

Acta Microbiologica et Immunologica Hungarica

DOI:

10.1556/030.2025.02663 © 2025 The Author(s)

Elucidating the interplay between gut microbiota and autism spectrum disorder. New insights and therapeutic perspectives

Maria Mavridou¹, Maria Anna Kyriazidi², Sotiris Varlamis¹, Petros Skepastianos¹, Stella Mitka¹, Vasileios Papaliagkas¹ and Maria Chatzidimitriou¹* ⁶

Received: June 26, 2025 • Accepted: August 1, 2025

REVIEW ARTICLE

ABSTRACT

Autism is a complex neurodevelopmental disorder characterized by a wide range of cognitive, behavioural and communication impairments. Children with autism have a distinctive and underdeveloped range and volume of gut bacteria (microbiome) which is often not related to their diet. Evidence gathered throughout years of research suggests that the pathway between gut bacteria and the central nervous system, referred to as the gut-brain axis (GBA), has a profound effect on the social behaviours of autistic children. The gut microbiome has been shown to play a vital role in the manifestation of autism spectrum disorder (ASD) symptoms as gut dysbiosis - an imbalance in the gut microbiome affects brain development through processes regulated by the neuroendocrine, neuroimmune and autonomic nervous systems. Although dysregulation of the gut microbiome and subsequent disruption of GBA are thought to contribute to the pathogenesis of autism, the underlying mechanisms and the extent to which the microbiome contributes to neurodevelopmental disorders remain unclear. In this review, we focus on understanding the complex and multidirectional interplay between gut microbiota and ASD based on evidence mounted over the years. Furthermore, we examine how genomics, metabolomics and microbiome components can be integrated to unravel this multifactorial disorder. The ability to understand the underlying mechanisms involved in ASD will pave the way for future advancements in therapy and treatment.

KEYWORDS

autism, gut microbiome, gut-brain axis

INTRODUCTION

Autism Spectrum Disorder (ASD) is a complex group of neurodevelopmental conditions characterized by a wide range of impairments including altered social communication and interaction as well as the presence of restricted, repetitive patterns of behavior, interests, or activities.

The prevalence of ASD in children and adolescents has been increasing in recent years, with latest estimates showing that approximately 2% (from 1% to 3%) of children in the United States being diagnosed with ASD [1, 2]. These variations in the diagnosis of ASD are attributed to geographical, socioeconomic, and methodological factors [3–5], with socioeconomic factors being central in the detection and diagnosis of ASD [4]. In terms of gender, males are affected more frequently than females by the condition [6]. Although ASD has been well defined in terms of behavioural diagnosis, what causes ASD still remains a mystery. What has been well understood from extensive research to date is that the etiology of ASD is

*Corresponding author. E-mail: mchatzid952@gmail.com

¹ Department of Biomedical Sciences, Faculty of Health Sciences, International Hellenic University, 57400, Thessaloniki, Greece

² Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece

multifactorial involving a complex interplay of genetic and environmental factors that contribute to its manifestation [7–9]. To add to the complexity of the multifaceted nature of ASD, the gut microbiome has been drawing researcher's attention in the last decade regarding its role in the development and etiopathogenesis of ASD. Mounting evidence to date highlights the complexity of ASD with the involvement of the gut microbiome, further suggesting a bidirectional communication between the central nervous system and the gastrointestinal tract, known as the microbiota-gut-brain axis [10–12].

GENETIC AND ENVIRONMENTAL FACTORS CONTRIBUTING TO ASD

Extensive genetic research has highlighted the importance of genetic factors in the development of autism. These include, copy number variations, rare common variants and de novo mutation underlying ASD etiology [13].

Genome-wide association (GWAS) and genetic studies have identified common genetic variants; mainly single nucleotide polymorphisms (SNPs), to be associated with autism [14–16]. In ASD cases, SNPs collectively account for a substantial proportion (estimated at 40–60%) to be of heritable risk [17, 18]. Multiple investigations using large-scale sample sizes have demonstrated that the cumulative burden of these common variants contributes to ASD susceptibility, even though the effect sizes of individual loci remain modest. It remains unclear still how common variants interact and aggregate to increase disease liability [17, 18]. The presence of SNPs in various genes, including those involved in synaptic function, has been associated with increased risk for developing autism [19, 20].

Large-scale meta-analyses have been particularly pivotal in identifying risk loci at genome-wide significance levels. One of the latest meta-analysis conducted, involved over 18,000 ASD cases and almost 28,000 controls, culminating in the identification of five genome-wide significant loci [16]. In another similar study, novel candidate genes such as DDHD2 were found to be implicated in the etiology of ASD [21], underscoring the value of large, genetically informative cohorts in uncovering the subtle contributions of common variants. These studies illustrate that common genetic variation, while individually modest in effect, collectively contributes essential information about the biological mechanisms underlying ASD.

The heritability component linked to ASD can be further demonstrated in twin studies with heritability estimates as high as 0.9 in twin studies [22]. Siblings of individuals with ASD are at a substantially higher risk, being approximately 25 times more likely to be diagnosed compared to the general population [22].

Apart from the heritability component, a number of large-scale whole-exome sequencing studies have demonstrated that rare de novo single nucleotide variants (SNVs) and copy number variations (CNVs) occur at a higher rate in ASD probands compared to unaffected siblings,

supporting a strong link between these mutations and autism risk [23–25]. In these studies, de novo loss-of-function and missense mutations in genes with critical roles in synaptic formation and neuronal development have been identified repeatedly in affected individuals, highlighting their importance in neurodevelopment [25, 26].

Additionally, the co-occurrence of multiple extreme de novo variants in affected individuals compared to controls is more prevalent, as well as in patients with ASD who had significantly lower IQs [27]. This suggests that the cumulative effect of multiple rare variants may exacerbate disease severity [25]. Studies have shown that approximately 49 genes show higher frequencies of disruptive de novo variants in individuals ascertained to have severe neurodevelopmental delay, whereas 53 show higher frequencies in individuals ascertained to have ASD [28]. Furthermore, the observed difference in the rate of de novo mutations between males and females with ASD may be explained either by a protective effect conferred by genetic factors in females or by an ascertainment bias, whereby affected females tend to exhibit more severe phenotypes compared to affected males [29].

Although a number of neurodevelopmental genetic disorders such as epilepsy, obsessive compulsive disorder (OCD) and Angelman syndrome (AS) co-occur with ASD [30-32], single gene mutations and copy number variations do not add up to the majority of ASD cases. In fact, when found, genetic alterations are usually de novo rather than inherited [33]. It has become apparent that polygenetic influences underly the etiology of ASD whereby changes in multiple genes might add up to a threshold that disrupts cellular pathways [34]. A selected overview of major genetic findings associated with ASD and their prevalence in ASD patients is summarized (Table 1). Despite the strong contribution of genetics to ASD, it is clear that genes alone cannot account for all cases. It is now well established that environmental factors play a crucial role in modulating the risk of developing ASD through their interactions with various genes [35]. Some of these environmental factors that are associated with an increased risk of ASD include prenatal exposure to infections, maternal immune activation, exposure to certain medications during pregnancy, and exposure to environmental toxins [36]. Exposure to environmental toxicants during prenatal development may impact brain development, thus altering cognitive, social, and motor skills [37]. Prenatal exposure to thalidomide and valproic acid has been shown to elevate ASD risk, while supplementation with folic acid during pregnancy may mitigate risk in patients exposed to antiepileptic drugs [38].

In addition, advanced parental age, assisted reproductive technologies, nutritional factors, pre-mentioned maternal infections and diseases, environmental chemicals and toxicants, and medications, as well as other conditions have also been described as high-risk for developing ASD [39]. The environment encompasses a broad range of non-genetic factors, spanning from viruses to medications and from chemical or physical agents to social and cultural influences [40]. It is therefore important not to focus on the "genes of autism," which implies determinism, but to study instead the

Table 1. Summary of evidence for selected ASD candidate genes (and/or regions), their association with ASD and their prevalence/effect size across ASD patients

