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Background: Population mental health surveillance is an important challenge limited by resource
constraints, long time lags in data collection, and stigma. One promising approach to bridge similar
gaps elsewhere has been the use of passively generated digital data.

Purpose: This article assesses the viability of aggregate Internet search queries for real-time moni-
toring of several mental health problems, specifıcally in regard to seasonal patterns of seeking out
mental health information.

Methods: All Google mental health queries were monitored in the U.S. and Australia from 2006 to
2010. Additionally, queries were subdivided among those including the terms ADHD (attention
defıcit-hyperactivity disorder); anxiety; bipolar; depression; anorexia or bulimia (eating disorders);
OCD (obsessive-compulsive disorder); schizophrenia; and suicide. A wavelet phase analysis was used
to isolate seasonal components in the trends, and based on this model, the mean search volume in
winter was compared with that in summer, as performed in 2012.

Results: All mental health queries followed seasonal patterns with winter peaks and summer
troughs amounting to a 14% (95% CI�11%, 16%) difference in volume for the U.S. and 11% (95%
CI�7%, 15%) forAustralia. These patterns alsowere evident for all specifıc subcategories of illness or
problem. For instance, seasonal differences ranged from7% (95%CI�5%, 10%) for anxiety (followed
byOCD, bipolar, depression, suicide, ADHD, schizophrenia) to 37% (95%CI�31%, 44%) for eating
disorder queries in the U.S. Several nonclinical motivators for query seasonality (such as media
trends or academic interest) were explored and rejected.

Conclusions: Information seeking on Google across all major mental illnesses and/or problems fol-
lowed seasonal patterns similar to those found for seasonal affective disorder. These are the fırst data
published on patterns of seasonality in information seeking encompassing all themajormental illnesses,
notable also because they likely would have gone undetected using traditional surveillance.
(Am J Prev Med 2013;xx(x):xxx) © 2013 Published by Elsevier Inc. on behalf of American Journal of Preventive
Medicine
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Introduction

Mental illness has one of the largest worldwide
disease burdens but receives the least amount
of funding per disability-adjusted life-year.1

Part of the challenge is the limited means of monitoring
population mental illness trends. Annual telephone
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urveys are the principle psychiatric sentinel,2 but given
respondents’ reluctance, because of stigma, cost, and time
constraints, mental health items are often limited or
omitted.3 For example, the Behavioral Risk Factor Sur-
eillance System included onlymajor depressive disorder
easures (Patient Health Questionnaire) in 2006, 2008,
nd 20104 at a collective cost ofmore than $21million.5 In
ddition, time lags betweendata collection anddata avail-
bility can last years, during which acute intervening
rends can be missed. In place of a running time series,
nvestigators ask respondentswhen their symptoms were
he worst.6 These prompts, however, lack precision and
potentially tap respondents’ cultural beliefs or recall
bias.7

Until now, the resources have not existed to monitor

continuous population interest inmental health problems.8
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One potential method is monitoring the Internet, the
world’s most relied-on health resource.9 Because of men-
al health’s complexity, stigma, and obstacles to care,
atients are likely to investigate their problems on-
ine.10,11 For instance, 20% reported searching formental
ealth information in 2000.12 As a result, these query

trends are suffıciently granular to judge mental health
information seeking as it changes day to day without the
barriers of stigma, high costs, time, or artifıcial prompts.
Monitoring Internet search queries could be especially

valuable to understanding seasonality in seeking infor-
mation on mental illness. Seasonal affective disorder
(SAD), a common mood disorder in which depressive-
like symptoms are exacerbated in winter’s low-light envi-
ronment, is one of themost studied health phenomena.13

Yet, very few studies have assessed how seasonality may
exacerbate other mental illnesses. In the only multi-
outcome study14 to date, bipolar disorder, depression,
eating disorders, and schizophreniawere stable across the
year among Dutch survey respondents.
These results, however, are inconsistent with studies

suggesting that bipolar disorder among Barcelonans,15

depression among U.S. children,16 eating disorders
among college students in Norway17 and outpatients in
apan,18 and fırst-episode cases of schizophrenia among
Australian men19 were lower during the summer. These
inconsistent fındings highlight how limited surveillance
(and resulting measurement error) can hamper research
agendas. This exploratory study investigated seasonal
patterns inmental health search queries to both highlight
their utility and help clarify the study of seasonality.

