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Vitamin D: Health panacea or false prophet?
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Vitamin D deficiency, diagnosed when the serum 25-hydroxyvitamin D (25-OHD3) concentration is
less than 20 ng/mL, has joined vitamin A deficiency as two of the most common nutrition-
responsive medical conditions worldwide. There have been more scientific articles published
about vitamin D in the 21st century than about any other vitamin, reflecting the massive expansion
of the field of vitamin D research. Adequate vitamin D status has been linked to decreased risks of
developing specific cancers, including cancers of the esophagus, stomach, colon, rectum, gall-
bladder, pancreas, lung, breast, uterus, ovary, prostate, urinary bladder, kidney, skin, thyroid, and
hematopoietic system (e.g., Hodgkin’s lymphoma, non-Hodgkin’s lymphoma, multiple myeloma);
bacterial infections; rheumatoid arthritis; Crohn’s disease; periodontal disease; multiple sclerosis;
asthma; type 2 diabetes; cardiovascular disease; stroke; peripheral artery disease; hypertension;
chronic kidney disease; muscle weakness; cognitive impairment; Alzheimer’s disease; clinical
depression; and premature death. On the other hand, inadequate vitamin D status during human
pregnancy may be associated with increased risk for the development of type 1 diabetes in the
offspring. However, this point of view may be excessively optimistic. There also is evidence that
despite the current heavy reliance on serum 25-OHD3 concentration for the diagnosis of an
individual’s vitamin D status, local tissue vitamin D intoxication may be present in individuals with
much lower serum 25-OHD3 concentrations than are currently appreciated. Only rarely are the
symptoms of local tissue vitamin D intoxication associated with vitamin D status or intake. An
individual’s serum 25-OHD3 concentration may appear to be “low” for reasons totally independent
of sunlight exposure or vitamin D intake. Serum 25-OHD3 concentration is only poorly responsive
to increases in vitamin D intake, and the prolonged routine consumption of thousands of inter-
national units of vitamin D may interfere with the regulation of phosphate homeostasis by
fibroblast growth factor-23 (FGF23) and the Klotho gene product, with consequences that are
detrimental to human health. In light of these counterbalancing observations, curbing excessive
enthusiasm for universally increasing vitamin D intake recommendations may be in order.

� 2013 Elsevier Inc. All rights reserved.
Introduction

There have been more scientific articles published about
vitaminD in the21st century than about anyothervitamin (25724
listed in MedLine between January 1, 2000 and April 30, 2012),
reflecting themassive expansionof thefield of vitaminD research.
A recognized leader in this field, Michael F. Holick, Ph.D., M.D., has
published innovative studies that have inspired hundreds of
researchers around the globe to join the quest to identify and
understand the roles of vitamin D in subcellular, cellular, tissue,
and organ physiology, and human nutrition and nutritional
therapeutics. This storm of scientific activity has been collated
ll rights reserved.
and summarized in the second edition of Dr. Holick’s compre-
hensive textbook, Vitamin D: Physiology, Molecular Biology, and
Clinical Applications (Humana Press, 2010). As Dr. Holick explains,
vitaminDdeficiency, diagnosedwhenblood25-hydroxyvitaminD
(25-OHD3) concentration is less than 20 ng/mL, has joined
vitamin A deficiency as two of the most common nutrition-
responsive medical conditions worldwide.