Genetic Type/Gene or Region	Association with ASD	Estimated Prevalence/Effect Size	Reference(s)
Twin studies (heritability)	Monozygotic concordance rate significantly higher than dizygotic twins	Heritability estimates range from ~64% to 91%.	[22, 44–53]
Rare de novo protein truncating variants (PTVs)/SNVs	High-impact variants disrupting gene function	Found in ~8%–10% of ASD probands and are rare in unaffected individuals.	[28, 48, 51, 53–56]
Copy-number variants (CNVs) (e.g. 16p11.2 deletion/duplication, 15q11-q13 duplication, 22q11.2 deletion)	Sensory and synaptic deficits; strong ASD risk	CNVs in ~10−20% of ASD cases; specific CNV syndromes in ~1%.	[46, 48, 53, 57–60]
Dup15q syndrome (15q11.2-q13.1 duplication)	Most common known genetic cause of syndromic ASD; associated epilepsy, intellectual disability	Accounts for \sim 1–3% of all ASD cases.	[61–64]
PTEN mutations	Associated with macrocephaly, synaptic overgrowth and ASD	Occur in ~2% of all ASD cases, estimated to be higher (~20%) in individuals with ASD and macrocephaly.	[48, 65–67]
Synaptic genes: SHANK3, neuroligins (NLGN3/4), neurexins	Affect synaptic formation and signalling; disruption linked to ASD.	Rare mutations, high-effect in subgroups.	[51, 68–75]
High-confidence ASD-associated genes: ASH1L, CHD8, MECP2	Implicated in chromatin regulation, gene expression, neuronal development	Rare variants with pleiotropic effects (epilepsy, ADHD, ID).	[48, 76–80]
Common SNPs in genes: CNTNAP2, MTHFR, OXTR, VDR	Modest associations, varied by allele	Identified significant ORs for select SNPs in meta-analysis.	[50, 81, 82]
Polygenic effects (GWAS-identified loci)	Many small-effect variants cumulatively contribute risk	May explain ∼10–12% of ASD risk variance.	[47, 83–85]
X-linked genes DDX53 (and PTCHD1-AS)	Maternally- inherited variants in the DDX53 gene are linked to ASD.	~0.04%-0.05% of ASD patients in this study were found to carry rare DDX53 variants	[86–88]

effects of the genome integrated with environmental, epigenetic, or genetic contributions [41]. Recent studies suggest that approximately 50% of ASD cases can be attributed to environmental factors [42]. These environmental factors, including prenatal conditions, have a pivotal role in the early stages of autism development, although the precise mechanisms remain largely undefined [40, 43]. Although their potential roles in ASD etiology have been investigated, the exact mechanisms of how these factors contribute to ASD are not clearly understood.

THE GUT-BRAIN AXIS IN AUTISM: EXPLORING THE ROLE OF THE MICROBIOME

A mounting body of evidence has linked the gut microbiota to the multifaceted nature of ASD (Table 2). The microbiota is considered a non-genetic, yet heritable [89] contributor to psychiatric behaviours. These microbial communities consist of microorganisms residing in the gastrointestinal (GI) tract from where they affect development and function of the immune, metabolic and nervous systems [90, 91]. The influence of gut microbiota on autism is complex and multifactorial, involving interactions between genetics, the environment, and the immune system [8, 40].

Dietary components, particularly proteins and their metabolites, have been shown to significantly affect the microbiome composition and alter its function, either within a host or when inherited by its offspring [92]. It has been reported that specific microbial phyla, such as Bacteroides and Firmicutes, are sensitive to dietary proteins, which can lead to alterations in microbial diversity and functionality [93]. In fact, dietary changes may also modify disease symptoms in individuals, when coupled with a genetic risk [94, 95]. On the other hand, a "pathogenic" microbiome itself can trigger systemic inflammation, metabolic disorders, and/or alterations in neurotransmitter metabolism, all of which can further result in neurodevelopmental disorders in otherwise non-predisposed individuals [96, 97]. For example, transplant of microbiota from patients with ASD into germ-free mice induces ASD-like behaviours in these animals, suggesting that the microbiome alterations can lead to changes in behaviours typical to ASD, especially social deficits [96, 98].

Dysbiosis in the gut microbiota, characterized by an imbalance in the composition and function of gut microbial communities, has been increasingly recognized as a potential contributing factor to ASD [99]. It is hypothesized that alterations in the gut microbiota can impact brain development and function through various mechanisms, including

Table 2. Major research findings linking the gut microbiota with ASD. Summary of microbial composition, functional implications and therapeutic insights in ASD cases

Finding	Description	Key Citations
Microbiota Dysbiosis	Altered gut microbial composition in ASD individuals, including higher levels of <i>Clostridium</i> , <i>Desulfovibrio</i> ; lower levels of <i>Bifidobacterium</i> , <i>Prevotella</i> , <i>Lactobacillus</i> ; mixed changes in <i>Bacteroides</i> species.	[108, 110, 121]
Reduced Microbial Diversity	Children with ASD show lower gut microbial diversity and richness compared to NCs.	[103, 108, 112, 140]
Microbiota-Gut-Brain Axis	Bidirectional communication between the gut and brain mediated via the vagus nerve, immune signalling, and metabolites.	[121, 141, 142]
Leaky Gut/Increased Intestinal Permeability	ASD individuals may have impaired gut barrier function, allowing microbial by-products and toxins to enter circulation.	[143–146]
Neuroimmune Modulation	Neuroinflammation and immune activation are affected by gut microbiota imbalances, indicating brain function dysregulation in ASD.	[147–151]
Functional Metabolomic Changes	Systematic shifts in metabolic pathways associated with ASD, including amino-acid, carbohydrate and lipid imbalances likely contributing to neurodevelopmental differences and immune activation in ASD.	[121, 152–154]
Probiotics and Behavioural Effects	Probiotic treatment (i.e <i>Lactobacillus plantarum</i> , <i>Bifidobacterium longum</i>) improves behaviour in ASD and reduces GI symptoms.	[148, 155–157]
Faecal Microbiota Transplantation (FMT)	FMT consistently improves GI symptoms and behavior in ASD children, with sustained effects.	[116, 158–160]

the production of neuroactive compounds, modulation of the immune system, and alteration of gut-brain communication pathways [100]. It has become apparent that differences in microbial composition and diversity exist between individuals with ASD and neurotypical controls [101–113].

Notably, gastrointestinal comorbidities are more prevalent in children diagnosed with ASD compared to their neurotypical peers, with some studies suggesting a fourfold increase in the likelihood of experiencing GI symptoms [114]. Gastrointestinal issues commonly observed in individuals with ASD include abdominal pain, diarrhoea, and constipation [115]. A growing body of evidence clearly shows that children with ASD tend to exhibit lower microbial diversity, as well as alterations in the relative abundance of specific bacterial taxa [116]. Multiple studies have consistently shown a reduced abundance of beneficial bacteria, such as *Bifidobacteria* and *Lactobacillus*, coupled with an overgrowth of potentially pathogenic bacteria, like *Clostridia* and *Bacteroides* in individuals with ASD [117].

Although there is an abundance of data linking the diversity of bacterial communities colonising the gut of ASD patients, no direct link to a possible role of these microbes in the development of autism symptoms has been found [118–120].

A recent ground-breaking study employing a comprehensive multi-omics approach has provided evidence linking specific bacterial strains to the development of autism spectrum disorder (ASD). By integrating samples taken from urine, blood, and fecal matter from age-matched ASD patients and neurotypical (ND) controls, the study utilized RNA sequencing, metabolomics, and microbiomics to capture a holistic view of the host and microbial molecular landscapes. This integrative methodology enables the

simultaneous examination of alterations in host gene expression, metabolic shifts, and bacterial community structures, which is critical given the multifactorial etiology of ASD [121]. From this multi-directional analysis, four groups of microbes stand out in ASD patients that differ from age-matched NT controls. These include the gut microbe Bacteroides fragilis which has been shown to improve symptoms in mice. This bacterium is also considered a next-generation probiotic agent for improving gastrointestinal symptoms [122]. Next, one bacterial signature that stands out in ASD patients, is the Bifidobacterium strain which is associated with early development and childhood [123, 124]. Whether the role of this bacterial strain is protective or delays gut maturation is not well understood. It has been suggested that the Bifidobacterium longum strain could alleviate autistic-like behaviours (repetitive behaviours, learning and memory ability and despair mood) [125, 126]. The sulphate-reducing bacteria (SRB) of the genus Desulfovibrio have also been found to be more abundant in children with ASD compared to healthy children [105, 111, 127]. Another genus of bacteria gaining attention in autism due to its immense dietary complexity is Prevotella. This bacterium has the capacity to metabolize complex carbohydrates and is found in increased numbers in carbohydrate-depleted diets [108, 128, 129] Children diagnosed with ASD often exhibit reduced levels of Preovotella, particularly Prevotella copri in their gut microbiota. Notably, in a comparative study utilising 16S rRNA gene sequencing to compare intestinal microflora between ASD patients and NT controls, it was discovered that the abundance of P. copri and other fermentative bacteria was lower in ASD-diagnosed children than in their neurotypical counterparts [108]. Comparing results across studies highlights that the role of *P. copri* is complex and context-dependent. For example, while some investigations indicate an overall depletion of *Prevotella* in ASD [130], subsequent analyses reveal that sub-species level variation —exemplified by an increase in *P. copri* — is critical in modulating host metabolic pathways [131]. Multi-omic analysis reinforces this complexity by correlating *P. copri*-associated metabolic signatures to brain-associated gene expression profiles and proinflammatory cytokine patterns [121, 132]. This integrative approach underscores that microbe alterations in ASD are both microbial community- and strain-specific, indicating that *P. copri* may serve as a potential biomarker for a subset of ASD characterised by distinct metabolic disruptions.

