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Abstract: The primary purpose of this study was to identify if serum 25-hydroxyvitamin D 

(25(OH)D) concentrations predict muscular weakness after intense exercise. We 

hypothesized that pre-exercise serum 25(OH)D concentrations inversely predict  

exercise-induced muscular weakness. Fourteen recreationally active adults participated in 

this study. Each subject had one leg randomly assigned as a control. The other leg 

performed an intense exercise protocol. Single-leg peak isometric force and blood 

25(OH)D, aspartate and alanine aminotransferases, albumin, interferon (IFN)-γ, and 

interleukin-4 were measured prior to and following intense exercise. Following exercise, 

serum 25(OH)D concentrations increased (p < 0.05) immediately, but within minutes, 
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subsequently decreased (p < 0.05). Circulating albumin increases predicted (p < 0.005) 

serum 25(OH)D increases, while IFN-γ increases predicted (p < 0.001) serum 25(OH)D 

decreases. Muscular weakness persisted within the exercise leg (p < 0.05) and compared to 

the control leg (p < 0.05) after the exercise protocol. Serum 25(OH)D concentrations 

inversely predicted (p < 0.05) muscular weakness (i.e., control leg vs. exercise leg peak 

isometric force) immediately and days (i.e., 48-h and 72-h) after exercise, suggesting the 

attenuation of exercise-induced muscular weakness with increasing serum 25(OH)D prior 

to exercise. Based on these data, we conclude that pre-exercise serum 25(OH)D 

concentrations could influence the recovery of skeletal muscle strength after an acute bout 

of intense exercise. 

Keywords: vitamin D; exercise; muscle strength; cytokines; albumin 

 

1. Introduction 

Vitamin D is a pleiotropic micronutrient that influences health across a range of physiological and 

pathophysiological conditions in humans. In the body, 25-hydroxyvitamin D (25(OH)D) is the most 

abundant circulating metabolite and most reliable indicator of vitamin D intake and storage [1]. 

Maintaining an adequate circulating concentration of 25(OH)D is, therefore, important to the 

physiological events moderated by vitamin D. 

In addition to its well-known regulation of calcium and mineral homeostasis, vitamin D also 

regulates genomic and non-genomic events that govern skeletal muscle function, for review see, for 

review [2–6]. These functions include the regulation of calcium handling and transport, the expression 

of cytoskeletal proteins, phosphate metabolism, cell proliferation and differentiation, and the activation 

of mitogen activated protein kinase signaling pathways in skeletal muscle [7–22]. These functions are 

established in experimental animal and cell culture studies, but less clear is the regulatory influence of 

vitamin D on skeletal muscle function in humans.  

In physiological and pathophysiological conditions, muscular strength associates with serum 

25(OH)D concentrations [23–35]. This association is prominent at deficient (<20 ng/mL) and 

insufficient (20 to 32 ng/mL) serum 25(OH)D concentrations [25,36,37]. Despite the efficacy of 

supplemental vitamin D to increase serum 25(OH)D concentrations, however, ambiguity persists 

regarding the influence of supplemental vitamin D on skeletal muscle strength [30,38–43]. 

Nevertheless, it is inferred that increasing serum 25(OH)D from deficient to insufficient or sufficient 

(>32 ng/mL) concentrations attenuates muscular weakness.  

Immediate (i.e., minutes to hours) and persistent (i.e., days) muscular weakness can follow intense 

exercise or a muscle-damaging event [44,45]. Muscular weakness after intense exercise or a  

muscle-damaging event could cause a predisposition to additional trauma. For example, muscular 

weakness due to injury could contribute to the development of stress fractures in military recruits, 

which interestingly, could be prevented by increasing serum 25(OH)D concentrations [46,47]. Likewise, 

low serum 25(OH)D concentrations contribute to muscular weakness and the increase in falls and bone 
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fractures in elderly [36,48–54]. Increasing or maintaining an adequate serum 25(OH)D concentration, 

therefore, could preserve muscular strength after injury and protect against further injury. 

Following intense exercise, serum 25(OH)D concentrations were not associated with muscular 

strength [55]. In that previous study, however, the serum 25(OH)D concentration and muscular strength 

relationship was examined 2-days after eccentric contractions [55]. In experimental rats, vitamin D 

(activated 7-dehyrocholesterol at 332,000 IU/kg of body mass) promoted muscle regeneration and 

accelerated the recovery of skeletal muscle strength after crush injury [19], which could possibly relate 

to the ability of vitamin D to regulate satellite cells in the repair of skeletal muscle [21]. 

Eccentric (i.e., active-lengthening) contractions of skeletal muscle induce muscle injury and  

a systemic inflammatory response [56], which in theory, could contribute to serum 25(OH)D 

concentration decreases [57–59]. Although the causative mechanism responsible for the serum 

25(OH)D decrease during inflammation awaits future elucidation in humans, persuasive results reveal 

the regulatory influence of inflammatory cytokines on vitamin D metabolism in immune cells.  

Interferon (IFN)-γ is an inflammatory cytokine that influences vitamin D metabolism in immune 

cells [60,61]. In isolated peripheral immune cells, IFN-γ increases 1α-hydroxylase activity and mediates 

the conversion of 25(OH)D to 1,25-dihydroxyvitamin D (1,25(OH)D) [60–65]. In contrast to IFN-γ, 

interleukin (IL)-4 is a cytokine that initiates the catabolism of 25(OH)D to 24,25-dihydroxyvitamin D [65]. 

