviruses. In addition, the P2-C sequence of CVB4

shows similarities with human GAD (GAD1; Kaufman

et al. 1992), which is recognised by T cells of patients at risk

for developing diabetes, and interestingly these patients

responded not only to GAD but to CVB peptide as well

(Atkinson et al. 1994). However, patients’ GAD-positive

sera do not cross-react with the P2-C sequence (Richter

et al. 1994). Furthermore, congenic B10.H2g7 mice

(carrying NOD MHC allele but lacking other susceptibility

factors) do not develop diabetes when infected with CVB4.

However, it was induced in BDC2.5 transgenic mice,

which express a T-cell receptor specific to an islet antigen,

but it does not cross-react with the P2-C sequence of CVB4

(Filippi & von Herrath 2008).

Bystander activation of autoreactive T cells is another

mechanism reported in the literature to explain the

initiation of type 1 diabetes. CVB4 infection has been

found to cause the phagocytosis of b-cells by macrophages

and, interestingly, adoptive transfer of APCs isolated from

CVB4-infected mice induced diabetes (Horwitz et al.

2004). Further evidence comes from the inability of the

activated T cells of BDC2.5 mice to induce diabetes in the

absence of CVB4 infection (Horwitz et al. 1998). This

suggests not only bystander involvement, but also the
http://jme.endocrinology-journals.org � 2013 Society for Endocrinology
DOI: 10.1530/JME-13-0067 Printed in Great Britain
importance of macrophages as initiators of the disease

and that multiple environmental factors could cause it.

A word of caution though is required in the accusation

of these viruses. Recent studies have shown the prevention

of diabetes by inducing the proliferation of Tregs (Diana

et al. 2011, Larsson et al. 2013). Even within the same viral

species, different strains may have different effects on the

development of the disease. As described above, CVB4 has

been shown to induce diabetes, whereas CVB3 has been

shown in other studies to play a protective role (Serreze

et al. 2000, Tracy et al. 2002). Timing of the infection also

appears to be of great importance (Serreze et al. 2000).
Rotaviruses

These viruses are the leading cause of childhood gastro-

enteritis, but have also been associated with type 1

diabetes. Seven species have been identified: A, B, C, D,

E, F and G, with A being the most common (Flint et al.

2009). Honeyman et al. (2000) showed a clear association

between rotavirus infection in children at risk of develop-

ing type 1 diabetes and increased production of the

autoantibodies IA-2 (IA-2A), insulin autoantibodies

(IAAs) and GADAs. In vitro studies on NOD mouse islets

have suggested that rotaviruses might induce type 1

diabetes by direct infection of the b-cells. However,

human rotaviruses were successful in replication only in

monkey islets (Coulson et al. 2002). Another mechanism

that has been proposed is molecular mimicry. Honeyman

et al. (2010) showed that rotaviral VP7 protein shows high

homology with IAAs, IA-2 and GAD65. T cells cross-react

with VP7 peptides and epitopes of IA-2 and GAD65, which

bind strongly to HLA-DRB1*04, conferring susceptibility

to T1D. However, the extent of the role of rotaviruses in

the development of type 1 diabetes is still unclear.
Cytomegalovirus

The first report of an association occurred in 1979, when a

child suffering from congenital CMV infection developed

type 1 diabetes. This correlation was confirmed by Smelt

et al. (2012), who showed that CMV can infect human

b-cells, inducing the expression of inflammatory factors

and cytokines.

A mechanism that might explain the induction of

type 1 diabetes by CMV is the bystander activation of

autoreactive T cells. van der Werf et al. (2003) reported an

increase in the proliferation of T cells (around 50%) in rat-

specific CMV (RCMV)-infected splenocytes, following

in vitro restimulation with RCMV-infected fibroblasts.
Published by Bioscientifica Ltd.
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Unfortunately, there is still no causal evidence

between CMV and type 1 diabetes; therefore, as Bach

(2005) stated in his review, the role of CMV is still elusive.
Mumps virus

This virus causes epidemic parotitis, but has also been

associated with type 1 diabetes (Flint et al. 2009).

Epidemiological studies have reported a significant

increase in the incidence of type 1 diabetes following a

mumps epidemic (Hyoty et al. 1988). Unfortunately, not

much evidence is available to clearly identify a correlation

between mumps virus and type 1 diabetes. However,

Cavallo et al. (1992) have shown that following mumps

virus infection, MHC classes I and II were up-regulated,

leading to a change in self-presentation and possibly

leading to a decrease in tolerance towards b-cells, making

them more susceptible to immunity-mediated destruc-

tion. The same study has also shown the induction of the

secretion of IL1 and IL6. These cytokines are not

responsible for the increase in the expression of MHC.