Overall, these findings underscore the importance of strain-level analysis in the microbial ecology of ASD and pave the way for targeted interventions that might modulate the gut microbiome to improve clinical outcomes. Despite these advances, the inconsistent nature of results across various studies, which can be attributed to variations in study designs, small sample sizes, and the heterogeneity of the ASD microbiome, necessitates further research to validate these findings and elucidate the precise mechanisms by which gut microbiota influences the pathogenesis of ASD [133]. Future studies should aim for larger, more standardized cohorts, consider factors such as dietary habits and medication use, and employ advanced techniques such as metagenomics and metabolomics to gain a deeper understanding of the complex interplay between the gut microbiota and ASD [133-135].

MAPPING THE GUT MICROBIOME TO MULTI-OMICS

Current research conducted to understand the association between the gut microbiota and ASD has rapidly expanded with the use of technologies analysing the gut microbiome of ASD patients with regards to their neurotypical counterparts at different omics levels. Researchers have employed a variety of high-throughput and integrative approaches to elucidate the underlying molecular interactions between the host and its microbial residents. Multi-omics strategies now incorporate metagenomics, meta-transcriptomics, metabolomics, and the emerging field of small non-coding RNA (ncRNA) profiling, each contributing a unique perspective on the complex etiology of ASD. The results of these multiomics studies have revealed many, although inconsistent, differences in microbial diversity in children with ASD compared to their neurotypical controls [120, 121]. Similarly, functional metagenomics and metabolic analyses have also shown strong, albeit inconclusive, differences between the two groups [119]. It is worth noting that differences in sequencing methods, data analysis pipelines and patient selection could contribute to the conflicting differences reported across studies [136].

Comparative analyses at other omic levels have further shown inconsistencies across studies [118], making it

difficult to distinguish whether the results obtained are due to intrinsic biological differences among samples or are a result of experimental biases and insufficient statistical power that prevent meaningful results [121, 137]. In one of the latest multi-omic level analysis of the gut microbiota profiles in ASD, the discrepancies in experimental design, sample processing and result interpretation were taken into account and already published datasets were re-analysed and reevaluated in an attempt to produce an integrated approach to the multitude of previous published datasets to date [121]. In detail, samples from ten cross-sectional microbiome datasets with fifteen additional omic datasets-including dietary records, metabolomics, cytokine profiles, and brain expression profiles—were combined in order to identify autism-specific patterns along the gut-brain axis. The integration of multiple omics platforms resulted in a more clear understanding of the functional architecture of autism, therefore establishing a more distinctive relationship between microbial communities and host physiological processes.

In another approach, advanced topic modelling was applied through latent Dirichlet allocation to multi-omic datasets (16S rRNA gene amplicon, shotgun metagenomic, metatranscriptomic, and untargeted metabolomic profiling) from ASD and NTD fecal samples. This approach pinpointed microbial processes and topics that differ between autistic and neurotypical children and identified specific metabolites — such as neurotransmitter precursors — that could serve as functional biomarkers of the disorder [138].

In addition to these high-throughput microbial and transcriptional assessments, metabolomic approaches have also been used to understand how microbial fermentation products affect neurological development. Microbial fermentation of dietary fibers produces short-chain fatty acids (SCFAs), which in turn may exert either beneficial or detrimental effects on both gut and neurological development in individuals with ASD [139]. Due to the multifaceted nature of autism, in order to understand the mechanisms by which alterations in gut microbial communities contribute to ASD via immune and neuroendocrine signalling pathways, multiple-omic levels are critical in understanding this complex interaction.

Therapeutic approaches targeting the gut microbiome in autism

Therapeutic approaches targeting the gut microbiome have emerged as a promising, though still evolving, area of research for autism. This field integrates multiple lines of evidence on the critical role the microbiota–gut–brain axis has in the heterogenic nature of the condition. In preclinical models, modifications of the gut microbiota have led to improvements in both gastrointestinal function and neurobehavioral outcomes, suggesting that the manipulation of gut microbes may directly impact brain function and behaviour [161, 162]. Therapeutic interventions aimed at restoring an eubiotic gut environment include a spectrum of approaches such as probiotics, prebiotics, antibiotics, and

fecal microbiota transplantation (FMT) [161, 163]. These microbial-based interventions have shown promise in a limited number of human trials [158, 164, 165].

Probiotics, in particular, have been extensively examined in both clinical and preclinical studies as a means to ameliorate GI symptoms and potentially modify core behavioral impairments associated with ASD [117, 166]. For example, several clinical studies with single or mixed probiotic strains have yielded promising results in mitigating gastrointestinal inflammation and restoring microbial equilibrium, although the outcomes remain heterogeneous and require larger-scale trials for definitive conclusions [117, 162]. Furthermore, probiotics have been shown to exert bidirectional effects on gut-brain communication, with some studies reporting improvements in core ASD symptoms, possibly by reducing gut permeability and modulating neuroinflammatory markers [117, 167]. Despite these advances, the field continues to confront challenges related to standardising treatment protocols, determining optimal strains or combinations, and establishing long-term efficacy, as well as understanding the interplay between genetic predisposition and environmental influences in ASD [161, 163].

Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic intervention for addressing autism spectrum disorder (ASD) symptoms, particularly those associated with gastrointestinal (GI) dysfunction. Many children with ASD experience significant GI disturbances that correlate with increased behavioural symptom severity, suggesting a link between gut dysbiosis and neurological manifestations [168, 169]. Systematic reviews and clinical trials have demonstrated that FMT can lead to improvements in both behavioural outcomes and GI symptoms in paediatric populations with ASD [166, 169]. Conversely, FMT offers an alternative strategy that targets the complex microbiota environment of the gut by reintroducing a full complement of microbial communities, thereby directly influencing the MGB axis and potentially attenuating aberrant immune responses and metabolic disturbances linked to ASD [161, 170].

Recent investigations showed that FMT, by introducing a wider range of commensal microbes from a healthy donor, may correct the imbalance in the gut microbial community observed in ASD [171]. For instance, *Kang* et al. reported long-term benefits following a microbiota transfer therapy protocol that combined antibiotics, bowel cleansing, and subsequent FMT, observing improvements in both core behavioural symptoms and gastrointestinal disturbances [116, 172]. These findings suggest that re-establishing a balanced gut microbiota could modulate the microbiotagut–brain axis, subsequently influencing neurodevelopment and behaviour [168, 171].

Additional studies support the therapeutic potential of FMT through various routes of administration tailored to the pediatric population. Research has demonstrated that both capsule-based and tube-delivered FMT approaches are feasible and can produce significant clinical responses in children with ASD [159]. Moreover, case reports and

retrospective studies have reported enhanced gastrointestinal function as well as a reduction in behavioural dysfunction following FMT [173]. Evidence suggests that repeated courses of FMT may provide additive benefits, indicating that sustained modulation of the gut microbiota may be advantageous for symptom management in ASD [174].

Beyond clinical observations, preclinical models have provided mechanistic insights into the role of the gut microbiome in ASD. Animal studies illustrate that transplantation of faecal microbiota from ASD patients into germ-free or antibiotic-treated animals can induce autism-like behaviours, thus reinforcing the concept that microbiota alterations may play a causative role in the disorder [175]. Such studies underscore the relevance of the gut-brain axis, where microbial metabolites and signalling molecules can influence neural function and behaviour [176].

Despite encouraging early results, the field requires further randomized controlled trials and longer-term follow-up studies to definitively establish both efficacy and safety profiles, as well as to elucidate the precise mechanisms by which FMT mediates its effects on the central nervous system [166, 169, 177].

In summary, FMT represents a novel and potentially effective therapeutic strategy in ASD by targeting the gut dysbiosis that frequently accompanies both gastrointestinal and behavioural abnormalities in affected children [116, 168, 171]. While emerging data are encouraging, a comprehensive understanding of optimal protocols, long-term outcomes, and mechanistic pathways is required to firmly establish FMT in the therapeutic arsenal against ASD.

In summary, the current evidence supports the notion that microbial-based interventions aimed at restoring a healthy gut microbiome have the potential to be utilized as complementary therapies for ASD. The integration of approaches such as probiotics, prebiotics, and FMT into clinical practice could pave the way for personalized medicine strategies aimed at both alleviating gastrointestinal disturbances and moderating behavioral symptoms in autism. However, further rigorous, large-scale, and longitudinal clinical trials are indispensable to validate the efficacy and safety profiles of these interventions, and to unravel the precise mechanisms by which the gut microbiota influence neurodevelopment and behaviour.

Author contributions: MM: analysis, interpretation of data, writing.

MAK: drafting the article or revising it critically for important intellectual content, writing.

SV: validation, formal analysis.

PS: analysis and interpretation of data.

SM: analysis and interpretation of data.

VP: final approval of the version to be submitted.

MC: conceptualization methodology and design of the study, data curation, writing—original draft preparation, writing—review and editing.