Following intense exercise, IFN-γ decreases or remains unchanged [66–68] while IL-4 remains 

unchanged or below detection limits in the circulation [69,70]. Thus, given its regulation of vitamin D 

metabolism in immune cells, IFN-γ changes could be inversely related to serum 25(OH)D concentration 

alterations after exercise.  

Data suggest that serum 25(OH)D concentrations and muscular strength are not associated after 

exercise [55]. However, in that earlier study [55], it is possible that the imposed exercise protocol 

induced a systemic inflammatory response [56]. This is an important consideration because inflammation 

could modulate serum 25(OH)D concentrations, and consequentially, confound the interpretation 

between vitamin D and muscle strength [71]. To address this conundrum, the primary aim of this study 

was to identify if pre-exercise serum 25(OH)D concentrations predict immediate and persistent  

(i.e., several days) muscular weakness after intense exercise. We hypothesized that pre-exercise serum 

25(OH)D concentrations inversely predict immediate and persistent muscular weakness after intense 

exercise. As the secondary aim of this study, we sought to identify if circulating cytokines predict 

serum 25(OH)D concentrations after intense exercise. We hypothesized that IFN-γ changes inversely 

predict serum 25(OH)D concentration alterations. 

2. Experimental Section 

The Institutional Review Board at Intermountain Healthcare (Murray, UT, USA) approved this 

study. Recreationally active (i.e., at least 30 min of continuous exercise 3 times per week for 1 year 

prior to enrollment) subjects were informed of the experimental protocol and procedures and provided 

both written and verbal consent prior to participation. Subjects were excluded if: they were taking any 

dietary supplements or anti-inflammatory medications, suffered a lower leg injury during the previous 

year that required the use of crutches, were taking digoxin and antiarrhythmic medication(s), 

diagnosed with diabetes mellitus, impaired liver or kidney function, pregnant, morbidly obese (body 
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mass index (BMI) > 40 kg/m
2
), using corticosteroid medication, planning on increasing or decreasing 

the amount of time spent in the sun or tanning bed, or traveling south of 37°N in latitude during study 

participation. Subjects were also excluded if they had a history of: metabolic bone disease, skeletal 

muscle pathology, cardiac or peripheral cardiovascular system abnormalities, clotting disorders, 

coronary artery disease, peripheral vascular disease, stroke, cancer, hypercalcemia or parathyroid 

dysfunction, iron deficiency within the past year or a potential concern of iron deficiency, high 

cholesterol or triglycerides, high blood pressure, or the presence of strength or power output 

asymmetry (i.e., >5% difference in peak isometric between legs). Potential subjects were excluded 

from study participation if they reported or showed any medical condition, under physician treatment, 

or taking any prescribed medication. During study participation, subjects were asked to keep their diet 

consistent with their regular eating habits during the previous year. 

Data was collected during the winter (December to March) in Salt Lake City, UT, USA  

(40°N latitude). Subjects were asked to refrain from physical activity, and using steroids, aspirin, 

ibuprofen, naproxen sodium, acetaminophen, or other anti-inflammatory agents 72-h prior to the blood 

draw and strength testing procedures to remove the potential confounding influences of activity and 

anti-inflammatory agents on blood and strength testing results. 

2.1. Exercise Protocol  

In an attempt to minimize the bias of leg dominance, subjects that displayed greater than  

a 5% difference in peak isometric force between legs were excluded from study participation. 

Following study inclusion, each subject had one leg randomly assigned as the control (CON) leg. The 

other leg performed an intense-stretch shortening contraction (SSC) protocol (Figure 1). The rationale 

for performing this protocol unilaterally was to assess isometric force within and between legs across 

time, and to allow each subject to serve as their own control. 

Figure 1. Examples of the single-leg strength testing and the intense-stretch shortening 

contraction (SSC) protocol on the horizontal Plyo-press. (A) The weight stack resistance 

was overloaded to prevent sled movement in order to achieve isometric testing.  

(A–C) Subjects performed repetitive single-leg jumps during the SSC protocol. Illustrated 

below is an example of a subject in the push-off position (A), at peak height of  

the jump (B), and the subsequent landing (C) during the SSC protocol. Subjects performed 

10 sets of 10 jumps with a 20-s rest between each set at 75% of body mass on one leg only 

(i.e., SSC leg). Note: This figure is adapted with permission from [68]. Copyright ©  

Barker et al.; licensee BioMed Central Ltd. 