Methods
Health-related queries model influenza incidence,20–25 as well as
dengue,26 kidney stones,27 and methicillin-resistant Staphylococ-
cus aureus.28 Search query surveillance outside acute disease29–31

and inmental health, however, is rare.32–34 No studies to date have
monitored several specifıc mental illness–related queries or high-
lighted the implications of these data for mental health.

Query Selection

Mental health queries principally derive from primary (self-
diagnosis or treatment) and secondary (those connected to an
affected person) sources. Prior studies suggest that queries are
attributable to information seeking around incidence, recurrence,
or increased severity of mental illness.12 Data were downloaded
rom Google Trends (google.com/trends), the public database of
oogle queries. Initially, all mental health queries (identifıed using
oogle’s query category feature) were captured that included lan-
uage suggestive of mental health matters. Separately, all queries
ccurring in the mental health category that included the terms
dhd (attention defıcit-hyperactivity disorder); anxiety; bipolar;
depression; anorexia or bulimia (eating disorders);OCD (obsessive
compulsive disorder); schizophrenia; and suicide were subcatego-

rized into problem-specifıc categories. This approach, for example,
would categorize OCD symptoms, OCD test, or medications for
OCD as OCD-related, and the mean trend for these and all similar
terms as OCD queries.

Query Volume

Queries were normalized (relative search volume [RSV]) to the
period with the highest proportion of searches going to the focal
terms (e.g., RSV�100 is the period with the highest search propor-
tion for queries within a category, and RSV�50 is 50% of that
highest search proportion). This approach corrects for seasonal
differences or trending in all queries because of changing Internet
use, since weekly RSV estimates are scaled to all queries as a
proportion and then rescaled to changes in that proportion.35

Trends were downloaded for the entire U.S. and Australia.

Data Analysis

The continuous wavelet transform was used to identify the signif-
icance of and isolate the annual periodic component (seasonality)
of each time series, taking advantage of the temporal resolution
afforded by weekly query data. In contrast to regression or Fourier
decomposition, thewavelet allows examination of the intensity and
timing of periodic seasonality and isolation of specifıc seasonal
components of the original time series over time.Waveletmethods
are robust to trending and noise, two common time-series analysis
problems.36 For a comprehensive analytic treatment of the wavelet
transform, see Torrence et al.37; for practical examples, see Gren-
ell38 and Johansson.39

The annual seasonal component of each time series was isolated
in order to examine the timing; amplitude (or “magnitude”); and
signifıcance of any seasonality. The phase angle (the angular posi-
tion along the sinusoidal trajectory from �180° to 180°, trough to
trough) of the isolated serieswas calculated in order to estimate and
compare timing of peaks and valleys in seasonal trends across
nations and years. A difference in phase of 180° between two series
indicates that they are completely out of phase (e.g., peaks in the
U.S. series correspond to troughs in the Australian series), and a
difference of 0° indicates the series are in phase (e.g., peaks in the
OCD series in 1 year correspond to peaks in other years). To
quantify the magnitude of seasonal peaks/troughs, a comparison
was made of the mean search volume in summer months (June,
July, and August in the U.S.; December, January, and February in
Australia) to the mean search volume in the winter months.40

