
Elucidating the interplay between gut
microbiota and autism spectrum disorder.
New insights and therapeutic perspectives

Maria Mavridou1, Maria Anna Kyriazidi2, Sotiris Varlamis1,
Petros Skepastianos1, Stella Mitka1, Vasileios Papaliagkas1 and
Maria Chatzidimitriou1p

1 Department of Biomedical Sciences, Faculty of Health Sciences, International Hellenic University,
57400, Thessaloniki, Greece
2 Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece

Received: June 26, 2025 • Accepted: August 1, 2025

ABSTRACT

Autism is a complex neurodevelopmental disorder characterized by a wide range of cognitive, behav-
ioural and communication impairments. Children with autism have a distinctive and underdeveloped
range and volume of gut bacteria (microbiome) which is often not related to their diet. Evidence
gathered throughout years of research suggests that the pathway between gut bacteria and the central
nervous system, referred to as the gut-brain axis (GBA), has a profound effect on the social behaviours
of autistic children. The gut microbiome has been shown to play a vital role in the manifestation of
autism spectrum disorder (ASD) symptoms as gut dysbiosis - an imbalance in the gut microbiome -
affects brain development through processes regulated by the neuroendocrine, neuroimmune and
autonomic nervous systems. Although dysregulation of the gut microbiome and subsequent disruption
of GBA are thought to contribute to the pathogenesis of autism, the underlying mechanisms and the
extent to which the microbiome contributes to neurodevelopmental disorders remain unclear. In this
review, we focus on understanding the complex and multidirectional interplay between gut microbiota
and ASD based on evidence mounted over the years. Furthermore, we examine how genomics,
metabolomics and microbiome components can be integrated to unravel this multifactorial disorder.
The ability to understand the underlying mechanisms involved in ASD will pave the way for future
advancements in therapy and treatment.
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INTRODUCTION

Autism Spectrum Disorder (ASD) is a complex group of neurodevelopmental conditions
characterized by a wide range of impairments including altered social communication and
interaction as well as the presence of restricted, repetitive patterns of behavior, interests, or
activities.

The prevalence of ASD in children and adolescents has been increasing in recent years,
with latest estimates showing that approximately 2% (from 1% to 3%) of children in the
United States being diagnosed with ASD [1, 2]. These variations in the diagnosis of ASD are
attributed to geographical, socioeconomic, and methodological factors [3–5], with socio-
economic factors being central in the detection and diagnosis of ASD [4]. In terms of gender,
males are affected more frequently than females by the condition [6]. Although ASD has been
well defined in terms of behavioural diagnosis, what causes ASD still remains a mystery.
What has been well understood from extensive research to date is that the etiology of ASD is
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multifactorial involving a complex interplay of genetic and
environmental factors that contribute to its manifestation
[7–9]. To add to the complexity of the multifaceted nature of
ASD, the gut microbiome has been drawing researcher’s
attention in the last decade regarding its role in the devel-
opment and etiopathogenesis of ASD. Mounting evidence to
date highlights the complexity of ASD with the involvement
of the gut microbiome, further suggesting a bidirectional
communication between the central nervous system and the
gastrointestinal tract, known as the microbiota-gut-brain
axis [10–12].

GENETIC AND ENVIRONMENTAL FACTORS
CONTRIBUTING TO ASD

Extensive genetic research has highlighted the importance of
genetic factors in the development of autism. These include,
copy number variations, rare common variants and de novo
mutation underlying ASD etiology [13].

Genome-wide association (GWAS) and genetic studies
have identified common genetic variants; mainly single
nucleotide polymorphisms (SNPs), to be associated with
autism [14–16]. In ASD cases, SNPs collectively account for
a substantial proportion (estimated at 40–60%) to be of
heritable risk [17, 18]. Multiple investigations using large-
scale sample sizes have demonstrated that the cumulative
burden of these common variants contributes to ASD sus-
ceptibility, even though the effect sizes of individual loci
remain modest. It remains unclear still how common vari-
ants interact and aggregate to increase disease liability
[17, 18]. The presence of SNPs in various genes, including
those involved in synaptic function, has been associated with
increased risk for developing autism [19, 20].

