

# **Key Take-away**

Vitamin D made from marine algae (or lichen/sea-weed) starts with a raw material that is consistently shown to trap and carry microplastic particles; lanolin does not. Modern pharmaceutical processing removes almost all solids from either source, so the finished vitamin D ingredient is very unlikely to contain measurable plastic, but—if any trace were to survive—algae-derived material is the more plausible route.

#### Why algae carries a higher microplastic load

- 1. **Algae and seaweeds act as "plastic sponges."** Field surveys repeatedly detect fibres and fragments tangled on or embedded in kelp, nori and other macro-algae, typically from coastal waters where microplastics are abundant.
  - Kelp and nori contained 0.9 3.0 items  $g^{-1}$  dry weight in 24 commercial brands of packaged seaweed [1].
  - Mexican retail seaweeds averaged 24  $\pm$  9 items g<sup>-1</sup> and reached a pollution-load index of 3.7 6.0 [2].
  - Kelp forests were "hot spots," with plastics found at every trophic level, starting in the algal fronds [3].
  - A 2024 exposure assessment calculated that seaweed now contributes up to 45% of total dietary microplastics in some East-Asian diets<sup>[4]</sup> [5].
- 2. **Laboratory work confirms active retention.** Macro-algae trap fibres through adherence, wrapping and embedment; micro-algae can even ingest 1–10  $\mu$ m spheres, altering growth and nutrient uptake [6] [7].
- 3. Extraction steps do not necessarily remove all particulates. Vitamin  $D_3$  from algae is usually obtained by solvent or super-critical- $CO_2$  extraction of dried biomass followed by crystallisation. Unless very fine filtration (<1  $\mu$ m) is built in, sub-micron plastic fragments could co-purify with lipophilic compounds.

## Why lanolin poses a lower microplastic risk

- 1. Lower environmental burden. Terrestrial sheep do ingest plastic from contaminated soils, and microplastics have been measured in faeces (~1 000 items kg<sup>-1</sup>) [8] [9] and in edible tissues ( $\approx$ 0.13 items g<sup>-1</sup>) [10], but direct measurements in wool grease are lacking and expected to be lower than in marine settings.
- 2. Lanolin production includes aggressive purification.
  - Raw wool is scoured, the grease is separated, then pharmaceutical-grade lanolin undergoes multi-stage distillation, bleaching, carbon/earth filtration and molecular sieving.

- Analyses of nipple-care lanolin found pesticide traces at the parts-per-million level but reported no particulate contamination after processing [11].
- Pharmacopeial monographs require final lanolin to pass <1  $\mu$ m filtration and visual particle tests [12].
- 3. Vitamin D₃ isolation from lanolin adds yet another round of filtration and recrystallisation. 7-Dehydrocholesterol is saponified, solvent-extracted, crystallised and UV-converted to cholecalciferol, with each stage removing insolubles.

### **Practical implications**

| Aspect                                                             | Lanolin source                                                                                       | Algae source                                                                                                    |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Typical microplastic burden in raw feedstock                       | Low: land-based, limited atmospheric fallout; no direct contact with marine debris                   | High: marine environment; algae surfaces accumulate 0.9–24 items g <sup>-1</sup> (multiple studies) [4] [2] [1] |
| Mandatory purification steps before vitamin D manufacture          | Multi-stage distillation, bleaching, sub-micron filtration; pharmacopoeial particle limits [11] [12] | Solvent/CO <sub>2</sub> extraction and crystallisation; filtration level varies by manufacturer                 |
| Published detection of microplastics in refined ingredient         | None reported                                                                                        | None reported, but raw material carries significant load and removal efficacy unreported                        |
| Relative likelihood that traces could persist into final vitamin D | Lower                                                                                                | Higher                                                                                                          |

#### **Bottom line**

Both forms of supplemental vitamin D are highly refined. Nonetheless, because marine algae are repeatedly documented to accumulate and even internalise microplastics while lanolin is produced from a less contaminated terrestrial source and then subjected to stricter particulate-removal steps, algae-derived vitamin D carries the higher theoretical risk of microplastic carry-through into the finished ingredient.



- 1. https://pubmed.ncbi.nlm.nih.gov/31955027/
- 2. https://www.sciencedirect.com/science/article/abs/pii/S0963996923013881
- 3. https://pubmed.ncbi.nlm.nih.gov/38824984/
- 4. <a href="https://pubmed.ncbi.nlm.nih.gov/38636378/">https://pubmed.ncbi.nlm.nih.gov/38636378/</a>
- 5. https://pubmed.ncbi.nlm.nih.gov/40246268/
- 6. https://www.sintef.no/en/publications/publication/1548361/
- 7. https://pubmed.ncbi.nlm.nih.gov/33038716/
- 8. https://library.wur.nl/WebQuery/wurpubs/575682
- 9. https://www.eurekalert.org/news-releases/465658
- 10. https://pubmed.ncbi.nlm.nih.gov/38403824/

- 11. <a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC9972635/">https://pmc.ncbi.nlm.nih.gov/articles/PMC9972635/</a>
- 12. https://www.cir-safety.org/sites/default/files/FAR\_Lanolin\_092024.pdf