Results
Mental health queries across all illnesses/problems had
pronounced peaks and troughs in theU.S. andAustralian
time series (Figure 1A). The annual component of the
wavelet transformation isolated this seasonality (Figure 1B),
detecting that mental health queries in the U.S. were
almost entirely (180°) out of phase with Australia, mean-
ing queries followed similar trends but 6months different
in their timing (Figure 1C), and this difference persisted
over several years (Figure 1D). However, framing these
same data as daylight seasonal cycles suggested that query
peaks and troughs were consistent in the winter and
summer, respectively, and this pattern was nearly identi-

cal between nations. The magnitudes of these patterns
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were also very similar between nations. For instance, all
mental health queries in the U.S. and Australia were
about 14% (95% CI�11%, 16%) and 11% (95% CI�7%,
5%) higher in winter than summer.
Problem-specifıc queries showed similar seasonality
etweennations (Figure 2). Consistencies in the timing of
hanges between theU.S. andAustraliawere strongest for
DHD (161°) and at their weakest for eating disorders
106°). The intensity of these seasonal patterns was also
imilar between nations. For instance, bipolar queries
ere 16% (95% CI�12%, 20%) versus 17% (95%
I�10%, 24%) higher in winter than in summer for the
.S. and Australia, respectively. The absolute difference
etween nations was less than 3% for half of the out-
omes, including ADHD, depression, and OCD.
Over years and within nations, ADHD, bipolar,

chizophrenia, and eating disorder queries showed little
ifference in the timing of their seasonality. Mean phase
ifferences across years were smallest for ADHD and
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Figure 1. All Google queries regarding mental health, U.S
chizophrenia queries in the U.S. at �7.6° (95% e

Month 2013
CI��8.9°,–6.4°) and 9.0°
(95% CI�7.6°, 10.4°),
corresponding to only a
7–10 days difference in
the timing of changes in
query trends from year to
year. In Australia, bipo-
lar and schizophrenia
queries had the smallest
mean phase differences
at 0.6° (95% CI�–1.9°,
3.1°) and 8.1° (95%
CI�7.2°, 8.9°), or about 1
and 8 days difference in
the timing of changes in
query trends from year to
year.
The magnitude of query

seasonality ranked largest
to smallest was for: eating
disorders, schizophrenia,
ADHD, suicide, depres-
sion, bipolar, OCD, and
anxiety; it was largely
consistent across na-
tions. For instance, eat-
ing disorder queries
(“bulimia” and “anore-
xia”) had the largest sea-
sonal difference (winter/
summer) of 37% (95%
CI�31%, 44%) in the
U.S. and 42% (95%

I�30%, 51%) in Australia. The intensity of seasonal
ifferences was also very high for schizophrenia: 37%
95% CI�33%, 41%) in the U.S. and 36% (95% CI�31%,
2%) inAustralia. The smallest differenceswere observed
or anxiety at 7% (95% CI�5%, 10%) and 15% (95%
I�10%, 19%) in the U.S. and Australia, respectively.
It is important to rule out nonclinical seasonal expla-
ations for seasonal peaks and troughs, particularly me-
ia and academic motivations. Some basic investigation
nd logic does so. News mentioning schizophrenia, for
xample, was sometimes greater in the summer thanwin-
er (e.g., 572 stories in the summer of 2009 compared to
10 in the winter of 2009–2010 using a count of Google
ews archives), and on average, differences were mini-
al across mental health. For the current study, it was
ssumed that search sessions are iterative and that during
he course of an online investigation a searcher would
nclude a query with a mental illness root term. How-
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(e.g., hallucination que-
ries compared to schizo-
phrenia queries), the
patterns were also sea-
sonal and, at face value,
the former appeared
likely to be unrelated to
academic interest.

Discussion
The current results suggest
that monitoring queries
can provide insight into
national trends on seeking
information regarding
mental health, such as sea-
sonality. Given their rela-
tively anonymous nature,
instantaneous availability,
and the cost-effective
manner by which the data
are investigated, query
trends have potential as an
important adjunct to tra-
ditional surveillance.