Large-scale meta-analyses have been particularly pivotal
in identifying risk loci at genome-wide significance levels.
One of the latest meta-analysis conducted, involved over
18,000 ASD cases and almost 28,000 controls, culminating
in the identification of five genome-wide significant loci
[16]. In another similar study, novel candidate genes such as
DDHD2 were found to be implicated in the etiology of ASD
[21], underscoring the value of large, genetically informative
cohorts in uncovering the subtle contributions of common
variants. These studies illustrate that common genetic vari-
ation, while individually modest in effect, collectively con-
tributes essential information about the biological
mechanisms underlying ASD.

The heritability component linked to ASD can be further
demonstrated in twin studies with heritability estimates as
high as 0.9 in twin studies [22]. Siblings of individuals with
ASD are at a substantially higher risk, being approximately
25 times more likely to be diagnosed compared to the
general population [22].

Apart from the heritability component, a number of
large-scale whole-exome sequencing studies have demon-
strated that rare de novo single nucleotide variants (SNVs)
and copy number variations (CNVs) occur at a higher rate
in ASD probands compared to unaffected siblings,

supporting a strong link between these mutations and
autism risk [23–25]. In these studies, de novo loss-of-func-
tion and missense mutations in genes with critical roles in
synaptic formation and neuronal development have been
identified repeatedly in affected individuals, highlighting
their importance in neurodevelopment [25, 26].

Additionally, the co-occurrence of multiple extreme de
novo variants in affected individuals compared to controls is
more prevalent, as well as in patients with ASD who had
significantly lower IQs [27]. This suggests that the cumulative
effect of multiple rare variants may exacerbate disease severity
[25]. Studies have shown that approximately 49 genes show
higher frequencies of disruptive de novo variants in in-
dividuals ascertained to have severe neurodevelopmental
delay, whereas 53 show higher frequencies in individuals
ascertained to have ASD [28]. Furthermore, the observed
difference in the rate of de novo mutations between males and
females with ASD may be explained either by a protective
effect conferred by genetic factors in females or by an ascer-
tainment bias, whereby affected females tend to exhibit more
severe phenotypes compared to affected males [29].

Although a number of neurodevelopmental genetic dis-
orders such as epilepsy, obsessive compulsive disorder
(OCD) and Angelman syndrome (AS) co-occur with ASD
[30–32], single gene mutations and copy number variations
do not add up to the majority of ASD cases. In fact, when
found, genetic alterations are usually de novo rather than
inherited [33]. It has become apparent that polygenetic in-
fluences underly the etiology of ASD whereby changes in
multiple genes might add up to a threshold that disrupts
cellular pathways [34]. A selected overview of major genetic
findings associated with ASD and their prevalence in ASD
patients is summarized (Table 1). Despite the strong
contribution of genetics to ASD, it is clear that genes alone
cannot account for all cases. It is now well established that
environmental factors play a crucial role in modulating the
risk of developing ASD through their interactions with
various genes [35]. Some of these environmental factors that
are associated with an increased risk of ASD include prenatal
exposure to infections, maternal immune activation, expo-
sure to certain medications during pregnancy, and exposure
to environmental toxins [36]. Exposure to environmental
toxicants during prenatal development may impact brain
development, thus altering cognitive, social, and motor skills
[37]. Prenatal exposure to thalidomide and valproic acid has
been shown to elevate ASD risk, while supplementation with
folic acid during pregnancy may mitigate risk in patients
exposed to antiepileptic drugs [38].