A B C 
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The purpose of the SSC protocol was to induce peak isometric force deficits that would persist for 

several days [68]. The SSC protocol consisted of 10 sets of 10 repetitive jumps at 75% of body mass 

with a 20 s rest between each set. Subjects were instructed and verbally encouraged to perform each 

set with maximal effort and to jump as high as possible through a full range of motion (90° of knee 

flexion-to-full extension). Subjects performed presses through a full range of motion if they were 

unable to complete the jumps. If they were unable to complete presses, the exercise protocol was 

terminated. The mean number of jumps and presses completed during the SSC protocol were 62 ± 9 

and 23 ± 5, respectively, while 7 (3 males and 4 females; age, 32 ± 3 years; height, 167 ± 5 cm;  

body mass, 76.8 ± 8.7 kg; body mass index, 27.1 ± 1.7 kg/m
2
) of the 14 subjects were unable to 

complete the SSC protocol due to fatigue or exhaustion. Of the subjects who completed the exercise 

protocol, 3 subjects (all males; age, 29 ± 2 years; height, 182 ± 4 cm; body mass, 85.3 ± 5.4 kg;  

body mass index, 25.7 ± 1.6 kg/m
2
) completed all the jumps and four subjects (3 males and 1 female; 

age, 33 ± 2 years; height, 176 ± 7 cm; body mass, 78.0 ± 7.5 kg; body mass index, 24.8 ± 0.8 kg/m
2
) 

completed the exercise protocol by performing a combination of jumps and presses. Circulating 

chemistries and leg strength were not significantly different between subjects who completed the 

exercise protocol compared to those who were unable to complete the exercise protocol (data not 

shown). Although 7 subjects were unable to complete the acute exercise protocol, all subjects (n = 14), 

completed the remainder of study protocol following the exercise protocol. 

Subjects were allowed to consume water ad libitum during and following exercise protocol. The 

study protocol is illustrated in Figure 2. 

Figure 2. Study protocol. Each subject provided eight fasting blood draws. The first blood 

draw was performed at baseline (Bsl) and 28-day before the SSC protocol. The rationale 

for collecting this sample 28-day before the SSC protocol was to allow for the seasonal 

decrease in serum 25(OH)D concentrations. The second blood draw was obtained 

immediately before (Pre) the SSC protocol. The six remaining blood draws were 

performed immediately (i.e., Post), 1-h, 24-h, 48-h, 72-h and 168-h (i.e., 7 days) after the 

SSC protocol. Subjects were familiarized with the single-leg peak isometric force testing 

procedure at Bsl. Thereafter, single-leg peak isometric force measurements were performed 

on six different occasions: (1) immediately before (Pre) the SSC protocol; and  

(2) immediately (Post); (3) 24-h; (4) 48-h; (5) 72-h and (6) 168-h after the SSC protocol. 
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2.2. Analytical Procedures 

Blood draws were performed from the antecubital vein and collected in one 6.0 mL red-top serum 

Becton Dickinson (BD; Franklin Lake, NJ, USA) vacutainer tube, one 4.0 mL purple-top BD 

Vacutainer tube (K2 EDTA 7.2 mg plasma), and one 4.5 mL light green-top BD Vacutainer tube  

(PST Gel and Lithium Heparin, 83 units). After coagulation, serum was separated by centrifugation 

(VWR International, Clinical 50 Centrifuge, Radnor, PA, USA) at 1100× g for 20 min at room 

temperature. Serum samples were immediately aliquoted to several 500 µL microcentrifuge tubes and 

stored at −80 °C (Revco Freezer, GC Laboratory Equipment, Asheville, NC, USA) until the day of 

25(OH)D and cytokine concentration analyses (see below). Plasma was separated by centrifugation 

(Heraeus Labofuge 400 series, Buckinghamshire, England) at 2400× g for 6 min at room temperature 

within 20 min of sample collection. Following separation, plasma samples were sent to ARUP 

Laboratories (Salt Lake City, UT, USA) for parathyroid hormone (PTH), calcium, albumin, aspartate 

aminotransferase (AST), and alanine aminotransferase (ALT) chemistries (see below). 

2.2.1. Serum 25(OH)D Concentration 

Serum 25(OH)D concentrations (ng/mL) were measured in duplicate (coefficient of variation = 3.19%) 

at USANA Health Sciences, Inc. (Salt Lake City, UT, USA) [39]. Specifically, 100 µL of serum was 

added to 400 µL of a 2:1 methanol:chloroform solution containing deuterated 25(OH)D3 as an internal 

standard (10 ng/mL in the stock solution; 40 ng/mL final concentration) in a 2 mL centrifuge tube. 

Samples were immediately vortexed and allowed to sit on ice for 10 min. Samples were then spun at 

15,000× g for 5 min and the supernatant was transferred to a new 2 mL centrifuge tube containing  

500 µL of chloroform. Samples were vortexed and allowed to stand for 5 min. To achieve phase 

separation, 750 µL of ddH2O was added, vortexed, and centrifuged for 2 min at 15,000× g. The 

aqueous phase (top), and any debris between the two phases, was removed and discarded. The 

remaining organic phase was dried down to completeness in a centrifugal vacuum concentrator for  

18 min at 45 °C under negative pressure. The pellet was then resuspended in 100 µL of methanol and 

added to high performance-liquid chromatography (HPLC) vials. 

Analytes were separated by injecting 10 µL into an Agilent HPLC (series 6410, Model G6410B, 

Santa Clara, CA, USA) and a Phenomenex Inertsil 3 micron, 150 × 4.60 mm column. Method 

conditions were: 0–8 min, 90% MeOH/10% (0.03% formic acid in water); 8–15 min,  

100% 2-propanol; 15–20 min, 90% MeOH/10% (0.03% formic acid in water). 25(OH)D2 and 

25(OH)D3 were detected on an Agilent tandem mass spectrometer (Series 6410, Model G6410B, Santa 

Clara, CA, USA) using atmospheric pressure chemical ionization (APCI) detection (350 °C gas 

temperature, 400 °C vaporizer). The 25(OH)D3, deuterated 25(OH)D3, and 25(OH)D2 precursor ions 

were 383.3, 386.3, and 395.4, respectively. The 25(OH)D3, deuterated 25(OH)D3, and 25(OH)D2 

product ions were 365.3, 368.3, and 208.9, respectively. Serum 25(OH)D2 and 25(OH)D3 

concentrations were determined relative to authentic standards and corrected for recovery of the 

25(OH)D3 internal standard. The detection limit was <1 ng/mL for all analytes. The sum of 25(OH)D2 

and 25(OH)D3 concentrations was used as the 25(OH)D total concentration. Serum 25(OH)D2 was not 
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detected in any of the subjects, and therefore, serum 25(OH)D total concentrations are referred to as 

serum 25(OH)D concentrations hereafter.  