Implications for the
Study of Seasonal
Variation in
(Mental) Health
There has been limited
theoretic development
regarding seasonality in
mental health because
the data to inform this
thinking have been lim-
ited. The current analy-
ses indicate a consistent
seasonality in patterns of
mental health information–seeking, which may be useful
in ongoing research into the biologic, environmental and
social pathways influencing mental health, as reflected in
these trends.
In the realm of biology, the prevailing theory regard-

ing SAD is based on the retinal–suprachiasmatic–
pineal–melatonin axis.41 Environmental factors, such as
changes in daylight hours, influence the circadian system
and invigorate physiologic irregularities in the body that
affect mood.42 It is possible that similar mechanisms af-
ect the trends observed in the current study on overall
nd illness-specifıc mental health information seeking.
lternatively, vitamin D defıciencies are known to play
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Note: Each wavelet plot by prob
ADHD, attention deficit hyperact
role in affective disorders43 and mediation of brain
reactions,44–46 with more-intense sunlight promoting
itamin D absorption.47 A recent link between vitamin D
defıciencies and the severity of pre-existingmental health
problems43 is interesting to consider in light of the sea-
onal trends described here.
In the environmental realm, omega 3 consumption is
igher in the summer and lowest in the winter.48 Omega 3

defıciency is associated with depression, bipolar disorder
and schizophrenia,49 which may be related to the peaks
and troughs observed in the current study. In the social
realm, longer summer days create opportunities for social
engagement, a well-known health emollient,50 and thus
ay contribute to the seasonality in mental health inqui-
ies.51 Summer also allows for outdoor exercise, and
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improved mental health52; so this may contribute also
o the seasonality of mental health–related Internet
earches. The current results cannot tease out the eti-
logy of search query behavior; they do, however, pro-
ide information that may be useful in further hypoth-
sis testing and mechanist formulations.

Implications for Mental Health Treatment
A major challenge in mental health is how to not only
assess but also treat mental illness among individuals
who do not present for treatment or cannot be reached
with telephone surveys.53 The Internet is a stigma- and
cost-reducing venue to help screen and treat those who
search for but may not bring problems to the attention
of their clinicians. Internet-based treatment programs
show promise54; however, many search engine results
re of questionable quality.55 Advertisements on
earch engines to evidence-based programs may link
earchers to the best websites. This approach may be
specially important for early detection and prevent-
ng more severe or opportunistic problems.56 Moni-
oring queries also may make terrestrial care more
esponsive. Managers can deliver more resources and
rovide additional screening in the winter based on the
urrent results, as well as monitor trends for other
cute needs. This type of data–practice integration is
onsistent with recent calls for mental health preven-
ion and treatment.57,58

Limitations
Although the current results contain some compelling
fındings, queries are not a replacement for conven-
tional surveillance. Because queries are analyzed at the
population level, they cannot capture demographic
profıles like traditional sentinels. There is also a unique
validation challenge, as suffıciently granular (daily or
weekly) criteria are not available for comparison of
queries for some rare illnesses. Thus, seeking informa-
tion on Google may not correspond to actual mental
illness. Yet, nearly all age-by-demographic population
categories consume some online health informa-
tion,59,60 suggesting that query trends may be indica-
ive of population changes in information seeking.
till, changes among resource-poor populations
reatly affected by mental illness are not captured,
ecause these groups may not have Internet access.61

Query archives presently lack the geographic resolu-
tion to make inferences about information seeking in
less populated areas.

Directions for Future Research
Monitoring queries is an instantaneous, localizable,

and cost-effective method of collecting large amounts

Month 2013
f data that can be reasonably assumed to correspond
ith population mental health information seeking.
his low-cost and naturalistic method addresses two
rimary challenges facing mental health. It can pro-
uce information for researchers studying the bio-
ogic, environmental, and social pathways influencing
ental illness. Further, it has potential usefulness for
ublic health and other offıcials attempting to under-
tand broad patterns of mental illness. If additional
tudies can validate the current approach by linking
linical symptoms with patterns of search queries (be-
ond general information seeking), this method may
rove essential in promoting populationmental health.
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