However, they might play a role in the activation and

proliferation of autoreactive T cells.
Rubella virus

A variety of studies have reported an association between

rubella virus infection and type 1 diabetes. Furthermore,

the percentage of individuals with islet autoantibodies

has increased among patients suffering from congenital

rubella syndrome (van der Werf et al. 2007). Studies

have shown that rubella virus induces diabetes by direct

infection of islet b-cells, leading to a decrease in the

secretion of insulin (van der Werf et al. 2007). Alternatively,

Ou et al. (2000) have demonstrated that the determinants

of rubella virus cross-react with GADA-specific T cells in

congenital rubella syndrome patients, who developed

type 1 diabetes. These results are of great interest if the

expression of GAD on b-cells is essential for the develop-

ment of type 1 diabetes, as was shown in NOD mice (Yoon

et al. 1999).

There is fairly good evidence that viruses, especially

enteroviruses, may play a significant role in the develop-

ment of type 1 diabetes via a variety of mechanisms. As in

the hygiene hypothesis, a diabetogenic virus has not been

identified still, and the difficulty still lies in the fact that

the aetiological infection occurs years before the clinical

onset. Therefore, this lag makes the identification

very hard. The real question is as follows: can the viral

hypothesis explain this increase in the incidence of type 1
http://jme.endocrinology-journals.org � 2013 Society for Endocrinology
DOI: 10.1530/JME-13-0067 Printed in Great Britain
diabetes? In the past 50 years, there has been a decrease in

the incidence of infectious diseases, including mumps and

tuberculosis, which can be justified by the introduction of

vaccines, such as the BCG and mumps vaccines. Hyoty

et al. (1993) reported a plateau effect in type 1 diabetes,

following the introduction of the mumps/measles/rubella

vaccine in Finland. However, this pattern has not been

reported globally. Some epidemiological studies, such as

those on the incidence of type 1 diabetes following a

mumps epidemic, might be a coincidence since there have

not been other studies reporting similar results. The viral

hypothesis might provide a fairly good explanation for

the pathogenic mechanisms leading to type 1 diabetes,

but unfortunately there is too much controversy in this

hypothesis to explain and to justify the rise in the

incidence of this autoimmune disease.
Vitamin D deficiency

In a variety of epidemiological studies, type 1 diabetes

appears to be conditioned by seasonal and geographical

variation in u.v. light exposure (Kimpimaki et al. 2001,

Mooney et al. 2004, Sloka et al. 2010).

Further support has come from Finnish studies, which

have reported a decrease in incidence in children

following vitamin D supplement induction (Hypponen

et al. 2001) and an increase in incidence when supple-

mentation is lowered (Mohr et al. 2010). However,

contradictory evidence has come from more recent studies

(Marjamaki et al. 2010, Simpson et al. 2011).

Vitamin D has come to be recognised to play a role in

the modulation of the innate and adaptive immune

system (Fig. 3). The activation of TLRs by pathogens

causes an increased expression of vitamin D receptor

(VDR) and the vitamin D-activating enzyme CP27B

(25OHD-1a-hydroxylase) in macrophages (Adams &

Hewison 2008). Mitochondrial CP27B (also found in the

classical renal proximal tubules) catalyses the conversion

of 25OHD to 1,25(OH)2D3, which either binds to VDR or is

secreted, inducing a variety of paracrine responses. VDR-

bound 1,25(OH)2D3 has three functions:

i) It acts asa transcriptional factor, inducing theexpression

of an antimicrobial polypeptide, cathelicidin. This will

then be integrated in the pathogen-containing phago-

some, leading to antimicrobial action.

ii) It leads to negative autoregulation by negative feedback

of the enzymes CP24A and CP24A-SV.

iii) It causes negative autoregulation by the down-

regulation of TLRs.
Published by Bioscientifica Ltd.
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Figure 3

Role of vitamin D in innate and adaptive immunity. TLR, toll-like receptor;

DBP, vitamin D-binding protein; CP27B, 25OHD3-1a-hydroxylase; CP24A,

1,25(OH)2D3 24-hydroxylase; CP24A-SV, 1,25(OH)2D3 24-hydroxylase splice

variant; VDR, vitamin D receptor; 25(OH)D3, 25-hydroxycholecalciferol;

1,25(OH)2D3, 1,25-dihydroxycholecalciferol. Adapted from Adams JS &

Hewison M 2008 Unexpected actions of vitamin D: new perspectives on the

regulation of innate and adaptive immunity. Nature Clinical Practice.