All authors have read and agreed to the published version of the manuscript.

Funding: This study received no external funding.

Institutional review board statement: Not applicable.

Informed consent statement: Not applicable.

Conflicts of interest: The authors declare no conflict of interest.

REFERENCES

- Rossignol DA, Frye RE. Correction: Rossignol, D.A. Frye, R.E. Cerebral folate deficiency, folate receptor alpha autoantibodies and leucovorin (folinic acid) treatment in autism spectrum disorders: a systematic review and meta-analysis. J Pers Med 2021; 11: 1141. Journal of Personalized Medicine 2022, 12, 721. https://doi.org/10.3390/jpm12050721
- 2. Hirota T, King BH. Autism spectrum disorder. JAMA 2023; 329: 157.
- Solmi M, Radúa J, Olivola M, Croce E, Soardo L, Pablo GS de, et al. Age at onset of mental disorders worldwide: large-scale meta-analysis of 192 epidemiological studies. Mol Psychiatry 2021; 27: 281. https://doi.org/10.1038/s41380-021-01161-7
- Talantseva OI, Romanova RS, Shurdova EM, Dolgorukova TA, Sologub PS, Titova OS, et al. The global prevalence of autism spectrum disorder: a three-level meta-analysis. Front Psychiatry 2023; 14. https://doi.org/10.3389/fpsyt.2023.1071181
- Zeidan J, Fombonne É, Scorah J, Ibrahim AT, Durkin MS, Saxena S, et al. Global prevalence of autism: a systematic review update. Autism Res 2022; 15: 778. https://doi.org/10.1002/aur. 2696
- Solmi M, Song M, Yon DK, Lee SW, Fombonne É, Kim MS, et al. Incidence, prevalence, and global burden of autism spectrum disorder from 1990 to 2019 across 204 countries. Mol Psychiatry 2022; 27: 4172. https://doi.org/10.1038/s41380-022-01630-7
- Silva AP da, Bezerra ÍMP, Antunes TPC, Cavalcanti MPE, Abreu LC. de Applied Behavioral Analysis for the Skill Performance of Children with Autism Spectrum Disorder. Front Psychiatry 2023; 14. https://doi.org/10.3389/fpsyt.2023.1093252
- 8. Khogeer A, AboMansour IS, Mohammed DA. The role of genetics, epigenetics, and the environment in ASD: a mini review. Epigenomes 2022; 6: 15.
- Benkarim O, Paquola C, Park B, Hong S, Royer J, Wael RV de, et al. Connectivity alterations in autism reflect functional idiosyncrasy. Commun Biol 2021; 4. https://doi.org/10.1038/s42003-021-02572-6
- Li Q, Zhou J. The microbiota-gut-brain axis and its potential therapeutic role in autism spectrum disorder. Neuroscience 2016; 324: 131
- 11. Luna RA, Savidge T, Williams KC. The brain-gut-microbiome axis: what role does it play in autism spectrum disorder? Curr Developmental Disord Rep 2016; 3: 75. https://doi.org/10.1007/s40474-016-0077-7
- Umbrello G, Esposito S. Microbiota and neurologic diseases: potential effects of probiotics. J Translational Med 2016; 14.
- 13. Leblond CS, Rolland T, Barthome E, Mougin Z, Fleury M, Ecker C, et al. A genetic bridge between medicine and neurodiversity for

- autism. Annu Rev Genet 2024; 58: 487. https://doi.org/10.1146/annurev-genet-111523-102614
- 14. Abedini SS, Akhavan S, Heng JI, Alizadehsani R, Dehzangi A, Bauer DC, et al. A critical review of the impact of candidate copy number variants on autism spectrum disorders. arXiv. Cornell University; 2023.
- Robinson E, Pourcain BS, Anttila V, Kosmicki JA, Bulik Sullivan B, Grove J, et al. Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population. Nat Genet 2016; 48: 552. https://doi.org/10.1038/ng.3529
- Grove J, Ripke S, Als TD, Mattheisen M, Walters RK, Won H, et al. Identification of common genetic risk variants for autism spectrum disorder. Nat Genet 2019; 51: 431. https://doi.org/10. 1038/s41588-019-0344-8
- 17. Carayol J, Schellenberg GD, Dombroski BA, Amiet C, Génin B, Fontaine K, et al. A scoring strategy combining statistics and functional genomics supports a possible role for common polygenic variation in autism. Front Genet 2014; 5. https://doi.org/10.3389/fgene.2014.00033
- Devlin B, Melhem N, Roeder K. Do common variants play a role in risk for autism? Evidence and theoretical musings. Brain Res 2010; 1380: 78. https://doi.org/10.1016/j.brainres.2010.11.026
- Auerbach BD, Osterweil EK, Bear MF. Mutations causing syndromic autism define an axis of synaptic pathophysiology. Nature 2011; 480: 63. https://doi.org/10.1038/nature10658
- Ro M, Park J, Nam M, Bang HJ, Yang J-W, Choi K-S, et al. Association between peroxisomal biogenesis factor 7 and autism spectrum disorders in a Korean population. J Child Neurol 2012; 27: 1270. https://doi.org/10.1177/0883073811435507
- Matoba N, Liang D, Sun H, Aygün N, McAfee JC, Davis JE, et al. Common genetic risk variants identified in the SPARK cohort support DDHD2 as a candidate risk gene for autism. Translational Psychiatry 2020; 10. https://doi.org/10.1038/s41398-020-00953-9
- Bied A, Njuguna S, Satodiya R. Autism in a child with X-Linked agammaglobulinemia. Cureus 2022. https://doi.org/10.7759/ cureus.21951
- Veltman JA, Brunner HG. De Novo Mutations in Human Genetic Disease. Nat Rev Genet 2012; 13: 565. https://doi.org/10.1038/ nrg3241
- 24. O'Roak BJ, Vives L, Girirajan S, Karakoç E, Krumm N, Coe BP, et al. Sporadic Autism Exomes Reveal a Highly Interconnected Protein Network of de Novo Mutations. Nature 2012; 485: 246. https://doi.org/10.1038/nature10989
- Sanders S, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ, et al. De Novo Mutations Revealed by Whole-Exome Sequencing Are Strongly Associated with Autism. Nature 2012; 485: 237. https://doi.org/10.1038/nature10945
- Brandler WM, Sebat J. From De Novo Mutations to Personalized Therapeutic Interventions in Autism. Annu Rev Med 2015; 66: 487. https://doi.org/10.1146/annurev-med-091113-024550
- 27. Du Y, Li Z, Liu Z, Zhang N, Wang R, Li F, et al. Nonrandom Occurrence of Multiple de Novo Coding Variants in a Proband Indicates the Existence of an Oligogenic Model in Autism. Genet Med 2019; 22: 170. https://doi.org/10.1038/s41436-019-0610-2
- Satterstrom FK, Kosmicki JA, Wang J, Breen MS, Rubeis SD, An J, et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 2020; 180: 568. https://doi.org/10.1016/j.cell.2019.12.036

- 29. Fu J, Satterstrom FK, Peng M, Brand H, Collins RL, Dong S, et al. Rare coding variation provides insight into the genetic architecture and phenotypic context of autism. Nat Genet 2022; 54: 1320.
- Haruvi-Lamdan N, Horesh D, Zohar S, Kraus M, Golan O. Autism spectrum disorder and post-traumatic stress disorder: an unexplored Co-Occurrence of conditions. Autism 2020; 24: 884. https://doi.org/10.1177/1362361320912143
- Bakke KA, Howlin P, Retterstøl L, Kanavin ØJ, Heiberg A, Nærland T. Effect of epilepsy on autism symptoms in angelman syndrome. Mol Autism 2018; 9. https://doi.org/10.1186/s13229-017-0185-1
- 32. Meier S, Petersen L, Schendel D, Mattheisen M, Mortensen PB, Mors O. Obsessive-compulsive disorder and autism spectrum disorders: longitudinal and offspring risk. PLoS ONE 2015; 10. https://doi.org/10.1371/journal.pone.0141703
- 33. Hamdan FF, Myers CT, Cossette P, Lemay P, Spiegelman D, Laporte AD, et al. High Rate of Recurrent De Novo Mutations in Developmental and Epileptic Encephalopathies. The Am J Hum Genet 2017; 101: 664. https://doi.org/10.1016/j.ajhg.2017.09.008
- 34. Frye RE. Editorial: mitochondrial gene variations increase autism risk: uncovering the complex polygenetic landscape of autism. J Am Acad Child Adolesc Psychiatry 2023; 63: 775. https://doi. org/10.1016/j.jaac.2023.12.002
- 35. Rangasamy S, D'Mello SR, Narayanan V. Epigenetics, autism spectrum, and neurodevelopmental disorders. Neurotherapeutics 2013; 10: 742.
- Love CJ, Sominsky L, O'Hely M, Berk M, Vuillermin P, Dawson SL. Prenatal environmental risk factors for autism spectrum disorder and their potential mechanisms. BMC Med 2024;
 https://doi.org/10.1186/s12916-024-03617-3
- 37. Persico AM, Merelli S. Environmental factors in the onset of autism spectrum disorder. Curr Developmental Disord Rep 2014;1: 8. https://doi.org/10.1007/s40474-013-0002-2
- 38. Hodges H, Fealko C, Soares N. Autism spectrum disorder: definition, epidemiology, causes, and clinical evaluation. Translational Pediatr 2020; 9.
- 39. Gialloreti LE, Mazzone L, Benvenuto A, Fasano A, García-Alcón A, Kraneveld AD, et al. Risk and protective environmental factors associated with autism spectrum disorder: evidence-based principles and recommendations. J Clin Med 2019; 8: 217.
- Lyall K, Schmidt RJ, Hertz Picciotto I. Maternal lifestyle and environmental risk factors for autism spectrum disorders. Int J Epidemiol 2014; 43: 443.
- 41. Tordjman S, Somogyi E, Coulon N, Kermarrec S, Cohen D, Bronsard G, et al. Gene x environment interactions in autism spectrum disorders: role of epigenetic mechanisms. Front Psychiatry 2014; 5.
- Fujiwara T, Morisaki N, Honda Y, Sampei M, Tani Y. Chemicals, nutrition, and autism spectrum disorder: a mini-review. Front Neurosci 2016: 10.
- Lu J, Wang Z, Liang Y, Yao P. Rethinking autism: the impact of maternal risk factors on autism development. PubMed 2022; 14: 1136.
- 44. Tick B, Bolton P, Happé F, Rutter M, Rijsdijk F. Heritability of autism spectrum disorders: a meta-analysis of twin studies. J Child Psychol Psychiatry 2015; 57: 585. https://doi.org/10.1111/jcpp. 12499