2.2.2. Serum Cytokine Concentrations 

Serum IFN-γ and IL-4 were quantitated using a multiplexed sandwich capture assay developed in 

the ARUP Institute for Clinical and Experimental Pathology (University of Utah, Salt Lake City, UT, 

USA) using the Luminex Multi-Analyte Profiling system (Luminex, Austin, TX, USA) [72,73]. 

Monoclonal capture antibodies for IFN-γ and IL-4 were coupled to microspheres (Luminex). The 

monoclonal antibody for IL-4 was purchased from Pharmingen/BD Biosciences (San Diego, CA, 

USA) and the monoclonal antibody for IFN-γ was purchased from Biosciences (San Diego, CA, USA).  

Standard curves for each cytokine were made using known concentrations of recombinant human 

cytokine of interest and performed during the same run as the subjects’ serum analyses. All 

incubations were conducted at room temperature on an orbital plate shaker while protected from light 

for 10 min. Following incubation, beads (25 μL) were added to each well after 2 repeated bouts of 

vortexing (10 s) and sonication (20 s). The plate was then incubated for 1 h, washed 3× by vacuum 

filtration with phosphate-buffered saline containing Tween 20 (PBST). Then, 100 μL of a mixture of  

2 different biotinylated secondary antibodies were added and incubated for 30 min. Following washes 

(3×) with PBST, 100 μL 5 μg streptavidin-conjugated R-phycoerythrin/mL (Moss Substrates, 

Pasadena, MD, USA) were added to each well. Plates were incubated for 20 min, washed 3× with 

PBST, then beads were re-suspended in 150 μL PBST and mixed for 5 min.  

Microtiter plates were then placed in a Luminex 100 instrument for analysis. Microspheres pass 

through a flow cell where dual lasers identify the microsphere and quantitate the amount of analyte 

bound to the microsphere by measuring the median fluorescent intensity of the reporter molecule 

(phycyoerythrin). The median fluorescence intensity is then converted in pg/mL based on the known 

concentrations of the standard curve.  

2.2.3. Clinical Chemistries 

Plasma AST (U/L), ALT (U/L), PTH (pg/mL), and calcium (mg/dL) concentrations were measured 

using a quantitative electrochemiluminescent immunoassay, and plasma albumin (g/dL) concentrations 

were determined using spectrophotometry (ARUP Laboratories, Salt Lake City, UT, USA). 

2.2.4. Single-Leg Strength Testing 

Single-leg strength testing was performed on a horizontal Plyo-Press (Athletic Republic, Park City, 

UT, USA). The reliability (intraclass reliability coefficients = 0.98) for the peak isometric force 

measurement on the Plyo-Press has been reported previously [68] along with the testing  

procedures [39,74]. In brief, the Plyo-Press sled was adjusted for each subject to align the knee and hip 

joint flexion angles to 90° with the abdominal, low back region secured and stabilized to the  

Plyo-Press sled with a harness. Hip and knee extension-isometric contractions were accomplished by 

overloading the weight stack resistance (>2260 N). Leg selection (i.e., CON or SSC leg) at the start of 

each testing session was randomized and followed by an alternating sequence of leg contractions. Peak 
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isometric contractions on each leg were performed in triplicate (CON coefficient of variation = 3.62%; 

SSC leg coefficient of variation = 4.70%), and each isometric contraction was 3 s in duration and 

separated by 1 min of rest. Subjects were verbally instructed and strongly encouraged to exert maximal 

force against the mounted force platform during each isometric contraction. Force output was 

measured from signals obtained from a mounted force plate (Advanced Mechanical Technology, 

Watertown, MA, USA) on the Plyo-press. Data were sampled at 200 Hz with a low-pass filter at 10 Hz 

using DartPower software (Athletic Republic, Park City, UT, USA, version 2.0). Peak isometric force 

was defined as the highest resultant force produced from the three isometric tests and was expressed 

relative to body mass (N/kg). 

2.3. Statistical Analyses 

Data were checked for normality prior to all statistical analyses with a Kolmogorov-Smirnov test. 

Statistical significance of serum 25(OH)D, cytokine, PTH, AST, and ALT concentration data were 

assessed with a Friedman repeated measures analysis of variance (ANOVA) on ranks followed by a 

Tukey’s Honestly Significant Difference (HSD) to test multiple pairwise comparisons. Statistical 

significance of calcium and albumin concentration data were assessed with a one-way ANOVA with 

repeated measures followed by a Tukey’s HSD to test multiple pairwise comparisons. Statistical 

significance of the muscle strength data was assessed with a two-way (time, leg) ANOVA with 

repeated measures and followed by a Holm-Sidak method to test for multiple pairwise comparisons.  