Endocrinology & Metabolism 4 80–90. Full colour version of this figure

available via http://dx.doi.org/10.1530/JME-13-0067.
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1,25(OH)2D3 secreted by macrophages (or mature

dendritic cells) induces a series of paracrine responses:

i) Activated B cells express high levels of VDR.

1,25(OH)2D3 causes a decrease in B-cell proliferation,

antibody production, memory and plasma cells.

ii) Activated T cells express high levels of VDR as well,

and activation by 1,25(OH)2D3 causes a decrease in

proliferation and Th1 responses, but an increase in

Th2 responses, Treg levels and T-cell homing.

iii) Monocytes, which express a higher number of VDRs

than macrophages, stimulate further macrophage

differentiation. Immature dendritic cells, which also

contain a higher number of VDRs, cause the

suppression of the differentiation of dendritic cells

and an increase in the secretion of CC-chemokine

ligand 22 (CCL22), which supports the synthesis of

Tregs (Adams & Hewison 2008).

Therefore, vitamin D plays an important role in the

regulation of Th1 and Th2 balance, via the proliferation of

Tregs and the release of cytokines.

What goes wrong when vitamin D is missing?

Unfortunately, the exact mechanism is still unclear.
http://jme.endocrinology-journals.org � 2013 Society for Endocrinology
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However, there is evidence from adult NOD mice that

type 1 diabetes is inhibited following vitamin D analogue

administration. In these models, vitamin D prevents the

maturation of dendritic cells, therefore causing a decrease

in the production of IL12. This has been shown to have an

effect on the level of IFNg produced by Th1 cells,

demonstrating a decrease in Th1 responses. This decrease

has been associated with an increase in the frequency of

CD4C CD25C Tregs, arresting the development of type 1

diabetes. Further studies have provided similar evidence

(Gregori et al. 2002). The study of Boonstra et al. (2001) has

shown that vitamin D in mice not only inhibits the

production of IFNg and therefore Th1 response, but also

increases the Th2 response, leading to an increase in the

production of IL4, IL5 and IL10. It has also demonstrated

the direct effect of vitamin D on Th cells by activating

naı̈ve CD4CT cells with anti-CD3 and anti-CD28. This

leads to a significant rise in the levels of IL4, i.e. from 8 to

55.8%. The Th2 transcription factors GATA3 and c-MAF

(MAF) were found to be up-regulated as well. This indicates

that vitamin D has a direct effect on Th cells, enhancing

the development of Th2 cells and therefore preventing the

development of type 1 diabetes.

The last factor that might influence the development of

the disease is genetic polymorphism of VDR. Vitamin D

induces the formation of a VDR complex, which binds to

vitamin D3 response elements. This normally has a variety

of calcaemic and non-calcaemic activities, of which the

inhibition of the expression of IL2, INFg, TNFa and TNFb is

one (Nagpal et al. 2005). The gene encoding VDR has been

identified to have four common variations: FokI, BsmI,

ApaI, and TaqI. These alterations translate into functional

VDR proteins, which in theory may lead to an abnormal

synthesis of cytokines leading to type 1 diabetes. In fact,

association has been found in Indian, Japanese, Taiwanese

and German populations (Zella & DeLuca 2003).

The vitamin D deficiency hypothesis has some flaws.

First of all, countries that receive sufficient sunlight such

as Kuwait and Sardinia (Italy) have an incidence similar to

that of those countries at extreme latitudes: Finland,

40.9/100 000 per year and Sardinia, 37.8/100 000 per year.

Furthermore, countries at a similar latitude may differ

significantly, e.g. Finland and Russia (6.9/100 000 per year).
Breast-feeding vs cow’s milk hypotheses

Borch-Johnsen et al. (1984) introduced the theory that

insufficiency in breast-feeding of genetically susceptible

children may lead to the development of b-cell infection

and type 1 diabetes. A variety of studies have shown an
Published by Bioscientifica Ltd.
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inverse correlation between a decrease in breast-feeding

and the increase in type 1 diabetes risk (Borch-Johnsen

et al. 1984, Scott 1990, Malcova et al. 2006).