- 45. Warrier V, Chee V, Smith P, Chakrabarti B, Baron-Cohen S. A comprehensive meta-analysis of common genetic variants in autism spectrum conditions. Mol Autism 2015; 6. https://doi.org/10.1186/s13229-015-0041-0
- Thapar A, Rutter M. Genetic advances in autism. J Autism Developmental Disord 2020; 51: 4321. https://doi.org/10.1007/ s10803-020-04685-z
- 47. Rodríguez-Gomez DA, García-Guáqueta DP, Charry-Sánchez JD, Sarquis-Buitrago E, Blanco M, Vélez-van-Meerbeke A, et al. A systematic review of common genetic variation and biological pathways in autism spectrum disorder. BMC Neurosci 2021; 22. https://doi.org/10.1186/s12868-021-00662-z
- 48. Monica IL, Iorio MRD, Sica A, Rufino F, Sotira C, Pastore L, et al. Autism spectrum disorder: genetic mechanisms and inheritance patterns. Genes 2025; 16: 478. https://doi.org/10.3390/ genes16050478
- 49. Folstein SE, Rosen-Sheidley B. Genetics of austim: complex aetiology for a heterogeneous disorder. Nat Rev Genet 2001; 2: 943. https://doi.org/10.1038/35103559
- 50. Fang Y, Cui Y, Yin Z, Hou M, Guo P, Wang H, et al. Comprehensive systematic review and meta-analysis of the association between common genetic variants and autism spectrum disorder. Gene 2023; 887: 147723. https://doi.org/10.1016/j.gene.2023. 147723
- Talkowski ME, Minikel EV, Gusella JF. Autism spectrum disorder genetics. Harv Rev Psychiatry 2014; 22: 65. https://doi.org/10. 1097/hrp.00000000000000000
- Genovese A, Butler MG. The autism spectrum: behavioral, psychiatric and genetic associations. Genes 2023; 14: 677. https://doi.org/10.3390/genes14030677
- 53. Havdahl A, Niarchou M, Starnawska A, Uddin M, Merwe C van der, Warrier V. Genetic contributions to autism spectrum disorder. Psychol Med 2021; 51: 2260. https://doi.org/10. 1017/s0033291721000192
- 54. Zhou X, Feliciano P, Shu C, Wang T, Astrovskaya I, Hall JB, et al. Integrating de Novo and Inherited Variants in 42,607 Autism Cases Identifies Mutations in New Moderate-Risk Genes. Nat Genet 2022; 54: 1305. https://doi.org/10.1038/s41588-022-01148-2
- 55. Kosmicki JA, Samocha KE, Howrigan DP, Sanders S, Slowikowski K, Lek M, et al. Refining the Role of de Novo Protein-Truncating Variants in Neurodevelopmental Disorders by Using Population Reference Samples. Nat Genet 2017; 49: 504. https://doi.org/10.1038/ng.3789
- Krumm N, Turner TN, Baker C, Vives L, Mohajeri K, Witherspoon K, et al. Excess of rare, inherited truncating mutations in autism. Nat Genet 2015; 47: 582. https://doi.org/10.1038/ ng.3303
- Cook EH, Scherer SW. Copy-number variations associated with neuropsychiatric conditions. Nature 2008; 455: 919. https://doi. org/10.1038/nature07458
- 58. Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, Fossdal R, et al. Association between microdeletion and microduplication at 16p11.2 and autism. New Engl J Med 2008; 358: 667. https://doi.org/10.1056/nejmoa075974
- Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, et al. Strong Association of De Novo Copy Number Mutations with Autism. Science 2007; 316: 445. https://doi.org/10.1126/ science.1138659

- Sullivan PF, Daly MJ, O'Donovan M. Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet 2012; 13: 537. https://doi.org/10.1038/nrg3240
- 61. Dias C, Mo A, Cai C, Sun L, Cabral K, Brownstein CA, et al. Cell-type-specific effects of autism-associated 15q duplication syndrome in the human brain. The Am J Hum Genet 2024; 111: 1544. https://doi.org/10.1016/j.ajhg.2024.07.002
- 62. Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, et al. Structural variation of chromosomes in autism spectrum disorder. The Am J Hum Genet 2008; 82: 477. https://doi.org/10. 1016/j.ajhg.2007.12.009
- 63. Sanders S, Ercan-Sencicek AG, Hus V, Luo R, Murtha MT, Moreno-De-Luca D, et al. Multiple Recurrent De Novo CNVs, Including Duplications of the 7q11.23 Williams Syndrome Region, Are Strongly Associated with Autism. Neuron 2011; 70: 863. https://doi.org/10.1016/j.neuron.2011.05.002
- Hogart A, Wu D, LaSalle JM, Schanen NC. The comorbidity of autism with the genomic disorders of chromosome 15q11.2-Q13. Neurobiol Dis 2008; 38: 181. https://doi.org/10.1016/j.nbd.2008. 08.011
- 65. Sokol DK, Lahiri DK. The genetics of autism, 77. Springer eBooks; 2011. https://doi.org/10.1007/978-1-4419-8065-6_6
- Rademacher S, Eickholt BJ. PTEN in autism and neurodevelopmental disorders. Cold Spring Harbor Perspect Med 2019; 9. https://doi.org/10.1101/cshperspect.a036780
- 67. Busch RM, Srivastava S, Hogue O, Frazier T, Klaas P, Hardan AY, et al. Neurobehavioral phenotype of autism spectrum disorder associated with germline heterozygous mutations in PTEN. Translational Psychiatry 2019; 9. https://doi.org/10.1038/s41398-019-0588-1
- Khoja S, Haile MT, Chen LY. Advances in neurexin studies and the emerging role of Neurexin-2 in autism spectrum disorder. Front Mol Neurosci 2023; 16. https://doi.org/10.3389/fnmol.2023. 1125087
- 69. Tromp A, Mowry B, Giacomotto J. Neurexins in autism and Schizophrenia—A review of patient mutations, mouse models and potential future directions. Mol Psychiatry 2020; 26: 747. https:// doi.org/10.1038/s41380-020-00944-8
- Ilić N, Sarajlija A. Neuroglial dysregulation in autism spectrum disorder: pathogenetic insights, genetic threads, and therapeutic Horizons. Neuroglia 2025; 6: 11. https://doi.org/10.3390/ neuroglia6010011
- Nguyen TA, Lehr AW, Roche KW. Neuroligins and neurodevelopmental disorders: X-linked genetics. Front Synaptic Neurosci 2020; 12. https://doi.org/10.3389/fnsyn.2020.00033
- Trobiani L, Meringolo M, Diamanti T, Bourne Y, Marchot P, Martella G, et al. The neuroligins and the synaptic pathway in autism spectrum disorder. Neurosci Biobehavioral Rev 2020; 119: 37. https:// doi.org/10.1016/j.neubiorev.2020.09.017
- Huang M, Qi Q, Xu T. Targeting Shank3 deficiency and paresthesia in autism spectrum disorder: a brief review. Front Mol Neurosci 2023; 16. https://doi.org/10.3389/fnmol.2023.1128974
- 74. Ioannidis V, Pandey R, Bauer HF, Schön M, Bockmann J, Boeckers TM, et al. Disrupted extracellular matrix and cell cycle genes in autism-associated Shank3 deficiency are targeted by lithium. Mol Psychiatry 2023; 29: 704. https://doi.org/10.1038/s41380-023-02362-y