With classical clinical expression as poor skeletal development
andboneand joint deterioration, vitaminDdeficiencyoftenbegins
with inadequate exposure to sunlight and is compounded by
insufficient consumption of naturally occurring vitamin D and its
precursors [1,2]. According to D. Holick, the biochemistry of
vitaminDwithin thehumanbodydrives itsphysiologyandensures
a wide margin of safety. He and his colleagues cite evidence that
supports the argument that the chronic daily intake of 10 000 IU of
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vitamin D by adults in the absence of significant exposure to
sunlight approximates the daily production of vitamin D in
response to full-body exposure to sunlight and does not alter
whole-body calcium metabolism or produce kidney stones and
therefore is safe. In practice, Dr. Holick recommends adult daily
vitamin D intakes of 1000 IU to 2000 IU, although he considers 10
000 IU to be completely safe for long-term daily consumption.
Dr. Holick also recommends the therapeutic use of much larger
amounts of vitamin D in the adjunctive treatment of several
diseases that impair vitamin D absorption or utilization, including
the nephritic syndrome, chronic renal disease, hyperparathy-
roidism, and granulomatous disorders in which the conversion of
25-OHD3 to 1,25-dihydroxyvitamin D (1,25-(OH)2D3) by CYP27B1
(formerly 1a-hydroxylase) is accelerated within macrophages.

The diversity of vitamin D target genes is almost universal and
the effects of vitamin D–induced gene activation affect nearly
every cell in the body [3–5]. As explained by Carsten Carlberg of
the University of Kuopio (Kuopio, Finland), the vitamin D
receptor is a ligand-inducible transcription factor with target
genes that are involved in cellular metabolism, bone formation,
cellular development, and inflammation [6]. The ability to
convert 25-OHD3 to 1,25-(OH)2D3 is not a strict prerequisite for
vitamin D responsiveness; for example, human adipocytes lack
CYP27B1 activity yet express the vitamin D receptor (VDR), with
vitamin D response element (VDRE)-responsive genes sup-
pressing the expression of uncoupling protein-2 and the induc-
tion of futile energy cycling [7,8]. In contrast to the many
beneficial cellular responses to vitamin D, many of the genes
containing VDRE are involved in dysregulated pathways that can
produce cancer, osteoporosis, or the metabolic syndrome [6].

According to Dr. Holick and his colleagues, the extrarenal acti-
vation of vitamin D links vitamin D status to many aspects of
human health. The discovery of extrarenal conversion of 25-OHD3
to 1,25-(OH)2D3 by CYP27B1 inmany tissues and of tissue-specific
regulation of CYP27B1 expression is receiving increasing emphasis
in current medical research [9]. For example, the roles played by
extrarenal CYP27B1 activity and vitamin D in the differentiation
and regulation of the immune system and in human defense
mechanisms against tuberculosis have been examined in detail
[10]. In another example of the critical roles played by tissue-
specific regulation of local vitamin D activation, the human colo-
nocyte expression of CYP27B1 activity suggests that the induction
of this activity by dietary factors, coupled with concurrent
suppression of vitamin D-deactivating CYP24A1 (formerly 25-
OHD3-24-hydroxylase), may be truly chemopreventive by inhib-
iting the uncontrolled proliferation of human colonic epithelial
cells while promoting their differentiation and normal apoptotic
death [11]. In contrast, overexpression of CYP24A1 and of several
VDR corepressors along with the cosuppression of CYP27B1 and
the VDR may explain the resistance to vitamin D exhibited by
human colon cancer cells [12].

The interactions between exposure to sunlight, vitamin D
status, and cancer have been receiving serious examination in the
post melanoma-panic era. It is now established that adequate
vitamin D status is linked to decreased risks of developing specific
cancers, including cancers of the esophagus, stomach, colon,
rectum, gallbladder, pancreas, lung, breast, uterus, ovary, prostate,
urinary bladder, kidney, skin, thyroid and hematopoietic system
(e.g., Hodgkin’s lymphoma, non-Hodgkin’s lymphoma, multiple
myeloma) [3–5,13–34]. Similar data associate adequate vitamin D
status with reduced risks for bacterial infections, rheumatoid
arthritis, Crohn’s disease, periodontal disease, multiple sclerosis,
asthma, type 2 diabetes, cardiovascular disease, stroke, peri-
pheral arterydisease,hypertension, chronickidneydisease,muscle
weakness, cognitive impairment, Alzheimer’s disease, clinical
depression, and premature death [3–5,13–16,18–21,35–75]. Emer-
ging data also link inadequate vitamin D status during human
pregnancy with increased risk for the development of type 1 dia-
betes in the offspring [76].