Human milk seems to contain several molecules and

cells that help prevent infection and possibly autoimmu-

nity. Secretory IgA is present in great quantities in breast

milk and plays a major role in the protection of organisms

present in a neonate, since the collection of antibodies

received is highly specific for the pathogens in the

neonate’s surroundings. Furthermore, it spares the gastro-

intestinal flora, providing further resistance. Other

molecules involved are the antibacterial enzymes lyso-

zyme and lactoferrin, which protect against bacteria (e.g.

Escherichia coli and Staphylococcus). Human milk is also

abundant in immune cells, such as leucocytes (neutrophils

and macrophages), T and B cells, which play a major role

in the immune defences of a neonate (Newman 1995).

A variety of hormones can also be found, such as insulin,

TGFa and macrophage colony-stimulating factor (M-CSF).

A possible mechanism is related to the presence of

these specific GHs (TGFa and M-CSF), which are thought

to support the maturation of the gastrointestinal tract.

This is of great importance for the development of oral

tolerance (Kolb & Pozzilli 1999).

A second mechanism is the role of insulin in oral

tolerance (Shehadeh et al. 2001). Wegmann & Eisenbarth

(2000) compared the two autoantibodies GADA and

insulin in humans, demonstrating that the latter might

be the primary antigen in the immune response to islets.

Furthermore, oral administration of porcine insulin was

found to suppress the onset of diabetes in NOD mice

(Zhang et al. 1991). Human milk contains a large

concentration of insulin, which is thought to play a

major role in the maturation of mechanisms that regulate

the intestinal permeability to macromolecules. This

regulation is thought to modulate the exposure to

triggering dietary proteins, such as caseins found in

cow’s milk, therefore reducing the triggering effect for an

immune response (Shehadeh et al. 2001).

The last proposed mechanism is related to the

regulatory role of cytokines present in breast milk.

Ustundag et al. (2005) showed in their study the presence

of a series of cytokines and trace elements in breast milk:

IL1b (IL1B), IL2, IL6, IL8, TNFa, zinc and copper. The

presence of the different cytokines varied with lactation

period. These data can be correlated with the protective

effect observed in the study of Malcova et al. (2006), where

early breast-feeding was shown to provide a greater

protection. Therefore, one might hypothesise that early

breast milk exposure might lead to an increase in the levels
http://jme.endocrinology-journals.org � 2013 Society for Endocrinology
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of neonatal cytokines (such as IL2), which, as seen in the

hygiene hypothesis, might play a role in the protective

action against type 1 diabetes.

Most papers, however, emphasise the role of cow’s

milk in the development of the disease. It has been shown

that premature (by 3 months of age) exposure to cow’s milk

significantly increases the risk of developing the disease

(Wasmuth & Kolb 2000). However, other studies have

provided discordance results, by showing no association.

For example, Couper et al. (1999) followed 317 children

with genetic predisposition from birth for 29 months. The

relative risk of the introduction of products of cow’s milk

was between 0.91 and 1.09, and therefore the study

concluded that there was no evidence for an association.

However, a variety of animal studies have confirmed

the original theory. In fact, Johnston & Monte (2000)

demonstrated that early ingestion of cow’s milk formula

increased the incidence of diabetes in BB rats. They

noticed acceleration in the development of the disease

and a significant decrease in the mean age of onset.

But what makes cow’s milk a triggering factor? A

variety of studies have reported the association between

antibodies against five major proteins present in cow’s

milk (caseins, a-lactalbumin, g-globulin, albumin and

hormonal constituents) and the development of type 1

diabetes, but anti-BSA antibodies are the ones showing the

highest disease specificity.

The link between cow’s milk and the autoimmune

process has been hypothesised to be due to molecular

mimicry, breakdown of tolerance or lack of cytokines and

growth factors.
Molecular mimicry

A hypothesis is the cross-reactivity between cow’s milk

proteins and b-cell autoantigens, resulting in the acti-

vation of autoreactive T cells. Honeyman et al. (1998)

identified IA-2 epitope homologies, 60% identity and 80%

similarity over ten amino acids, to casein in cow’s milk.

