

Vitamin D as a Potential Fighter Against Peripheral Artery Disease

Current scientific evidence suggests that **vitamin D may indeed play a protective role against peripheral artery disease (PAD)**, though the relationship is complex and still being actively researched. Multiple studies demonstrate strong associations between vitamin D deficiency and increased PAD risk, along with compelling biological mechanisms that support a causal relationship.

Strong Observational Evidence Links Vitamin D Deficiency to PAD

A comprehensive meta-analysis of 16 studies involving over 99,000 participants found that patients with PAD have significantly lower vitamin D levels compared to healthy controls. The analysis revealed that people with vitamin D deficiency (levels below 20 ng/mL) had a 48% higher prevalence of PAD, while those with vitamin D insufficiency (20-30 ng/mL) had a 10% higher prevalence compared to individuals with normal vitamin D levels above 30 ng/mL. [1]

The relationship appears to be dose-dependent: for every 10 ng/mL decrease in 25-hydroxyvitamin D levels, the **prevalence of PAD increases by 35%** after adjusting for traditional cardiovascular risk factors. This graded relationship persists even after accounting for factors like diabetes, hypertension, and smoking history. [2] [1]

Biological Mechanisms Support a Protective Role

Research has identified several key mechanisms by which vitamin D may protect against PAD development and progression:

Anti-inflammatory Effects: Vitamin D suppresses production of pro-inflammatory cytokines like TNF-alpha and IL-6, which contribute to atherosclerosis development. It also reduces inflammatory markers like C-reactive protein and promotes anti-inflammatory immune responses. [3] [4] [5]

Endothelial Function Enhancement: Vitamin D directly regulates nitric oxide production by enhancing endothelial nitric oxide synthase (eNOS) expression. This improves endothelium-dependent vasodilation and helps maintain healthy blood vessel function. Studies show that vitamin D deficiency is associated with impaired flow-mediated dilation and increased arterial stiffness. [6] [7] [8]

Vascular Smooth Muscle Cell Regulation: Vitamin D receptors are present in vascular smooth muscle cells, where vitamin D helps prevent excessive proliferation that contributes to atherosclerotic plaque formation. [2] [3]

Immune System Modulation: Vitamin D promotes regulatory T-cells (Tregs) that suppress inflammatory responses while reducing mature dendritic cells that stimulate pro-atherosclerotic immune activity. Animal studies show that vitamin D supplementation reduces atherosclerotic lesions by 39% through these immune mechanisms. [2]

Clinical Consequences of Vitamin D Deficiency in PAD

The impact of vitamin D deficiency extends beyond just PAD development to affect patient outcomes:

Increased Amputation Risk: Veterans with PAD who were vitamin D deficient had **significantly higher amputation rates** (6.7%) compared to those with adequate vitamin D levels (4.2%). Recent studies in diabetic foot ulcer patients show that **85.7% of those requiring minor amputation** had vitamin D deficiency, with deficiency being an independent risk factor for amputation. [9] [10]

Worse Disease Severity: Studies consistently show that lower vitamin D levels correlate with more severe PAD, higher amputation rates, and increased cardiovascular event risk. [9] [2]

Current Evidence for Vitamin D Supplementation

While observational studies strongly support the protective role of vitamin D, clinical trial evidence for supplementation benefits remains mixed:

Cardiovascular Trials: Large randomized controlled trials, including a meta-analysis of 21 trials involving over 83,000 participants, have not shown significant reductions in major adverse cardiovascular events with vitamin D supplementation. However, these trials were not specifically designed for PAD prevention. [11]

PAD-Specific Research: Limited studies have directly tested vitamin D supplementation for PAD treatment. One pilot study found that while supplementation increased vitamin D levels in PAD patients, it didn't immediately improve endothelial function markers. However, the authors noted that most PAD patients were vitamin D deficient, supporting the need for correction. [12]

Optimal Levels: Research suggests that **serum 25-hydroxyvitamin D levels of at least 30 ng/mL (75 nmol/L)** may be needed for cardiovascular protection. The linear inverse relationship between vitamin D levels and cardiovascular disease risk is strongest below 60 nmol/L. [13] [14]

Practical Recommendations

Based on current evidence, several experts recommend:

Screening and Correction: Patients with PAD should have their vitamin D levels checked, and deficiency should be corrected. The suggested target is achieving serum 25-hydroxyvitamin D levels of at least 30 ng/mL. [15] [2]

Supplementation Approach: For deficiency correction, typical regimens include high-dose loading (50,000 IU weekly for 6-8 weeks) followed by maintenance dosing (800-2,000 IU daily). Vitamin D3 (cholecalciferol) is preferred over vitamin D2. [16] [17]

Lifestyle Measures: Regular outdoor sun exposure (30 minutes daily on arms and legs) combined with vitamin D-rich foods can help maintain adequate levels. However, supplementation is often necessary, especially in northern climates. [18]

Conclusion

While vitamin D deficiency clearly correlates with increased PAD risk and worse outcomes, definitive proof that supplementation prevents or treats PAD awaits larger, dedicated clinical trials. However, given the strong observational evidence, clear biological mechanisms, and the safety of appropriate vitamin D supplementation, addressing vitamin D deficiency in PAD patients appears to be a reasonable therapeutic approach. The evidence is compelling enough that several medical experts have called for urgent studies of vitamin D supplementation specifically for PAD prevention and treatment. [15] [2]

The relationship between vitamin D and PAD represents a promising area where a simple, safe, and inexpensive intervention might help combat a serious and often overlooked cardiovascular condition that affects millions worldwide.

- 1. https://academic.oup.com/jcem/article/103/6/2107/4951505
- 2. https://pmc.ncbi.nlm.nih.gov/articles/PMC3225350/
- 3. https://pmc.ncbi.nlm.nih.gov/articles/PMC10450567/
- 4. https://www.sciencedaily.com/releases/2015/03/150319124006.htm
- 5. https://pmc.ncbi.nlm.nih.gov/articles/PMC3385794/
- 6. https://www.ahajournals.org/doi/10.1161/circresaha.113.301241
- 7. https://pmc.ncbi.nlm.nih.gov/articles/PMC7071424/
- 8. https://academic.oup.com/mend/article/28/1/53/2556229
- 9. https://pubmed.ncbi.nlm.nih.gov/21194661/
- $10. \ \underline{\text{https://www.dovepress.com/25-ohd-deficiency-and-the-risk-of-minor-amputation-in-patients-with-di-peer-reviewed-fulltext-article-IJGM}$
- 11. https://jamanetwork.com/journals/jamacardiology/fullarticle/2735646
- 12. https://www.sciencedirect.com/science/article/pii/S1078588412004352
- 13. https://pmc.ncbi.nlm.nih.gov/articles/PMC4578836/
- 14. https://www.ahajournals.org/doi/10.1161/circoutcomes.112.967604
- 15. https://pmc.ncbi.nlm.nih.gov/articles/PMC2966374/
- 16. https://www.goodrx.com/conditions/vitamin-d-deficiency/dosage
- 17. https://www.nottsapc.nhs.uk/media/mmnbgqpv/vitamin-d-guidelines-adults.pdf
- 18. https://www.newportvascular.com/blog/vitamin-d-and-pad