

# Polyphenols and Nutrients: Effects on Vitamin D Metabolizing Enzymes Beyond the Vitamin D Receptor

The growing body of research on compounds that enhance vitamin D receptor (VDR) activation has revealed an intricate network of interactions that extend beyond the receptor itself to encompass the entire vitamin D metabolic pathway. While these bioactive compounds are recognized for their ability to potentiate VDR signaling, emerging evidence demonstrates that several also modulate the expression and activity of key vitamin D-metabolizing enzymes, including CYP2R1, CYP27A1, CYP27B1, and CYP24A1. This multifaceted regulation suggests these compounds may optimize vitamin D homeostasis through complementary mechanisms that enhance both hormone production and receptor sensitivity.

#### **Resveratrol: Complex Modulation of Vitamin D Metabolism**

Resveratrol demonstrates significant effects on multiple vitamin D-metabolizing enzymes, though these effects appear to be context-dependent and sometimes contradictory between transcriptional and translational levels. Research utilizing HEK-293 cells revealed that resveratrol treatment increased mRNA expression of CYP27A1, CYP27B1, and CYP24A1 [1]. However, the protein expression patterns diverged substantially from these transcriptional changes, with resveratrol actually decreasing protein levels of CYP27A1 and CYP27B1 while increasing CYP24A1 protein expression [1]. This discordance between mRNA and protein levels suggests that resveratrol may influence post-transcriptional regulatory mechanisms or protein stability.

Preliminary evidence from breast cancer cell studies supports a role for resveratrol in increasing CYP27B1 protein expression in MCF7 cells<sup>[2]</sup>. The mechanism underlying resveratrol's effects on vitamin D-metabolizing enzymes may involve SIRT1 activation, as resveratrol is known to stimulate this NAD+-dependent deacetylase, which in turn regulates mitochondrial cytochrome P450 enzymes through reversible acetylation<sup>[2]</sup>. This regulatory pathway appears particularly relevant for mitochondrial P450 enzymes like CYP27B1, which catalyzes the formation of active vitamin D.

Furthermore, resveratrol's interaction with VDR signaling creates additional complexity in its effects on vitamin D metabolism. Studies have shown that resveratrol potentiates vitamin D binding to VDR and enhances VDR-RXR heterodimerization, which could indirectly influence the expression of vitamin D-metabolizing enzymes through feedback mechanisms  $^{[3]}$ . The cooperative effect observed between resveratrol and 1,25-dihydroxyvitamin D<sub>3</sub> on transactivation suggests that resveratrol may amplify the hormonal regulation of these enzymes  $^{[3]}$ .

## **Omega-3 Fatty Acids: Synergistic Enhancement of Vitamin D Activation**

Omega-3 fatty acids demonstrate particularly compelling effects on vitamin D metabolism, especially when combined with cholecalciferol supplementation. In a chronic kidney disease model using 5/6 nephrectomy rats, omega-3 fatty acid supplementation showed distinct regulatory effects on key vitamin D-metabolizing enzymes<sup>[4]</sup>. Most notably, omega-3 fatty acids inhibited CYP24A1 expression in both kidney and liver tissues, effectively reducing the catabolism of active vitamin D metabolites<sup>[4]</sup>.

The regulation of CYP27B1 by omega-3 fatty acids appears tissue-specific and context-dependent. In the liver of nephrectomized rats, CYP27B1 expression was significantly decreased, but combined supplementation with cholecalciferol and omega-3 fatty acids restored this expression [4]. This recovery suggests that omega-3 fatty acids may enhance the responsiveness of CYP27B1 to vitamin D status, creating a more efficient activation pathway when vitamin D substrate is available.

The synergistic interaction between omega-3 fatty acids and cholecalciferol resulted in increased serum 1,25-dihydroxyvitamin  $D_3$  levels, which corresponded with the observed changes in enzyme expression [4]. This finding indicates that omega-3 fatty acids may optimize vitamin D homeostasis by simultaneously enhancing activation (through CYP27B1 support) and reducing degradation (through CYP24A1 inhibition). The mechanism underlying these effects likely involves the anti-inflammatory properties of omega-3 fatty acids and their influence on nuclear receptor signaling pathways.

# **Magnesium: Essential Cofactor for Vitamin D Enzyme Function**

Magnesium emerges as a critical regulator of vitamin D metabolism, with documented effects on multiple enzymes in the pathway. Both in vitro and in vivo studies have demonstrated that magnesium status directly affects the activity of CYP27B1 ( $1\alpha$ -hydroxylase) and CYP24A1 (24-hydroxylase). Magnesium deficiency leads to reduced 1,25-dihydroxyvitamin D<sub>3</sub> production and has been implicated in magnesium-dependent vitamin D-resistant rickets [5].

The relationship between magnesium and vitamin D-metabolizing enzymes extends beyond CYP27B1 to include CYP2R1, the primary 25-hydroxylase responsible for the first step of vitamin D activation  $^{[5]}$ . Clinical studies have shown that magnesium supplementation significantly influences plasma 25-hydroxyvitamin D<sub>3</sub> concentrations in a manner dependent on baseline vitamin D status  $^{[5]}$ . This interaction suggests that magnesium may enhance the efficiency of CYP2R1-mediated vitamin D hydroxylation.

Research indicates that magnesium supplementation affects both vitamin D-activating enzymes (CYP27B1 and CYP2R1) and vitamin D-deactivating enzymes (CYP24A1 and CYP3A4) [5]. The magnesium-dependent nature of these enzymes explains why magnesium deficiency can lead to vitamin D resistance that is only corrected through magnesium repletion rather than increased vitamin D supplementation alone. This mechanistic understanding has important implications for clinical practice, as it suggests that optimal vitamin D metabolism requires adequate magnesium status.