In addition, advanced parental age, assisted reproductive
technologies, nutritional factors, pre-mentioned maternal
infections and diseases, environmental chemicals and toxi-
cants, and medications, as well as other conditions have also
been described as high-risk for developing ASD [39]. The
environment encompasses a broad range of non-genetic
factors, spanning from viruses to medications and from
chemical or physical agents to social and cultural influences
[40]. It is therefore important not to focus on the “genes of
autism,” which implies determinism, but to study instead the
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effects of the genome integrated with environmental,
epigenetic, or genetic contributions [41]. Recent studies
suggest that approximately 50% of ASD cases can be
attributed to environmental factors [42]. These environ-
mental factors, including prenatal conditions, have a pivotal
role in the early stages of autism development, although the
precise mechanisms remain largely undefined [40, 43].
Although their potential roles in ASD etiology have been
investigated, the exact mechanisms of how these factors
contribute to ASD are not clearly understood.

THE GUT-BRAIN AXIS IN AUTISM: EXPLORING
THE ROLE OF THE MICROBIOME

A mounting body of evidence has linked the gut microbiota
to the multifaceted nature of ASD (Table 2). The microbiota
is considered a non-genetic, yet heritable [89] contributor to
psychiatric behaviours. These microbial communities
consist of microorganisms residing in the gastrointestinal
(GI) tract from where they affect development and function
of the immune, metabolic and nervous systems [90, 91]. The
influence of gut microbiota on autism is complex and
multifactorial, involving interactions between genetics, the
environment, and the immune system [8, 40].

Dietary components, particularly proteins and their
metabolites, have been shown to significantly affect the
microbiome composition and alter its function, either within
a host or when inherited by its offspring [92]. It has been
reported that specific microbial phyla, such as Bacteroides
and Firmicutes, are sensitive to dietary proteins, which can
lead to alterations in microbial diversity and functionality
[93]. In fact, dietary changes may also modify disease
symptoms in individuals, when coupled with a genetic risk
[94, 95]. On the other hand, a ‘‘pathogenic’’ microbiome
itself can trigger systemic inflammation, metabolic disorders,
and/or alterations in neurotransmitter metabolism, all of
which can further result in neurodevelopmental disorders in
otherwise non-predisposed individuals [96, 97]. For
example, transplant of microbiota from patients with ASD
into germ-free mice induces ASD-like behaviours in these
animals, suggesting that the microbiome alterations can lead
to changes in behaviours typical to ASD, especially social
deficits [96, 98].

Dysbiosis in the gut microbiota, characterized by an
imbalance in the composition and function of gut microbial
communities, has been increasingly recognized as a potential
contributing factor to ASD [99]. It is hypothesized that al-
terations in the gut microbiota can impact brain develop-
ment and function through various mechanisms, including

Table 1. Summary of evidence for selected ASD candidate genes (and/or regions), their association with ASD and their prevalence/effect size
across ASD patients

Genetic Type/Gene or Region Association with ASD Estimated Prevalence/Effect Size Reference(s)

Twin studies (heritability) Monozygotic concordance rate
significantly higher than dizygotic

twins

Heritability estimates range from
∼64% to 91%.

[22, 44–53]

Rare de novo protein truncating
variants (PTVs)/SNVs

High-impact variants disrupting
gene function

Found in ∼8%–10% of ASD
probands and are rare in unaffected

individuals.

[28, 48, 51, 53–56]

Copy-number variants (CNVs)
(e.g. 16p11.2 deletion/duplication,
15q11-q13 duplication, 22q11.2
deletion)

Sensory and synaptic deficits; strong
ASD risk

CNVs in ∼10–20% of ASD cases;
specific CNV syndromes in ∼1%.

[46, 48, 53, 57–60]

Dup15q syndrome (15q11.2-q13.1
duplication)

Most common known genetic cause
of syndromic ASD; associated
epilepsy, intellectual disability

Accounts for ∼1–3% of all ASD
cases.

[61–64]

PTEN mutations Associated with macrocephaly,
synaptic overgrowth and ASD

Occur in ∼2% of all ASD cases,
estimated to be higher (∼20%) in

individuals with ASD and
macrocephaly.

[48, 65–67]

Synaptic genes: SHANK3,
neuroligins (NLGN3/4), neurexins

Affect synaptic formation and
signalling; disruption linked to ASD.