Separate multiple linear regression analyses were performed to determine if Pre serum 25(OH)D 

concentrations or the change in serum 25(OH)D concentrations from Bsl to Pre predict the immediate 

(i.e., Post) and persistent (i.e., 24-h, 48-h, and 72-h) deficits in muscle strength after a muscle-damaging 

event. Along with Pre serum 25(OH)D concentrations and the change in serum 25(OH)D concentrations 

from Bsl to Pre, body mass index and age were included as independent variables in the multiple linear 

regression model. Another multiple linear regression was performed to determine if circulating 

deviations in IFN-γ, calcium, PTH, or albumin predict serum 25(OH)D alterations. Prior to all multiple 

linear regressions, serum 25(OH)D, IFN-γ, and PTH concentrations were rank transformed in order to 

achieve normality. Selection of independent variables for the multiple linear regression models were 

based on their biological significance on the dependent variable.  

Secondary analyses consisted of a one (gender)-way ANOVA with repeated measures were 

performed to determine if a statistical difference existed between gender data (i.e., serum 25(OH)D, 

peak isometric force, peak isometric force difference between the CON and SSC legs at Post, 24-h,  

48-h, and 72-h, AST, ALT, albumin, calcium, iPTH, IFN-γ and IL-4). Statistical analyses were 

performed with SysStat software (SigmaPlot 10.0, SigmaStat 3.5, Chicago, IL, USA) and significance 

was set at a p < 0.05. Data presented as mean ± SEM, unless otherwise noted. 
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3. Results  

3.1. Subject Characteristics 

Fourteen non-smoking subjects (male, n = 9; female, n = 5; age, 32 ± 1 year; height, 173 ± 5 cm; 

body mass, 79.0 ± 4.8 kg; body mass index, 26.1 ± 0.9 kg/m
2
) participated in this study. No subjects 

reported being highly trained, actively competing at a professional or amateur level, or performing 

recreational activities on a daily basis or for extended durations (i.e., >60 min per session) consistently 

one year prior to study enrollment. 

3.2. Serum 25(OH)D Concentrations 

The average serum 25(OH)D concentration was 28.0 ± 2.5 ng/mL upon study enrollment  

(Figure 3). Upon enrollment, five subjects (36%) had a serum 25(OH)D concentration greater than  

32 ng/mL. Of the nine participants (64%) with serum 25(OH)D concentrations less than 32 ng/mL,  

three (21%) subjects had a concentration less than 20 ng/mL, and one (7%) of which had  

a concentration less than 10 ng/mL. 

Figure 3. Serum 25(OH)D concentrations (ng/mL). Serum 25(OH)D concentrations were 

significantly increased at Bsl (
1
 p < 0.05 vs. Pre, 48-h, and 72-h) and Post (

2
 p < 0.05 vs. 

Pre, 24-h, 48-h, 72-h, and 168-h). Data presented as mean ± SEM. 

 

Consistent with the seasonal regulation [75], serum 25(OH)D concentrations significantly  

(p < 0.05) decreased by approximately 10% from Bsl to Pre (Figure 2). Surprisingly, serum 25(OH)D 

concentrations significantly (p < 0.05) increased immediately after the intense exercise protocol. 

Within minutes, however, serum 25(OH)D concentrations subsequently decreased (p < 0.05) and 

leveled during the following days.  

3.3. Peak Isometric Force 

Peak isometric force significantly (p < 0.05) decreased immediately and remained significantly  

(p < 0.05) impaired several days after the exercise protocol (Figure 4). The immediate and persistent 

deficits in peak isometric force were apparent within the SSC leg across time (p < 0.05) and compared 
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the corresponding CON leg (p < 0.05). At 168-h, peak isometric force returned to Pre and  

CON leg values. 

Figure 4. Peak isometric force (N/kg). Single leg peak isometric forces were significantly 

(leg, time interaction, p < 0.05) different following the SSC protocol. Single-leg peak 

isometric forces were not significantly different within the control (CON) leg across time, 

but within the SSC leg, decreased immediately (
1 

p < 0.05 vs. Bsl, Pre, 24-h, 72-h, and  

168-h) and remained impaired several days (
2 

p < 0.05 vs. Bsl, Pre, and 168-h) after the 

intense exercise protocol. Peak isometric forces were also significantly (* p < 0.05) 

decreased in the SSC leg compared to those in the CON leg at Post, 24-h, 48-h, and 72-h. 

Data presented as mean ± SEM. 

 

3.4. Serum 25(OH)D Predicts Immediate and Persistent Muscular Weakness after a  

Muscle-Damaging Event 

Pre serum 25(OH)D concentrations significantly (p < 0.05) predicted muscular weakness (CON vs. 

SSC Leg) immediately (i.e., Post) but not 24-h after the intense exercise protocol (Table 1). Serum 

25(OH)D concentrations at Pre significantly (p < 0.05) predicted muscular weakness (CON vs. SSC 

Leg) at 48-h and 72-h after the intense exercise protocol (Table 1). 