- Uchino S, Waga C. SHANK3 as an autism spectrum disorderassociated gene. Brain Development 2012; 35: 106. https://doi.org/ 10.1016/j.braindev.2012.05.013
- 76. Wang T, Kim CN, Bakken TE, Gillentine MA, Henning B, Mao Y, et al. Integrated gene analyses of de novo variants from 46,612 trios with autism and developmental disorders. Proc Natl Acad Sci 2022; 119. https://doi.org/10.1073/pnas.2203491119
- 77. Yan Y, Tian M, Li M, Zhou G, Chen Q, Xu M, et al. ASH1L haploinsufficiency results in autistic-like phenotypes in mice and links eph receptor gene to autism spectrum disorder. Neuron 2022; 110: 1156. https://doi.org/10.1016/j.neuron.2021.12.035
- Loke YJ, Hannan AJ, Craig JM. The role of epigenetic change in autism spectrum disorders. Front Neurol 2015; 6. https://doi.org/ 10.3389/fneur.2015.00107
- Rolland T, Cliquet F, Anney R, Moreau C, Traut N, Mathieu A, et al. Phenotypic effects of genetic variants associated with autism.
 Nat Med 2023; 29: 1671. https://doi.org/10.1038/s41591-023-02408-2
- Zhang Y, Liu X, Guo R, Xu W, Guo Q, Hao C, et al. Biological implications of genetic variations in autism spectrum disorders from genomics studies. Biosci Rep 2021; 41. https://doi.org/10. 1042/bsr20210593
- Qiu S, Qiu Y, Li Y, Cong X. Genetics of autism spectrum disorder: an umbrella review of systematic reviews and meta-analyses. Translational Psychiatry 2022; 12. https://doi.org/10.1038/s41398-022-02009-6
- 82. Sadeghiyeh T, Dastgheib SA, Mirzaee-Khoramabadi K, Morovati-Sharifabad M, Akbarian-Bafghi MJ, Poursharif Z, et al. Association of MTHFR 677C>T and 1298A>C polymorphisms with susceptibility to autism: a systematic review and meta-analysis. Asian J Psychiatry 2019; 46: 54. https://doi.org/10.1016/j.ajp. 2019.09.016
- Hannon E, Schendel D, Ladd-Acosta C, Grove J, Hansen CS, Andrews SV, et al. Elevated polygenic burden for autism is associated with differential DNA methylation at birth. Genome Med 2018; 10. https://doi.org/10.1186/s13073-018-0527-4
- 84. Wit MM de, Morgan M, Libedinsky I, Austerberry C, Begeer S, Abdellaoui A, et al. Systematic review and meta-analysis: phenotypic correlates of the autism polygenic score. JAACAP Open 2025. https://doi.org/10.1016/j.jaacop.2025.04.001
- Klei L, McClain L, Mahjani B, Panayidou K, Rubeis SD, Grahnat A-CS, et al. How rare and common risk variation jointly affect liability for autism spectrum disorder. Mol Autism 2021; 12. https://doi.org/10.1186/s13229-021-00466-2
- 86. Aquino MM de, Chen D, Engchuan W, Leal TP, Thiruvahindrapuram B, Trost B, et al. Chromosome X-Wide common variant association study in autism spectrum disorder. The Am J Hum Genet 2024. https://doi.org/10.1016/j.ajhg.2024. 11.008
- 87. Scala M, Bradley CA, Howe J, Trost B, Salazar NB, Shum C, et al. Genetic variants in DDX53 contribute to autism spectrum disorder associated with the Xp22.11 locus. The Am J Hum Genet 2024. https://doi.org/10.1016/j.ajhg.2024.11.003
- 88. Scala M, Bradley CA, Howe J, Trost B, Salazar NB, Shum C, et al. Genetic variants inDDX53contribute to autism spectrum disorder associated with the Xp22.11 locus. medRxiv (Cold Spring Harbor Laboratory) 2023. https://doi.org/10.1101/2023.12.21.23300383

- 89. Moeller AH, Suzuki TA, Phifer-Rixey M, Nachman MW. Transmission modes of the mammalian gut microbiota. Science 2018; 362: 453. https://doi.org/10.1126/science.aat7164
- 90. Sandoval-Motta S, Aldana M, Martínez-Romero E, Frank A. The human microbiome and the missing heritability problem. Front Genet 2017; 8. https://doi.org/10.3389/fgene.2017.00080
- 91. Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet 2012; 13: 260. https://doi.org/10.1038/nrg3182
- Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. Diet-induced extinctions in the gut microbiota compound over generations. Nature 2016; 529: 212. https://doi.org/10.1038/nature16504
- 93. Hou K, Wu Z, Chen X-Y, Wang J, Zhang D, Xiao C, et al. Microbiota in health and diseases. Signal Transduction Targeted Ther 2022; 7. https://doi.org/10.1038/s41392-022-00974-4
- 94. Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of parkinson's disease. Cell 2016; 167: 1469. https://doi.org/10.1016/j.cell.2016.11.018
- 95. Luca F, Kupfer SS, Knights D, Khoruts A, Blekhman R. Functional genomics of host-microbiome interactions in humans. Trends Genet 2017; 34: 30. https://doi.org/10.1016/j.tig.2017.10.001
- 96. Sharon G, Cruz NJ, Kang D, Gandal MJ, Wang B, Kim Y, et al. Human gut microbiota from autism spectrum disorder promote behavioral symptoms in mice. Cell 2019; 177: 1600. https://doi.org/10.1016/j.cell.2019.05.004
- 97. Kim S, Kim H, Yim YS, Ha S, Atarashi K, Tan TG, et al. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature 2017; 549: 528. https://doi.org/10.1038/nature23910
- 98. Kopec AM, Fiorentino M, Bilbo SD. Gut-immune-brain dysfunction in autism: importance of sex. Brain Res 2018; 1693: 214
- Chernikova MA, Flores GD, Kilroy E, Labus JS, Mayer EA, Aziz-Zadeh L. The brain-gut-microbiome system: pathways and implications for autism spectrum disorder. Nutrients 2021; 13: 4497.
- 100. Oh D, Cheon K. Alteration of gut microbiota in autism spectrum disorder: an overview. J Korean Acad Child Adolesc Psychiatry 2020; 31: 131.
- 101. Williams BL, Hornig M, Buie T, Bauman ML, Paik MC, Wick I, et al. Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS ONE 2011; 6. https://doi.org/10.1371/journal.pone.0024585
- 102. Wang M, Wan J, Han R, He F, Wang H, Zhou J, et al. Alterations in gut glutamate metabolism associated with changes in gut microbiota composition in children with autism spectrum disorder. mSystems 2019; 4. https://doi.org/10.1128/msystems. 00321-18
- 103. Strati F, Cavalieri D, Albanese D, Felice CD, Donati C, Hayek J, et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome 2017; 5. https://doi.org/10.1186/s40168-017-0242-1
- 104. Son JS, Zheng LJ, Rowehl L, Tian X, Zhang Y, Zhu W, et al. Comparison of fecal microbiota in children with autism spectrum disorders and neurotypical siblings in the simons simplex