Rare mutations, high-effect in
subgroups.

[51, 68–75]

High-confidence ASD-associated
genes: ASH1L, CHD8, MECP2

Implicated in chromatin regulation,
gene expression, neuronal

development

Rare variants with pleiotropic effects
(epilepsy, ADHD, ID).

[48, 76–80]

Common SNPs in genes:
CNTNAP2, MTHFR, OXTR, VDR

Modest associations, varied by allele Identified significant ORs for select
SNPs in meta-analysis.

[50, 81, 82]

Polygenic effects (GWAS-identified
loci)

Many small-effect variants
cumulatively contribute risk

May explain ∼10–12% of ASD risk
variance.

[47, 83–85]

X-linked genes DDX53 (and
PTCHD1-AS)

Maternally- inherited variants in the
DDX53 gene are linked to ASD.

∼0.04%–0.05% of ASD patients in
this study were found to carry rare

DDX53 variants

[86–88]
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the production of neuroactive compounds, modulation of
the immune system, and alteration of gut-brain communi-
cation pathways [100]. It has become apparent that differ-
ences in microbial composition and diversity exist between
individuals with ASD and neurotypical controls [101–113].

Notably, gastrointestinal comorbidities are more preva-
lent in children diagnosed with ASD compared to their
neurotypical peers, with some studies suggesting a fourfold
increase in the likelihood of experiencing GI symptoms
[114]. Gastrointestinal issues commonly observed in in-
dividuals with ASD include abdominal pain, diarrhoea, and
constipation [115]. A growing body of evidence clearly
shows that children with ASD tend to exhibit lower mi-
crobial diversity, as well as alterations in the relative abun-
dance of specific bacterial taxa [116]. Multiple studies have
consistently shown a reduced abundance of beneficial bac-
teria, such as Bifidobacteria and Lactobacillus, coupled with
an overgrowth of potentially pathogenic bacteria, like Clos-
tridia and Bacteroides in individuals with ASD [117].

Although there is an abundance of data linking the di-
versity of bacterial communities colonising the gut of ASD
patients, no direct link to a possible role of these microbes in
the development of autism symptoms has been found
[118–120].

A recent ground-breaking study employing a compre-
hensive multi-omics approach has provided evidence linking
specific bacterial strains to the development of autism
spectrum disorder (ASD). By integrating samples taken from
urine, blood, and fecal matter from age-matched ASD pa-
tients and neurotypical (ND) controls, the study utilized
RNA sequencing, metabolomics, and microbiomics to cap-
ture a holistic view of the host and microbial molecular
landscapes. This integrative methodology enables the

simultaneous examination of alterations in host gene
expression, metabolic shifts, and bacterial community
structures, which is critical given the multifactorial etiology
of ASD [121]. From this multi-directional analysis, four
groups of microbes stand out in ASD patients that differ
from age-matched NT controls. These include the gut
microbe Bacteroides fragilis which has been shown to
improve symptoms in mice. This bacterium is also consid-
ered a next-generation probiotic agent for improving
gastrointestinal symptoms [122]. Next, one bacterial signa-
ture that stands out in ASD patients, is the Bifidobacterium
strain which is associated with early development and
childhood [123, 124]. Whether the role of this bacterial
strain is protective or delays gut maturation is not well
understood. It has been suggested that the Bifidobacterium
longum strain could alleviate autistic-like behaviours (re-
petitive behaviours, learning and memory ability and despair
mood) [125, 126]. The sulphate-reducing bacteria (SRB) of
the genus Desulfovibrio have also been found to be more
abundant in children with ASD compared to healthy chil-
dren [105, 111, 127]. Another genus of bacteria gaining
attention in autism due to its immense dietary complexity is
Prevotella. This bacterium has the capacity to metabolize
complex carbohydrates and is found in increased numbers
in carbohydrate-depleted diets [108, 128, 129] Children
diagnosed with ASD often exhibit reduced levels of Pre-
ovotella, particularly Prevotella copri in their gut microbiota.
Notably, in a comparative study utilising 16S rRNA gene
sequencing to compare intestinal microflora between ASD
patients and NT controls, it was discovered that the abun-
dance of P. copri and other fermentative bacteria was lower
in ASD-diagnosed children than in their neurotypical
counterparts [108]. Comparing results across studies