Knip et al. (2005) have suggested that cow’s milk exposure

causes a bovine insulin-induced immune response. They

reported on a group of subjects in whom autoimmunity of

the b-cells was associated with a continuous increase in the

levels of bovine insulin IgG antibodies. This increase was

explained by the cross-reactivity between the two types of

insulin, shown by an increase in IAA levels. Another case

of homology has been found between BSA and islet-cell

antigen 69 (ICA69), which apparently modulate

the progression of the disease in NOD mice (Kolb &

Pozzilli 1999).
Published by Bioscientifica Ltd.
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Table 1 Comparison of the discussed hypothesis mechanisms:

(A) hygiene hypothesis, (B) viral hypothesis and (C) vitamin D vs

vitamin D deficiency and breast-feeding vs cow’s milk

hypotheses

Hygiene hypothesis

Y Bystander suppression
Y TLR activation
Y NKT cell activity
Y Competition
Y Autoreactive T-cell diversion
[ Autoreactive T-cell hyperactivation
Helminth eradication

Viral hypothesis

[ Bystander activation
Direct infection/cell lysis
Molecular mimicry
Self-presentation change
Tolerance breakdown
Successive activation

Vitamin D hypothesis Vitamin D deficiency hypothesis

[ Antimicrobial effect Y Antimicrobial effect
[ TLR activation Y TLR activation
[ T-cell proliferation Y T-cell proliferation
Y Th1 cells [ Th1 cells
[ Th2 cells and Tregs Y Th2 cells and Tregs
[ T-cell homing Y T-cell homing
Y B-cell proliferation, Ig,

memory and plasma cells
[ B-cell proliferation, Ig,

memory and plasma cells
[ Monocyte differentiation Y Monocyte differentiation
Y Dendritic cells [ Dendritic cells

Breast milk hypothesis Cow’s milk hypothesis

[ Oral tolerance – GHs and
insulin

Y Oral tolerance – caseins

[ Protective effect by cytokines
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Tolerance breakdown

Another mechanism might be the breakdown of tolerance

to dietary antigens induced by the immunoregulatory

properties of cow’s milk. b-Caseins present in cow’s milk

undergo hydrolysis to produce opiate-like peptides, called

b-casomorphins (BMCs), which can have different forms.

In fact, b-casein of Bos Taurus (A1) gives rise to BMC-7.

Studies have shown that NOD mice progressed to develop

diabetes following the administration of b-casein A1, but

not of b-casein A2. These fragments have an agonist effect

on m-opioid receptors, leading to effects on the nervous,

endocrine and gastrointestinal systems. Elitsur and Luk

showed that BMCs inhibit the proliferation of lamina

propria lymphocytes by the inhibition of DNA synthesis

and ornithine decarboxylase activity, which are essential

for the proliferation of both peripheral blood and lamina

propria lymphocytes. Therefore, BCMs have an anti-

proliferative effect on LPL, possibly leading to the

breakdown of tolerance. Furthermore, the paper has

reported a series of studies on endorphins (endogenous

opioid compounds), demonstrating an effect on human

leucocytes and enhancing NK cell activity, T-cell cyto-

toxicity and IFNg production (Wasmuth & Kolb 2000).

Therefore, cow’s milk might have an effect on the mucosal

immune system by enhancing a Th1 response via APCs or

by suppressing Tregs. This would lead to an overall

decrease in mucosal tolerance.

Controversy in this hypothesis still remains, resulting

from different outcomes in a variety of epidemiological,

animal and human studies. This diversity, however, might

be explained by the fact that only certain types of

components in cow’s milk are diabetogenic. Interestingly,

a correlation exists between A1 (not A2) regional

consumption and incidence of type 1 diabetes. One

might hypothesise that genetic predisposition might

lead to gastrointestinal mucosal immune responses,

which will lead to the progression of the disease. This

theory might be valid considering the fact that the

immune system of the gut makes up two-thirds of the

total lymphoid tissue in humans (Kolb & Pozzilli 1999).

Another interesting point is the role of endorphins

described above, whose direct association with diabetes

has not been fully proven yet. However, similarities lead us

to think that BMCs might really have an effect on

immunocytes.

An overall reduction in breast-feeding is a well-known

factor, highlighted by a series of epidemiological studies.