- collection. PLoS ONE 2015; 10. https://doi.org/10.1371/journal.pone.0137725
- 105. Liu F, Li J, Wu F, Zheng H, Peng Q, Zhou H. Altered composition and function of intestinal microbiota in autism spectrum disorders: a systematic review. Translational Psychiatry 2019; 9. https:// doi.org/10.1038/s41398-019-0389-6
- 106. Kushak RI, Winter HS, Buie T, Cox SB, Phillips CD, Ward N. Analysis of the duodenal microbiome in autistic individuals. J Pediatr Gastroenterol Nutr 2016; 64. https://doi.org/10.1097/mpg.0000000000001458
- 107. Kang D, Ilhan ZE, Isern N, Hoyt D, Howsmon DP, Shaffer M, et al. Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe 2017; 49: 121. https://doi.org/10.1016/j.anaerobe.2017.12.007
- 108. Kang D, Park JG, Ilhan ZE, Wallstrom G, LaBaer J, Adams JB, et al. Reduced incidence of prevotella and other fermenters in intestinal microflora of autistic children. PLoS ONE 2013; 8. https://doi.org/10.1371/journal.pone.0068322
- 109. Gondalia S, Palombo EA, Knowles SR, Cox SB, Meyer D, Austin D. Molecular characterisation of gastrointestinal microbiota of children with autism (with and without gastrointestinal dysfunction) and their neurotypical siblings. Autism Res 2012; 5: 419. https://doi.org/10.1002/aur.1253
- 110. Finegold SM, Dowd SE, Gontcharova V, Liu C, Henley KE, Wolcott RD, et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 2010; 16: 444. https://doi.org/10.1016/j.anaerobe.2010.06.008
- 111. Angelis MD, Piccolo MC, Vannini L, Siragusa S, Giacomo AD, Serrazzanetti DI, et al. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS ONE 2013; 8. https://doi.org/10.1371/journal.pone.0076993
- 112. Coretti L, Paparo L, Riccio MP, Amato F, Cuomo M, Natale A, et al. Gut microbiota features in young children with autism spectrum disorders. Front Microbiol 2018; 9. https://doi.org/10.3389/fmicb.2018.03146
- 113. Masini E, Loi E, Vega-Benedetti AF, Carta M, Doneddu G, Fadda R, et al. An overview of the main genetic, epigenetic and environmental factors involved in autism spectrum disorder focusing on synaptic activity. Int J Mol Sci 2020; 21: 8290.
- 114. Tartaglione AM, Villani A, Ajmone-Cat MA, Minghetti L, Ricceri L, Pazienza V, et al. Maternal immune activation induces autism-like changes in behavior, neuroinflammatory profile and gut microbiota in mouse offspring of both sexes. Translational Psychiatry 2022; 12. https://doi.org/10.1038/s41398-022-02149-9
- 115. Młynarska E, Barszcz E, Budny E, Gajewska A, Kopeć K, Wasiak J, et al. The gut–brain–microbiota connection and its role in autism spectrum disorders. Nutrients 2025; 17: 1135.
- 116. Kang D, Adams JB, Coleman DM, Pollard EL, Maldonado J, McDonough-Means S, et al. Long-term benefit of microbiota transfer therapy on autism symptoms and gut microbiota. Scientific Rep 2019; 9. https://doi.org/10.1038/s41598-019-42183-0
- 117. Mihailovich M, Tolinački M, Bajić SS, Leštarević S, Milovančević M, Golić N. The microbiome–genetics axis in autism spectrum disorders: a probiotic perspective. Int J Mol Sci 2024; 25: 12407.
- 118. Azhari A, Azizan F, Esposito G. A systematic review of gut-immune-brain mechanisms in autism spectrum disorder.

- Developmental Psychobiology 2018; 61: 752. https://doi.org/10.1002/dev.21803
- 119. Xu X, Cai X, Meng F, Song T-J, Wang X, Wei Y, et al. Comparison of the metabolic profiles in the plasma and urine samples between autistic and typically developing boys: a preliminary study. Front Psychiatry 2021; 12. https://doi.org/10.3389/fpsyt.2021.657105
- 120. Xu M, Xu X, Li J, Li F. Association between gut microbiota and autism spectrum disorder: a systematic review and meta-analysis. Front Psychiatry 2019; 10. https://doi.org/10.3389/fpsyt.2019. 00473
- 121. Morton JT, Jin D-M, Mills RH, Shao Y, Rahman G, McDonald D, et al. Multi-level analysis of the gut-brain axis shows autism spectrum disorder-associated molecular and microbial profiles. Nat Neurosci 2023; 26: 1208. https://doi.org/10.1038/s41593-023-01361-0
- 122. He Q, Niu M, Bi J, Du N, Liu S, Yang K, et al. Protective effects of a new generation of probiotic Bacteroides fragilis against colitis in vivo and in vitro. Scientific Rep 2023; 13. https://doi.org/10.1038/s41598-023-42481-8
- 123. Stokholm J, Blaser MJ, Thorsen J, Rasmussen MA, Waage J, Vinding R, et al. Maturation of the gut microbiome and risk of asthma in childhood. Nat Commun 2018; 9. https://doi.org/10. 1038/s41467-017-02573-2
- 124. Bode L. The functional biology of human milk oligosaccharides. Early Hum Development 2015; 91: 619. https://doi.org/10.1016/j.earlhumdev.2015.09.001
- 125. Darwesh M-AK, Bakr W, Omar T, El-Kholy MA, Azzam NFAEM. Unraveling the relative abundance of psychobiotic bacteria in children with autism spectrum disorder. Scientific Rep 2024; 14. https://doi.org/10.1038/s41598-024-72962-3
- 126. Kong Q, Chen Q, Mao X, Wang G, Zhao J, Zhang H, et al. Bifidobacterium longum CCFM1077 ameliorated neurotransmitter disorder and neuroinflammation closely linked to regulation in the kynurenine pathway of autistic-like rats. Nutrients 2022; 14: 1615. https://doi.org/10.3390/nu14081615
- 127. Finegold SM, Downes J, Summanen P. Microbiology of regressive autism. Anaerobe 2011; 18: 260. https://doi.org/10.1016/j.anaerobe.2011.12.018
- 128. Chaudhari D, Dhotre D, Agarwal D, Gaike AH, Bhalerao D, Jadhav P, et al. Gut, oral and skin microbiome of Indian patrilineal families reveal perceptible association with age. Scientific Rep 2020; 10. https://doi.org/10.1038/s41598-020-62195-5
- Gorvitovskaia A, Holmes S, Huse SM. Interpreting prevotella and bacteroides as biomarkers of diet and lifestyle. Microbiome 2016;
 https://doi.org/10.1186/s40168-016-0160-7
- 130. Zou R, Xu F, Wang Y, Duan M, Guo M, Zhang Q, et al. Changes in the gut microbiota of children with autism spectrum disorder. Autism Res 2020; 13: 1614. https://doi.org/10.1002/aur.2358
- 131. Ortí JE de la R, Moneti C, Serrano-Ballesteros P, Castellano G, Bayona-Babiloni R, Carriquí-Suárez AB, et al. Liposomal Epigallocatechin-3-Gallate for the treatment of intestinal dysbiosis in children with autism spectrum disorder: a comprehensive review. Nutrients 2023; 15: 3265. https://doi.org/10.3390/nu15143265
- 132. Morton JT, Jin DM, Mills RH, Shao Y, Rahman G, McDonald D, et al. Multi-omic analysis along the gut-brain axis points to a functional architecture of autism. bioRxiv (Cold Spring Harbor Laboratory) 2022. https://doi.org/10.1101/2022.02.25.482050

- 133. Huang M, Liu JS, Liu K, Chen J, Wei Z, Feng Z, et al. Microbiomespecific statistical modeling identifies interplay between gastrointestinal microbiome and neurobehavioral outcomes in patients with autism: a case control study. Front Psychiatry 2021; 12. https://doi.org/10.3389/fpsyt.2021.682454
- 134. Cao X, Lin P, Jiang P, Li C. Characteristics of the gastrointestinal microbiome in children with autism spectrum disorder. A Syst Rev PubMed 2013, 25: 342.
- 135. Jendraszak M, Gałęcka M, Kotwicka M, Regdos A, Pazgrat-Patan M, Andrusiewicz M. Commercial microbiota test revealed differences in the composition of intestinal microorganisms between children with autism spectrum disorders and neurotypical peers. Scientific Rep 2021; 11. https://doi.org/10.1038/ s41598-021-03794-8
- 136. West K, Yin X, Rutherford E, Wee B, Choi J, Chrisman B, et al. Multi-angle meta-analysis of the gut microbiome in autism spectrum disorder: a step toward understanding patient subgroups. Scientific Rep 2022; 12.
- 137. Schloss PD. Identifying and overcoming threats to reproducibility, replicability, robustness, and generalizability in microbiome research. mBio 2018; 9. https://doi.org/10.1128/mbio.00525-18
- 138. Tataru C, Peras M, Rutherford E, Dunlap K, Yin X, Chrisman B, et al. Topic modeling for multi-omic integration in the human gut microbiome and implications for autism. Scientific Rep 2023; 13. https://doi.org/10.1038/s41598-023-38228-0
- 139. Taniya MA, Chung H, Mamun AA, Alam S, Aziz MdA, Emon NU, et al. Role of gut microbiome in autism spectrum disorder and its therapeutic regulation. Front Cell Infect Microbiol 2022; 12. https://doi.org/10.3389/fcimb.2022.915701
- 140. Xiang F, Zhang M, Xin W, Chang J. Gut microbiota composition and phylogenetic analysis in autism spectrum disorder: a comparative study. Front Psychiatry 2025; 16. https://doi.org/10. 3389/fpsyt.2025.1609638
- 141. Bale TL. Epigenetic and transgenerational reprogramming of brain development. Nat Rev Neurosci 2015; 16: 332. https://doi.org/10.1038/nrn3818
- 142. Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, et al. The microbiota-gut-brain axis. Physiol Rev 2019; 99: 1877. https://doi.org/10.1152/physrev. 00018.2018
- 143. Salas EAL, Subburayalu SK. Modified shape index for object-based random forest image classification of agricultural systems using airborne hyperspectral datasets. PLoS ONE 2019; 14. https://doi. org/10.1371/journal.pone.0213356
- 144. Søvik O, Vestergaard H, Trygstad O, Pedersen O. Studies of insulin resistance in congenital generalized lipodystrophy. Acta Paediatr 1996; 85: 29. https://doi.org/10.1111/j.1651-2227.1996. tb14263.x
- 145. Magistris L de, Familiari V, Pascotto A, Sapone A, Frolli A, Iardino P, et al. Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. J Pediatr Gastroenterol Nutr 2010; 51: 418. https://doi.org/10.1097/mpg.0b013e3181dcc4a5
- 146. Fiorentino M, Sapone A, Senger S, Camhi S, Kadzielski SM, Buie T, et al. Blood-brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders. Mol Autism 2016; 7. https://doi.org/10.1186/s13229-016-0110-z