In a sensitivity analysis, we repeated the multiple linear regression analyses (Table 1) regarding the 

prediction of muscular weakness following the intense exercise protocol. Excluding the Δ in Serum 

25(OH)D from the multiple linear regression analyses did not change the significance of the models 

reported in Table 1. However, excluding the Δ in serum 25(OH)D increased the p-value from 0.04 to 

0.08 for Pre serum 25(OH)D and decreased the model-statistical power from 86% to 59%. It is likely 

that the shift in significance and decrease in statistical power at 72-h after excluding the Δ in serum 

25(OH)D from the multiple linear regression model is due to the size of our sample. 
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Table 1. Higher serum 25(OH)D concentrations predict a lower deficit 
1
 in muscle strength 

immediately (i.e., Post) and days (i.e., 48-h and 72-h) after intense exercise. 

 Coefficient  

 Unstandardized (±SE) Standardized p 

Post 

Constant 6.23 (±4.12)   

Pre serum 25(OH)D −0.28 (±0.11) −0.68 0.03 

Δ serum 25(OH)D −0.11 (±0.10) −0.27 0.29 

Age −0.06 (±0.08) −0.17 0.50 

BMI −0.28 (±0.13) −0.57 0.06 

r
2
 = 0.51, adjusted r

2
 = 0.30 

24-h 

Constant 2.41 (±4.00)   

Pre serum 25(OH)D −0.17 (±0.10) −0.52 0.14 

Δ Serum 25(OH)D −0.04 (±0.10) −0.12 0.70 

Age −0.03 (±0.07) −0.13 0.67 

BMI −0.04 (±0.13) −0.10 0.77 

r
2
 = 0.24, adjusted r

2
 = 0.00 

48-h 

Constant 7.24 (±4.43)   

Pre serum 25(OH)D −0.28 (±0.12) −0.68 0.04 

Δ Serum 25(OH)D −0.14 (±0.11) −0.33 0.23 

Age −0.07 (±0.08) −0.23 0.40 

BMI −0.10 (±0.11) −0.29 0.33 

r
2
 = 0.45, adjusted r

2
 = 0.21 

72-h 

Constant 6.40 (±3.34)   

Pre serum 25(OH)D −0.21 (±0.09) −0.63 0.04 

Δ Serum 25(OH)D −0.15 (±0.08) −0.45 0.09 

Age −0.08 (±0.06) −0.29 0.26 

BMI −0.10 (±0.11) −0.26 0.36 

r
2
 = 0.52, adjusted r

2
 = 0.31 

1
 Peak isometric force difference between the CON and SSC legs at Post, 24-h, 48-h, and 72-h; Δ, Change in 

serum 25(OH)D from Bsl to Pre; BMI, Body mass index. 

3.5. Plasma AST and ALT 

Increases in circulating AST and ALT are indices of skeletal muscle damage [76,77]. Days after the 

exercise protocol, plasma AST (Figure 5A) and ALT (Figure 5B) concentrations were significantly 

(both p < 0.05) increased, thereby imply the presence of skeletal muscle damage. 
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Figure 5. Plasma aspartate aminotransferase (AST) (U/L) and ALT (U/L) concentrations. 

(A) Plasma AST was significantly increased at 72-h (
1 

p < 0.05 vs. Bsl). (B) Plasma ALT 

was significantly (
2 

p < 0.05 vs. Post) increased at 24-h, 72-h, and 168-h. Data presented as 

mean ± SEM. 

 

 

3.6. Serum Cytokine Concentrations 

Serum IFN-γ concentrations (Figure 6A) were significantly (p < 0.05) increased immediately after 

the exercise protocol. Although serum IL-4 concentrations were also elevated (Figure 6B), 

concentrations were not significantly different. Thus, IFN-γ was elevated while IL-4 was not 

significantly changed immediately after intense exercise. 

Figure 6. Serum IFN-γ and IL-4 concentrations (pg/mL). Serum IFN-γ concentrations  

(A) were significantly (
1 

p < 0.05 vs. 1-h, 48-h, and 72-h) increased at Post. Serum IL-4 

concentrations (B) were not significantly different. Data presented as mean ± SEM. 
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3.7. Plasma Calcium, PTH, and Albumin Concentrations 

Immediately following the exercise protocol (i.e., Post), plasma calcium (Figure 7A) and PTH 

(Figure 7B) concentrations were significantly (both p < 0.05) increased. At 1-h, calcium concentrations 

remained significantly (p < 0.05) increased and plasma PTH concentrations significantly (p < 0.05) 

decreased. Immediately following intense exercise, albumin concentrations significantly (p < 0.05) 

increased (Figure 7C). 

Figure 7. Plasma calcium (mg/dL), parathyroid hormone (PTH; pg/mL), and  

albumin (g/dL) concentrations. (A) Total plasma calcium concentrations were significantly 

increased at Post (
1 

p < 0.05 vs. Bsl, Pre, 24-h, 48-h, 72-h, and 168-h) and 1-h (
2 

p < 0.05 

vs. 24-h, 48-h, 72-h, and 168-h). (B) Plasma PTH concentrations were significantly 

increased at Post (
3 

p < 0.05 vs. Bsl, Pre, 1-h, and 72-h) and significantly decreased at 1-h  

(
4 

p < 0.05 vs. 24-h, 48-h, and 168-h). (C) Plasma albumin concentrations were 

significantly increased at Post (
5 

p < 0.05 vs. Bsl, Pre, 1-h, 24-h, 48-h, 72-h, and 168-h). 

Data presented as mean ± SEM. 