# **Quercetin: Differential Effects on Vitamin D Enzyme Expression**

Quercetin demonstrates complex and cell-type-specific effects on vitamin D-metabolizing enzymes that mirror some of the patterns observed with resveratrol. In HEK-293 cells, quercetin treatment increased mRNA expression of CYP2R1 and CYP27A1, but paradoxically decreased the protein expression of these same enzymes [1]. This discordance between transcriptional activation and protein levels suggests that quercetin may influence protein stability, degradation, or translation efficiency.

The effects of quercetin on CYP24A1 appear more consistent, with increased protein expression observed in response to treatment [1]. This upregulation of the vitamin D-degrading enzyme could potentially limit the beneficial effects of enhanced VDR activation, highlighting the complex nature of quercetin's influence on vitamin D homeostasis. In hepatic HUH-7 cells, quercetin showed different patterns, increasing mRNA expression of CYP2R1, CYP27B1, and CYP24A1 without significantly affecting protein levels of CYP27B1 and CYP24A1 [1].

The tissue-specific nature of quercetin's effects suggests that its impact on vitamin D metabolism may vary depending on the target organ and local cellular environment. The inability to detect CYP27A1 and CYP2R1 protein expression in HUH-7 cells indicates that the hepatic expression of these enzymes may be more tightly regulated or present at lower basal levels compared to kidney-derived cells [1].

# **Butyrate and Metformin: Emerging Modulators of Vitamin D Activation**

Butyrate, a short-chain fatty acid produced by gut microbiota, has been identified as a significant regulator of CYP27B1 expression. Studies in human gingival fibroblasts and periodontal ligament cells demonstrated that sodium butyrate significantly upregulated CYP27B1 mRNA expression independent of 1,25-dihydroxyvitamin D<sub>3</sub> levels [6]. This effect was observed alongside interleukin-1β, suggesting that butyrate may enhance local vitamin D activation in response to inflammatory stimuli.

The ability of butyrate to enhance CYP27B1 expression represents a potential mechanism by which gut microbiota composition could influence systemic vitamin D status. This finding connects the emerging understanding of the gut-vitamin D axis with specific molecular mechanisms of enzyme regulation. The independence from 1,25-dihydroxyvitamin D<sub>3</sub> feedback suggests that butyrate may provide a pathway for tissue-specific vitamin D activation that bypasses traditional hormonal control mechanisms.

Metformin, the widely used antidiabetic medication, has shown promising effects on vitamin D metabolism in preclinical studies. In a colorectal cancer prevention model, metformin treatment increased CYP27B1 expression, and this effect was further enhanced when combined with vitamin  $D_3$  supplementation [7]. The synergistic interaction between metformin and vitamin  $D_3$  resulted in increased expression of both VDR and CYP27B1, suggesting that metformin may enhance the sensitivity of vitamin D-metabolizing enzymes to hormonal regulation [7].

The mechanism by which metformin influences CYP27B1 expression likely involves its effects on cellular energy metabolism and AMPK activation. Since CYP27B1 is a mitochondrial enzyme, metformin's impact on mitochondrial function and NAD⁺ metabolism could directly affect enzyme activity and expression. The observation that combined treatment with vitamin D₃ and

metformin produced greater effects than either treatment alone suggests potential clinical applications for optimizing vitamin D status in metabolic disorders.

## **Limitations and Clinical Implications**

While the evidence for these compounds' effects on vitamin D-metabolizing enzymes is compelling, several limitations must be acknowledged. Many studies show discordance between mRNA and protein expression levels, indicating that transcriptional regulation may not always translate to functional enzyme activity [1]. Additionally, the tissue-specific nature of these effects means that systemic impacts may differ from what is observed in isolated cell culture systems.

The search results provided limited information regarding several compounds mentioned in the query, including sulforaphane and ginger, suggesting that their effects on vitamin D-metabolizing enzymes remain largely unexplored. Similarly, while intense exercise was shown to increase 25-hydroxyvitamin  $D_3$  concentrations [8], the specific enzymatic mechanisms underlying this effect were not detailed in the available literature.

## Conclusion

The evidence demonstrates that several compounds known to enhance VDR activation also modulate key vitamin D-metabolizing enzymes, creating a coordinated enhancement of vitamin D signaling. Omega-3 fatty acids and magnesium show particularly consistent beneficial effects on CYP27B1 activation and CYP24A1 inhibition. Resveratrol and quercetin display more complex patterns with potential trade-offs between activation and degradation pathways. Emerging evidence for butyrate and metformin suggests additional therapeutic targets for optimizing vitamin D metabolism. These findings support a holistic approach to vitamin D optimization that considers both receptor sensitization and metabolic enzyme modulation, though further research is needed to fully characterize the clinical significance of these interactions.



- 1. http://etd.lib.metu.edu.tr/upload/12620426/index.pdf
- 2. https://pmc.ncbi.nlm.nih.gov/articles/PMC3380297/
- 3. <a href="https://pubmed.ncbi.nlm.nih.gov/25536521/">https://pubmed.ncbi.nlm.nih.gov/25536521/</a>
- 4. https://pmc.ncbi.nlm.nih.gov/articles/PMC6950759/
- 5. https://pmc.ncbi.nlm.nih.gov/articles/PMC6693398/
- 6. https://journals.plos.org/plosone/article/figures?id=10.1371%2Fjournal.pone.0039878
- 7. https://pmc.ncbi.nlm.nih.gov/articles/PMC4540484/
- 8. https://www.nature.com/articles/s41598-022-05783-x