The protective effect of human milk is still unclear;

however, there is very good evidence that it plays a role
http://jme.endocrinology-journals.org � 2013 Society for Endocrinology
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in the immunological defences of a child’s body against

diabetes. The inverse correlation described initially by

Borch-Johnsen et al. (1984) might after all be a plausible

hypothesis. Further evidence that strengthens the argu-

ment is the lack of certain human milk components in

cow’s milk (and derivatives) that might influence the

maturation of the gut.
‘Balance shift’ model

When observing the immunological mechanisms under-

lying each hypothesis (Table 1), one can notice certain

similarities. When comparing one with the other, one can

notice an opposing effect: protective vs diabetogenic. One

can also realise that some common ground might exist

between the various hypotheses, for instance, the role of

TLRs in vitamin D deficiency and hygiene hypothesis. In

fact, one might go as far as to suggest that vitamin D
Published by Bioscientifica Ltd.
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Figure 4

Summary of the ‘balance shift’ model. Protective factors (vitamin D, early

exposure to pathogens and breast milk) are opposed by diabetogenic

factors (vitamin D deficiency, viruses and cow’s milk). In healthy individuals,

a balance is maintained, but in patients suffering from type 1 diabetes, a

shift towards diabetogenic factors occurs. Full colour version of this figure

available via http://dx.doi.org/10.1530/JME-13-0067.
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Figure 5

Analogy of the ‘balance shift’ model. (A) In healthy individuals, protective

and diabetogenic factors are balanced at all times. (B) A change in this

balance is normally compensated by other factors. For example, a decrease

in breast-feeding might be compensated by an increase in vitamin D. (C) In

diabetic patients, however, this compensatory mechanism does not occur,

tilting the scale towards the diabetogenic side and therefore causing type 1

diabetes. Vit D, vitamin D; Def, deficiency. Full colour version of this figure

available via http://dx.doi.org/10.1530/JME-13-0067.
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deficiency alters antimicrobial effect by modulating the

function of TLRs. This alteration might also lead to a

protective effect in a bystander manner. Oral tolerance

induced by the protective action of human milk might

compensate for dietary antigens introduced in the last

century. As breast-feeding decreased throughout the 20th

century, cow’s milk formulas became more popular,

leading to a negative shift in oral tolerance.

Taking the concept of protective vs diabetogenic

factors, one might postulate that a compensatory

mechanism might also occur between different

hypothesised factors. In other words, an increase in

vitamin D deficiency might be compensated by an

increase in breast-feeding and so on. This compensation

might be associated with a ‘protective environment’.

However, what would happen if most of the protective

factors decreased? A shift might occur from a protective

equilibrium towards an increase in diabetogenic factors,

leading to type 1 diabetes. This change might have

occurred gradually throughout the 20th century, leading

to an increase in incidence. This concept is described as

the ‘balance shift’ model, shown in Fig. 4.

A good analogy would be the use of a balancing scale

with one plate on each side (each plate representing the

diabetogenic and protective factors). Each plate supports a

variety of weights, representing the various factors

brought forward in the hypotheses described above. In

healthy individuals, the weights are balanced at all times

(Fig. 5A), meaning that if one of the protective weights

becomes lighter, another protective one will compensate
http://jme.endocrinology-journals.org � 2013 Society for Endocrinology
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in order to maintain the scale in equilibrium (Fig. 5B). In

diabetic patients, this compensatory mechanism does not

occur, therefore tilting the scale towards the diabetogenic

side (Fig. 5C).

It is likely that a multifactorial process leading to a

disequilibrium between protective and diabetogenic

factors is the cause of this increase. This in turn causes

the acceleration of the diabetic process, causing an

increase in childhood onset, therefore leading to an

overall increase in the incidence of type 1 diabetes.

Further research, however, might be able to identify a

common denominator, leading to a greater understanding

as to why the incidence of type 1 diabetes is increasing.
Published by Bioscientifica Ltd.
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Conclusion

This review has tried to answer the following question:

‘why is the incidence of type 1 diabetes increasing?’

Although the hygiene hypothesis appears to be the most

promising, there is too much positive evidence from

animal, human and epidemiological studies to completely

rule out any of the other hypotheses. Moreover, it is hard

to believe that the same single factor is causing an increase

in the incidence of diabetes all over the world. Evidence

suggests that a multifactorial process might be involved.

The immunological mechanisms are still unclear, but

there seems to be some overlap between the various

hypotheses. It is thought that the emphasis should be

shifted from initiative to accelerative factors. Furthermore,

a new theory, ‘balance shift’ model, has been brought

forward to explain this rise.

Thus, the incidence of type 1 diabetes is increasing

and we should be focusing on multiple mechanisms for its

resolution.
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