Many of these putative benefits have been deduced from
observed relationships between vitamin D intake, sunlight
exposure, and the serum 25-OHD3 concentration. However,
according to a series of lectures presented by H.L. Sam Queen,
M.S., of the Institute for Health Realities, Colorado Springs, CO,
USA (available from http://www.healthrealities.com), although
a direct correspondence between vitamin D exposure and serum
25-OHD3 concentration does appear to characterize healthy
individuals, an individual’s serum 25-OHD3 concentration may
be low for reasons other than a lack of exposure to vitamin D.
According to Queen, the existing data contain a perplexing
anomaly: as many as 40% of men andwomen over the age of 85 y
exhibit a serum 25-OHD3 concentration consistent with a diag-
nosis of long-standing vitamin D deficiency (serum 25-OHD3
concentration <20 ng/mL) [77]. Queen suggests that, taken
together, these reports indicate that there may be an age at
which vitamin D deficiency (as currently defined) may be life-
sustaining, not life-threatening.

The explanation for this apparent paradox may be found in the
emerging data regarding the interactions between the Klotho gene
product and osteocyte-secreted FGF23 [78–82]. The Klotho gene
product, a transmembrane protein with local glucosidase and
hypocalciuric activities synthesized locally within renal tissue
[79,83–86], is a requiredcoactivatorof FGF23 [82,87,88]. The rate of
FGF23 secretion is correlated with the serum 1,25-(OH)2D3
concentration (and, therefore, with the serum 25-OHD3 concen-
tration) [89,90]. Klotho gene product binding to the renal tubule
FGF receptor (FGF receptor-1; FGFR1) increases the affinity of the
receptor for FGF23 [83,85,91,92]. Coactivation of renal tubule
FGFR1 by the Klotho gene product and FGF23 produces inhibition
of renal reabsorption of phosphate via suppression of the acti-
vity of sodium-phosphate cotransporter type IIa on the apical
brush-border membrane of renal tubules [82,86,88,93,94]. FGFR1
activation also produces concurrent down-regulation of renal
CYP27B1 [95]andup-regulationof theexpressionofCYP24A1 [88],
reducing the renal content of active 1,25-(OH)2D3 and reducing
further the efficiency of renal phosphate reabsorption [78,79,
82–84,88–90].

Klotho-deficient mice develop hypervitaminosis D at an early
age and exhibit increased incidence of hyperphosphatemia, oste-
oporosis, ectopic calcifications, arteriosclerosis, hair loss, dermal
thinning, emphysema, pituitary atrophy, infertility, and premature
death [79,80]. In contrast, geneticallyalteredmice thatoverexpress
theKlotho gene exhibit increased resistance to oxidative stress and
prolonged lifespan [79,81]. FGF23-deficient animals also develop
hypervitaminosis D, hyperphosphatemia, and ectopic calcifica-
tions [96–98], while in humans early kidney disease is associated
with decreased expression of the Klotho gene product, abnormally
elevated serum FGF23 concentrations (that further down-regulate
the Klotho gene) and hypovitaminosis D [99], hypophosphatemia
[100,101], secondary hyperparathyroidism [99], cardiac dysfunc-
tion [102,103], and premature death [103,104].