 

 

 

3.8. IFN-γ and Albumin Predict Serum 25(OH)D Changes 

Circulating IFN-γ increases predicted (p < 0.001) serum 25(OH)D decreases, while albumin 

increases predicted (p < 0.005) serum 25(OH)D increases (Table 2).  
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Table 2. Circulating albumin increases predict serum 25(OH)D increases, while IFN-γ 

increases predict serum 25(OH)D decreases. 

 Coefficient  

 Unstandardized (± SE) Standardized p 

Constant 75.99 (±6.32)   

Δ IFN-γ −0.60 (±0.09) −0.60 <0.001 

Δ iPTH 0.06 (±0.09) 0.06 0.48 

Δ Calcium 19.7 (±10.6) 0.19 0.07 

Δ Albumin 28.1 (±9.3) 0.32 <0.005 

r
2
 = 0.36, adjusted r

2
 = 0.33 

Δ, change from Bsl. 

3.9. Gender Differences 

In the secondary analysis investigating the difference between genders, serum 25(OH)D, IFN-γ,  

IL-4, PTH, AST, ALT, peak isometric force, and the difference in peak isometric force between the 

CON and SSC legs were not significantly different between males and females (data not shown). 

However, circulating calcium (males, 9.33 ± 0.06 vs. females, 9.09 ± 0.08 mg/dL) and albumin  

(males, 4.48 ± 0.05 vs. females, 4.16 ± 0.07 g/dL) concentrations were significantly (both p < 0.05) 

different between genders. 

4. Discussion 

In the present investigation, we provide new data identifying that muscular weakness immediately 

(i.e., Post) and several days (i.e., 48-h and 72-h) after intense exercise were inversely predicted by  

pre-exercise serum 25(OH)D concentrations. Additionally, IFN-γ increases predicted serum 25(OH)D 

decreases, while albumin increases predicted serum 25(OH)D increases. These unique findings 

establish the importance of IFN-γ and albumin on the regulation of serum 25(OH)D, and that the 

serum 25(OH)D concentration prior to exercise could be a determinant of muscular strength after 

intense exercise. 

The novel finding of the present investigation was the inverse association between pre-exercise 

serum 25(OH)D and both immediate and persistent muscular weakness after intense exercise.  

Pre-exercise serum 25(OH)D concentrations, however, did not predict muscular weakness 24-h after 

the intense exercise protocol, collectively suggesting a temporal sensitivity of skeletal muscle strength 

to vitamin D levels following muscular insult.  

Muscular weakness is a unique measure of muscle recovery because it spans the degenerative and 

regenerative events occurring at the molecular and cellular levels [44]. Furthermore, muscular 

weakness persists until repair is complete, suggesting that a faster recovery in skeletal muscle strength 

reflects a faster progression through the degenerative and regenerative events following muscular 

insult. In experimental rats, vitamin D treatment accelerated the recovery in muscular strength after 

injury [19]. Vitamin D treatment also increased serum 25(OH)D concentrations [19], which 

presumably, maintained substrate availability for the conversion of vitamin D to 1,25(OH)D and 

increased the expression (message and protein) of the vitamin D-receptor (VDR) [21]. Despite cell and 



Nutrients 2013, 5 1267 

 

 

experimental animal data supporting the therapeutic influence of vitamin D on the muscle recovery 

after muscular insult, results in human suggest otherwise. 

Contrasting with the results here, Ring et al. [55] reported that vitamin D status was not influential 

on muscular weakness after exercise. The reason for the conflicting reports could relate to different 

experimental protocols, including the muscle(s) or muscle group(s) exercised, damaged and/or tested, 

disparate contraction modalities (i.e., eccentric vs. eccentric-concentric contraction cycles), or the 

volume, duration and intensity of the exercise protocol. Additionally, the non-significant linear 

regression reported previously consisted of 2-d post isometric force and serum 25(OH)D concentration 

data [55]. Although we did not observe a significant difference 48-h after the intense exercise protocol, 

it is probable that serum 25(OH)D concentrations were modulated by intense-eccentric contractions [55], 

and consequentially, confounded the interpretation between vitamin D and muscular strength. To avoid 

the potential confounding influence of exercise in the present study, pre-exercise serum 25(OH)D 

concentrations were related to post-exercise muscle weakness.  

Consistent with the postulate that exercise modulates circulating vitamin D, we identify a transient 

25(OH)D increase in the circulation immediately after intense exercise. The serum 25(OH)D 

concentration increases immediately after the intense exercise protocol was preceded by an initial  

(i.e., Bsl to Pre) and followed by a second (i.e., Post to 1-h) decrease. The initial decrease is consistent 

with data demonstrating the serum 25(OH)D concentration response during the winter [75]. The 

second decrease, however, suggests that serum 25(OH)D is temporally sensitive to intense exercise. 

Interestingly, cytokine and protein shifts in the circulation could contribute, in part, to the observed 

25(OH)D fluctuations (see Table 2).  

Interferon-γ is an inflammatory cytokine that regulates vitamin D metabolism [60,61,78,79].  