Table 2. Major research findings linking the gut microbiota with ASD. Summary of microbial composition, functional implications and
therapeutic insights in ASD cases

Finding Description Key Citations

Microbiota Dysbiosis Altered gut microbial composition in ASD individuals, including
higher levels of Clostridium, Desulfovibrio; lower levels of
Bifidobacterium, Prevotella, Lactobacillus; mixed changes in

Bacteroides species.

[108, 110, 121]

Reduced Microbial Diversity Children with ASD show lower gut microbial diversity and
richness compared to NCs.

[103, 108, 112, 140]

Microbiota-Gut-Brain Axis Bidirectional communication between the gut and brain mediated
via the vagus nerve, immune signalling, and metabolites.

[121, 141, 142]

Leaky Gut/Increased Intestinal
Permeability

ASD individuals may have impaired gut barrier function, allowing
microbial by-products and toxins to enter circulation.

[143–146]

Neuroimmune Modulation Neuroinflammation and immune activation are affected by gut
microbiota imbalances, indicating brain function dysregulation in

ASD.

[147–151]

Functional Metabolomic Changes Systematic shifts in metabolic pathways associated with ASD,
including amino-acid, carbohydrate and lipid imbalances likely
contributing to neurodevelopmental differences and immune

activation in ASD.

[121, 152–154]

Probiotics and Behavioural Effects Probiotic treatment (i.e Lactobacillus plantarum, Bifidobacterium
longum) improves behaviour in ASD and reduces GI symptoms.

[148, 155–157]

Faecal Microbiota Transplantation
(FMT)

FMT consistently improves GI symptoms and behavior in ASD
children, with sustained effects.

[116, 158–160]
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highlights that the role of P. copri is complex and context-
dependent. For example, while some investigations indicate
an overall depletion of Prevotella in ASD [130], subsequent
analyses reveal that sub-species level variation —exemplified
by an increase in P. copri — is critical in modulating host
metabolic pathways [131]. Multi-omic analysis reinforces this
complexity by correlating P. copri-associated metabolic sig-
natures to brain-associated gene expression profiles and pro-
inflammatory cytokine patterns [121, 132]. This integrative
approach underscores that microbe alterations in ASD are
both microbial community- and strain-specific, indicating
that P. coprimay serve as a potential biomarker for a subset of
ASD characterised by distinct metabolic disruptions.

Overall, these findings underscore the importance of
strain-level analysis in the microbial ecology of ASD and
pave the way for targeted interventions that might modulate
the gut microbiome to improve clinical outcomes. Despite
these advances, the inconsistent nature of results across
various studies, which can be attributed to variations in
study designs, small sample sizes, and the heterogeneity of
the ASD microbiome, necessitates further research to vali-
date these findings and elucidate the precise mechanisms by
which gut microbiota influences the pathogenesis of ASD
[133]. Future studies should aim for larger, more stan-
dardized cohorts, consider factors such as dietary habits and
medication use, and employ advanced techniques such as
metagenomics and metabolomics to gain a deeper under-
standing of the complex interplay between the gut micro-
biota and ASD [133–135].

MAPPING THE GUT MICROBIOME
TO MULTI-OMICS

Current research conducted to understand the association
between the gut microbiota and ASD has rapidly expanded
with the use of technologies analysing the gut microbiome of
ASD patients with regards to their neurotypical counterparts
at different omics levels. Researchers have employed a va-
riety of high-throughput and integrative approaches to
elucidate the underlying molecular interactions between the
host and its microbial residents. Multi-omics strategies now
incorporate metagenomics, meta-transcriptomics, metab-
olomics, and the emerging field of small non-coding RNA
(ncRNA) profiling, each contributing a unique perspective
on the complex etiology of ASD. The results of these multi–
omics studies have revealed many, although inconsistent,
differences in microbial diversity in children with ASD
compared to their neurotypical controls [120, 121]. Simi-
larly, functional metagenomics and metabolic analyses have
also shown strong, albeit inconclusive, differences between
the two groups [119]. It is worth noting that differences in
sequencing methods, data analysis pipelines and patient
selection could contribute to the conflicting differences re-
ported across studies [136].