- 147. Braunschweig D, Krakowiak P, Duncanson P, Boyce R, Hansen R, Ashwood P, et al. de Autism-Specific Maternal Autoantibodies Recognize Critical Proteins in Developing Brain. Translational Psychiatry 2013; 3. https://doi.org/10.1038/tp.2013.50
- 148. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 2013; 155: 1451. https://doi.org/10.1016/j.cell.2013.11.024
- 149. Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah IN, Water JV. de Elevated Plasma Cytokines in Autism Spectrum Disorders Provide Evidence of Immune Dysfunction and Are Associated with Impaired Behavioral Outcome. Brain Behav Immun 2010; 25: 40. https://doi.org/10.1016/j.bbi.2010.08.003
- 150. Li X, Chauhan A, Sheikh AM, Patil S, Chauhan V, Li X, et al. Elevated immune response in the brain of autistic patients. J Neuroimmunology 2009; 207: 111. https://doi.org/10.1016/j.jneuroim.2008.12.002
- 151. Vargas D, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 2004; 57: 67. https://doi.org/10.1002/ana.20315
- 152. Sotelo-Orozco J, Hertz-Picciotto I, Abbeduto L, Slupsky CM. Metabolomics analysis of children with autism, idiopathic-developmental delays, and Down syndrome. Translational Psychiatry 2019; 9. https://doi.org/10.1038/s41398-019-0578-3
- 153. Abdelli LS, Samsam A, Naser SA. Propionic acid induces gliosis and neuro-inflammation through modulation of PTEN/AKT pathway in autism spectrum disorder. Scientific Rep 2019; 9. https://doi.org/10.1038/s41598-019-45348-z
- 154. Smith AM, Natowicz MR, Braas D, Ludwig MA, Ney DM, Donley ELR, et al. A metabolomics approach to screening for autism risk in the children's autism metabolome project. Autism Res 2020; 13: 1270. https://doi.org/10.1002/aur.2330
- 155. Lee J-C, Chen C-M, Sun C, Tsai I, Cheng Y, Chiu H, et al. The therapeutic effects of probiotics on core and associated behavioral symptoms of autism spectrum disorders: a systematic review and meta-analysis. Child Adolesc Psychiatry Ment Health 2024; 18. https://doi.org/10.1186/s13034-024-00848-3
- 156. Ng QX, Peters C, Ho CYX, Lim DY, Yeo WS. A meta-analysis of the use of probiotics to alleviate depressive symptoms. J Affective Disord 2017; 228: 13. https://doi.org/10.1016/j.jad. 2017.11.063
- 157. Shaaban SY, Gendy YGE, Mehanna NSh, El-Senousy WM, El-Feki HSA, Saad K, et al. The role of probiotics in children with autism spectrum disorder: a prospective, open-label study. Nutr Neurosci 2017; 21: 676. https://doi.org/10.1080/1028415x.2017. 1347746
- 158. Kang D, Adams JB, Gregory A, Borody TJ, Chittick L, Fasano A, et al. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome 2017; 5. https://doi.org/10.1186/s40168-016-0225-7
- 159. Li Y, Xiao P, Ding H, Wang H, Xu Q, Wang R, et al. Fecal microbiota transplantation in children with autism. Neuropsychiatr Dis Treat 2024; 2391. https://doi.org/10.2147/ndt. s488001
- 160. Ye C, Zhang X, Cui J, Chen Q, Qin H, Li N, et al. FTACMT study protocol: a multicentre, double-blind, randomised, placebo-

- controlled trial of faecal microbiota transplantation for autism spectrum disorder. BMJ Open 2022; 12. https://doi.org/10.1136/bmjopen-2021-051613
- 161. Moreno RJ, Ashwood P. An update on microbial interventions in autism spectrum disorder with gastrointestinal symptoms. Int J Mol Sci 2024; 25: 13078. https://doi.org/10.3390/ ijms252313078
- 162. Golbaghi N, Naeimi S, Darvishi A, Najari N, Cussotto S. Probiotics in autism spectrum disorder: recent insights from animal models. Autism 2024; 28: 2722. https://doi.org/10.1177/13623613241246911
- 163. Alharthi A, Alhazmi S, Alburae NA, Bahieldin A. The human gut microbiome as a potential factor in autism spectrum disorder. Int J Mol Sci 2022; 23: 1363. https://doi.org/10.3390/ijms 23031363
- 164. Sandler RH, Finegold SM, Bolte ER, Buchanan CP, Maxwell A, Väisänen M, et al. Short-term benefit from oral vancomycin treatment of regressive-onset autism. J Child Neurol 2000; 15: 429. https://doi.org/10.1177/088307380001500701
- 165. Grimaldi R, Gibson GR, Vulevic J, Giallourou N, Castro-Mejía JL, Hansen LH, et al. A prebiotic intervention study in children with autism spectrum disorders (ASDs). Microbiome 2018; 6. https:// doi.org/10.1186/s40168-018-0523-3
- 166. Zhang J, Zhu G, Wan L, Liang Y, Liu X, Yan H, et al. Effect of fecal microbiota transplantation in children with autism spectrum disorder: a systematic review. Front Psychiatry 2023; 14. https:// doi.org/10.3389/fpsyt.2023.1123658
- 167. Ramani P, Sala R. Can probiotics benefit young people with autism spectrum disorders? BJPsych Open 2021; 7. https://doi.org/10.1192/bjo.2021.752
- 168. Kim G-H, Shim JO. Gut microbiota affects brain development and behavior. Clin Exp Pediatr 2022; 66: 274. https://doi.org/10.3345/cep.2021.01550
- 169. Dossaji Z, Khattak A, Tun KM, Hsu M, Batra K, Hong AS. Efficacy of fecal microbiota transplant on behavioral and gastrointestinal symptoms in pediatric autism: a systematic review. Microorganisms 2023; 11: 806. https://doi.org/10.3390/microorganisms11030806
- 170. Kwak M, Kim SH, Kim HH, Tanpure R, Kim JI, Jeon B, et al. Psychobiotics and fecal microbial transplantation for autism and attention-Deficit/Hyperactivity disorder: microbiome modulation and therapeutic mechanisms. Front Cell Infect Microbiol 2023; 13. https://doi.org/10.3389/fcimb.2023. 1238005
- 171. Li Y, Wang Y, Zhang T. Fecal microbiota transplantation in autism spectrum disorder. Neuropsychiatr Dis Treat 2022; 2905. https://doi.org/10.2147/ndt.s382571
- 172. Kang D, Adams JB, Vargason T, Santiago M, Hahn J, Krajmalnik-Brown R. Distinct fecal and plasma metabolites in children with autism spectrum disorders and their modulation after microbiota transfer therapy. mSphere 2020; 5. https://doi.org/10.1128/msphere.00314-20
- 173. Hu C, He T, Zou B, Li H, Zhao J, Hu C, et al. Fecal microbiota transplantation in a child with severe ASD comorbidities of gastrointestinal Dysfunctions—A case report. Front Psychiatry 2023; 14. https://doi.org/10.3389/fpsyt.2023.1219104
- 174. Pan ZY, Zhong H, Huang D, Wu L, He X. Beneficial effects of repeated washed microbiota transplantation in children with

- autism. Front Pediatr 2022; 10. https://doi.org/10.3389/fped.2022. 928785
- 175. Qi Z, Lyu M, Yang L, Yuan H, Cao Y, Zhai L, et al. A novel and reliable rat model of autism. Front Psychiatry 2021; 12. https://doi.org/10.3389/fpsyt.2021.549810
- 176. Li Y, Luo ZY, Hu Y-Y, Bi Y-W, Yang J, Zou W-J, et al. The gut microbiota regulates autism-like behavior by mediating vitamin
- B6 homeostasis in EphB6-Deficient mice. Microbiome 2020; 8. https://doi.org/10.1186/s40168-020-00884-z
- 177. Tan Q, Orsso CE, Deehan EC, Kung JY, Tun HM, Wine E, et al. Probiotics, prebiotics, synbiotics, and fecal microbiota transplantation in the treatment of behavioral symptoms of autism spectrum disorder: a systematic review. Autism Res 2021; 14: 1820. https://doi.org/10.1002/aur.2560