Interestingly, when an across-species comparison of average
longevity and average serum phosphate concentration was con-
ducted, itwas foundthat theaverage longevityper species (inyears)
was significantly inversely correlated with the average within-
species serum phosphate concentration [78], suggesting (accord-
ing to Queen) that excessive 1,25-(OH)2D3-induced stimulation of
FGF23 secretion may not be consistent with maximum longevity.
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In humans, the only known influences onKlotho expression are
age and 1,25-(OH)2D3. Among the elderly, Klotho gene expression
appears to become increasingly sensitive to negative feedback
suppression by 1,25-OH2D3 [79]. In addition, genetic polymor-
phisms, toxic insults, autoimmunedisease, graduallyaccumulating
oxidative damage, or chronic mineral imbalances may result in
dysfunctional vitamin D receptors with reduced affinity for 1,25-
OH2D3 and reduced ability of 1,25-OH2D3 to induce the activity of
renal CYP24A1, allowing 1,25-OH2D3 concentration to rise while
relieving some of the negative feedback inhibition of the conver-
sion of 25-OHD3 to 1,25-OH2D3 [105,106]. When an excess of
dietary vitamin D is present, elevated systemic and local concen-
trations of 1,25-OH2D3 can occur.When an excess of 1,25-OH2D3 is
present within a tissue, local hypervitaminosis D can be produced.
In the mildly compromised kidney, local hypervitaminosis D can
produce hyperphosphatemia, triggering increased FGF23 secre-
tion, whereas elevated 1,25-OH2D3 concentration can inhibit
hepatic 25-hydroxylation of ingested vitamin D, resulting in
concurrent renal hypervitaminosis D and low serum 25-OHD3
concentration [100]. A desire to establish a higher serum 25-OHD3
concentration may encourage undue clinical reliance on poten-
tially counterproductive dietary supplementation with increasing
amounts of vitamin D.

In such a scenario, local vitamin D toxicosis can occur and
produce renal atrophy and calcification that may go unrecog-
nized until clinical signs of “idiopathic” renal disease appear
[107]. Although Queen acknowledges that vitamin D plays
important preventive and therapeutic roles in supporting human
health, he cautions that renal and cardiovascular toxicity and
increased mortality can be caused by covert physiologic vitamin
D toxicosis [107]. For example, in the presence of age-associated
reduction in Klotho expression, prolonged supplementationwith
large Klotho-suppressing amounts of vitamin D may produce
1,25-OH2D3 excess and low serum 25-OHD3 concentration while
increasing the risk of the expression of an aberrant FGF23 gene
product that fails to regulate renal phosphate reabsorption,
resulting in hyperphosphatemic tumoral calcinosis with carotid
artery calcification [108,109].

Queen also expresses concerns that the current interpretation
of vitamin D requirements and contributions to human health
results from an excessive reliance on epidemiologic evidence
(the science of association) that has become dissociated from the
basic science of vitamin D and mineral homeostasis. He suggests
that rather than reflecting inadequate exposure to vitamin D,
a low serum 25-OHD3 concentration may reflect, in some indi-
viduals, a set of internal homeostatic attempts to correct an
excess of free calcium ions and therefore, viewed from a basic
science perspective, a strong argument can be made for the
conclusion that in some individuals, a low serum 25-OHD3
concentration results from disease rather than produces disease.

In cautioning against excessive enthusiasm for increasing
vitamin D intake recommendations, Queen emphasizes the
following key points:

� Despite the current heavy reliance on serum 25-OHD3
concentration for the diagnosis of an individual’s vitamin D
status, local tissue vitamin D intoxication may be present in
individuals with much lower serum 25-OHD3 concentra-
tions than are currently appreciated.

� Only rarely are the symptoms of local tissue vitamin D
associated with vitamin D status or intake.

� A serum 25-OHD3 concentration may appear to be “low” for
reasons totally independent of sunlight exposure or vitamin
D intake.
� Serum 25-OHD3 concentration is only poorly responsive to
increases in vitamin D intake.

� The prolonged routine consumption of megadoses of
vitamin Dmay interferewith Klotho and FGF23 regulation of
phosphate homeostasis with consequences that are detri-
mental to health.

The recent rush to elevate serum 25-OHD3 concentrations
universally may benefit from a brief pause to reflect on the actual
merits (and potential pitfalls) of doing so. Despite the detailed
and persuasive data presented by Holick and his colleagues,
reconsideration of the paradigm that a single or even a few
biochemical markers can provide meaningful insight into the
health status of an individual may be appropriate. This may be an
area in which the modern reductionist approach to medical
nutrition can benefit from an organismal reassessment.
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