Comparative analyses at other omic levels have further
shown inconsistencies across studies [118], making it

difficult to distinguish whether the results obtained are due
to intrinsic biological differences among samples or are a
result of experimental biases and insufficient statistical po-
wer that prevent meaningful results [121, 137]. In one of the
latest multi-omic level analysis of the gut microbiota profiles
in ASD, the discrepancies in experimental design, sample
processing and result interpretation were taken into account
and already published datasets were re-analysed and re-
evaluated in an attempt to produce an integrated approach
to the multitude of previous published datasets to date [121].
In detail, samples from ten cross-sectional microbiome
datasets with fifteen additional omic datasets—including
dietary records, metabolomics, cytokine profiles, and brain
expression profiles—were combined in order to identify
autism-specific patterns along the gut-brain axis. The inte-
gration of multiple omics platforms resulted in a more clear
understanding of the functional architecture of autism,
therefore establishing a more distinctive relationship be-
tween microbial communities and host physiological
processes.

In another approach, advanced topic modelling was
applied through latent Dirichlet allocation to multi-omic
datasets (16S rRNA gene amplicon, shotgun metagenomic,
metatranscriptomic, and untargeted metabolomic profiling)
from ASD and NTD fecal samples. This approach pin-
pointed microbial processes and topics that differ between
autistic and neurotypical children and identified specific
metabolites — such as neurotransmitter precursors — that
could serve as functional biomarkers of the disorder [138].

In addition to these high-throughput microbial and
transcriptional assessments, metabolomic approaches have
also been used to understand how microbial fermentation
products affect neurological development. Microbial
fermentation of dietary fibers produces short-chain fatty
acids (SCFAs), which in turn may exert either beneficial or
detrimental effects on both gut and neurological develop-
ment in individuals with ASD [139]. Due to the multi-
faceted nature of autism, in order to understand the
mechanisms by which alterations in gut microbial commu-
nities contribute to ASD via immune and neuroendocrine
signalling pathways, multiple-omic levels are critical in
understanding this complex interaction.

Therapeutic approaches targeting the gut microbiome
in autism

Therapeutic approaches targeting the gut microbiome have
emerged as a promising, though still evolving, area of
research for autism. This field integrates multiple lines of
evidence on the critical role the microbiota–gut–brain axis
has in the heterogenic nature of the condition. In preclinical
models, modifications of the gut microbiota have led to
improvements in both gastrointestinal function and neuro-
behavioral outcomes, suggesting that the manipulation of
gut microbes may directly impact brain function and
behaviour [161, 162]. Therapeutic interventions aimed at
restoring an eubiotic gut environment include a spectrum of
approaches such as probiotics, prebiotics, antibiotics, and
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fecal microbiota transplantation (FMT) [161, 163]. These
microbial-based interventions have shown promise in a
limited number of human trials [158, 164, 165].

Probiotics, in particular, have been extensively examined
in both clinical and preclinical studies as a means to
ameliorate GI symptoms and potentially modify core
behavioral impairments associated with ASD [117, 166]. For
example, several clinical studies with single or mixed pro-
biotic strains have yielded promising results in mitigating
gastrointestinal inflammation and restoring microbial equi-
librium, although the outcomes remain heterogeneous and
require larger-scale trials for definitive conclusions
[117, 162]. Furthermore, probiotics have been shown to
exert bidirectional effects on gut-brain communication, with
some studies reporting improvements in core ASD symp-
toms, possibly by reducing gut permeability and modulating
neuroinflammatory markers [117, 167]. Despite these ad-
vances, the field continues to confront challenges related to
standardising treatment protocols, determining optimal
strains or combinations, and establishing long-term efficacy,
as well as understanding the interplay between genetic
predisposition and environmental influences in ASD
[161, 163].