In immune and endothelial cells, IFN-γ impairs CYP27A1 message and protein expression [80],  

and thereby implying its potential role of impeding 25(OH)D production. Furthermore, IFN-γ 

accelerates the conversion of 25(OH)D to 1,25(OH)D [60,61,78,79] by increasing 1αOHase  

expression [62,64,65,81,82]. Supporting the influence of IFN-γ on vitamin D metabolism in vivo, we 

illustrated previously that IFN-γ tends to inversely correlate with 25(OH)D and significantly correlates 

(positive) with 1,25(OH)D [59], suggesting 25(OH)D decreases and 1,25(OH)D increases with 

increasing IFN-γ in the circulation. Based on the results here and those reported elsewhere, we propose 

that IFN-γ contributes to the circulating 25(OH)D decrease by impairing the production and 

accelerating the catabolism of 25(OH)D. However, confirmation of the proposed hypothesis requires 

further investigation. 

Interleukin-4 is another inflammatory cytokine that has been implicated in the regulation of vitamin 

D metabolism. In human monocytes, IL-4 upregulated the message expression of CYP27B1 and the 

VDR [65]. Although message expression increased, IL-4 did not increase the activity of CYP27B1 [65]. 

Strikingly, IL-4 increased the activity of CYP24A1 and the conversion of 25(OH)D to 24,25(OH)D in 

monocytes [65]. These unique findings suggest that IL-4 could decrease 25(OH)D concentrations by 

accelerating catabolism. However, we were unable to detect a significant difference in IL-4 

concentrations prior to or following the intense exercise protocol. Thus, based on our findings, it is 

unclear if IL-4 contributes to the fluctuating serum 25(OH)D concentrations observed during the 

winter and following intense exercise. 
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Another unique finding of the present investigation was the prediction of serum 25(OH)D 

concentrations by albumin. Albumin is a plasma protein synthesized in the liver that maintains colloid 

osmotic pressure [83]. Following short-term, high intensity exercise, albumin increases in the 

circulation and expands blood volume [84–86]. In the circulation, albumin binds to vitamin D 

metabolites [87]. The predication of increasing 25(OH)D by albumin is plausibly the product of 

increased hepatic secretion of albumin and its binding to vitamin D in the blood. However, additional 

research investigating the influence of albumin on vitamin D concentration in the circulation is required.  

Calcium and PTH regulate circulating 25(OH)D concentrations. Low calcium concentrations in the 

blood stimulate the parathyroid gland to secrete PTH. The increase in PTH stimulates the conversion 

of 25(OH)D to 1,25(OH)D [88–90] and increases the circulating calcium. Increases in dietary and 

serum calcium increase the catabolism of 25(OH)D to 24,25(OH)D [91]. In this investigation, we 

found an increase in plasma calcium concentrations immediately following the intense exercise 

protocol that was resolved by the following day (Figure 7A). PTH concentrations displayed a transient 

fluctuation after (i.e., Post and 1-h) the intense exercise protocol (Figure 7B). Although vitamin D 

metabolism is regulated by calcium and PTH, neither the calcium or PTH predicted the deviation in 

serum 25(OH)D concentrations after intense exercise (Table 2). 

In addition to those discussed above, there are limitations to this study that should be considered 

with future investigations. First, we did not obtain skeletal muscle biopsies to assess local damage, 

vitamin D metabolites, or the enzymes involved with vitamin D metabolism. Second, we did not 

control fluid or dietary intake prior to, during, or following intense exercise. Third, it is unknown if the 

results here can be extrapolated to other inflammatory modalities. Fourth, calcium and albumin 

concentrations were significantly different between genders. Calcium and albumin concentrations, 

however, were within the recommended clinical reference ranges (calcium, 8.4–10.4 mg/dL; albumin, 

3.3–4.8 g/dL) for both genders, and therefore, it is unclear if this statistical difference is of 

physiological impact. Along these lines, serum 25(OH)D concentrations and peak isometric forces 

were not significantly different between male and female subjects as well. Next, this study consisted of 

14 subject’s total. Future investigations are encouraged to include larger sample sizes when 

investigating the potential influence of vitamin D on skeletal muscle strength after injury. Finally, it is 

unknown skeletal muscle damage or fatigue-related factors, or both, were contributing to muscular 

weakness after the imposed exercise protocol. However, it is noteworthy that circulating biomarkers of 

skeletal muscle damage, and specifically AST and ALT, were elevated concurrently with deficits in 

skeletal muscle strength during the days following the intense exercise protocol. Thus, these results 

tend to support the possibility of the presence of skeletal muscle damage. 

5. Conclusions and Implications 

Muscle weakness hinders millions of people worldwide every year and is mediated by a variety of 

conditions, including aging, disease, inactivity, limb immobilization, repetitive use, and intense or 

unaccustomed exercise. In the present investigation, we reveal that muscular weakness after an intense 

exercise bout is abrogated with increasing serum 25(OH)D concentration prior to exercise. However, 

this was apparent immediately and several days (2-day and 3-day), but not 1-day, after intense 

exercise. Additionally, IFN-γ and albumin predicted serum 25(OH)D concentration fluctuations, and 
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due on these fluctuations, we recommend caution when interpreting serum 25(OH)D concentrations 

immediately after intense exercise and/or during an acute inflammatory response. We conclude that 

maintaining an adequate serum 25(OH)D concentration could attenuate muscular weakness after 

intense exercise. Given the feasibility of increasing 25(OH)D concentrations in the blood, future 

research investigating the influence of diverse vitamin D interventions on the alleviation of muscular 

weakness after muscular insult are encouraged in humans.  
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