Fecal microbiota transplantation (FMT) has emerged as
a promising therapeutic intervention for addressing autism
spectrum disorder (ASD) symptoms, particularly those
associated with gastrointestinal (GI) dysfunction. Many
children with ASD experience significant GI disturbances
that correlate with increased behavioural symptom severity,
suggesting a link between gut dysbiosis and neurological
manifestations [168, 169]. Systematic reviews and clinical
trials have demonstrated that FMT can lead to improve-
ments in both behavioural outcomes and GI symptoms in
paediatric populations with ASD [166, 169]. Conversely,
FMT offers an alternative strategy that targets the complex
microbiota environment of the gut by reintroducing a full
complement of microbial communities, thereby directly
influencing the MGB axis and potentially attenuating aber-
rant immune responses and metabolic disturbances linked
to ASD [161, 170].

Recent investigations showed that FMT, by introducing a
wider range of commensal microbes from a healthy donor,
may correct the imbalance in the gut microbial community
observed in ASD [171]. For instance, Kang et al. reported
long-term benefits following a microbiota transfer therapy
protocol that combined antibiotics, bowel cleansing, and
subsequent FMT, observing improvements in both core
behavioural symptoms and gastrointestinal disturbances
[116, 172]. These findings suggest that re-establishing a
balanced gut microbiota could modulate the microbiota–
gut–brain axis, subsequently influencing neurodevelopment
and behaviour [168, 171].

Additional studies support the therapeutic potential of
FMT through various routes of administration tailored to
the pediatric population. Research has demonstrated that
both capsule-based and tube-delivered FMT approaches are
feasible and can produce significant clinical responses in
children with ASD [159]. Moreover, case reports and

retrospective studies have reported enhanced gastrointes-
tinal function as well as a reduction in behavioural
dysfunction following FMT [173]. Evidence suggests that
repeated courses of FMT may provide additive benefits,
indicating that sustained modulation of the gut microbiota
may be advantageous for symptom management in
ASD [174].

Beyond clinical observations, preclinical models have
provided mechanistic insights into the role of the gut
microbiome in ASD. Animal studies illustrate that trans-
plantation of faecal microbiota from ASD patients into
germ-free or antibiotic-treated animals can induce autism-
like behaviours, thus reinforcing the concept that microbiota
alterations may play a causative role in the disorder [175].
Such studies underscore the relevance of the gut–brain axis,
where microbial metabolites and signalling molecules can
influence neural function and behaviour [176].

Despite encouraging early results, the field requires
further randomized controlled trials and longer-term follow-
up studies to definitively establish both efficacy and safety
profiles, as well as to elucidate the precise mechanisms by
which FMT mediates its effects on the central nervous sys-
tem [166, 169, 177].

In summary, FMT represents a novel and potentially
effective therapeutic strategy in ASD by targeting the gut
dysbiosis that frequently accompanies both gastrointestinal and
behavioural abnormalities in affected children [116, 168, 171].
While emerging data are encouraging, a comprehensive un-
derstanding of optimal protocols, long-term outcomes, and
mechanistic pathways is required to firmly establish FMT in
the therapeutic arsenal against ASD.

In summary, the current evidence supports the notion
that microbial-based interventions aimed at restoring a
healthy gut microbiome have the potential to be utilized as
complementary therapies for ASD. The integration of ap-
proaches such as probiotics, prebiotics, and FMT into clin-
ical practice could pave the way for personalized medicine
strategies aimed at both alleviating gastrointestinal distur-
bances and moderating behavioral symptoms in autism.
However, further rigorous, large-scale, and longitudinal
clinical trials are indispensable to validate the efficacy and
safety profiles of these interventions, and to unravel the
precise mechanisms by which the gut microbiota influence
neurodevelopment and behaviour.
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