

Vitamin D Supplementation Response in HIV Patients: The Role of Gastrointestinal Absorption

People living with HIV (PLHIV) experience significantly impaired responses to vitamin D supplementation, with gastrointestinal malabsorption serving as a primary contributing factor to this therapeutic challenge. While vitamin D deficiency affects an estimated 70-96% of HIV-infected individuals compared to approximately 25% of the general population, the underlying mechanisms of poor supplementation response involve complex interactions between HIV-induced intestinal damage, chronic inflammation, and compromised nutrient absorption pathways [1] [2] [3] . Research demonstrates that only 40-46% of HIV patients achieve adequate vitamin D levels despite compliant oral supplementation, highlighting the significant barriers to effective repletion in this population [4] . The gastrointestinal complications inherent to HIV infection, including villous atrophy, reduced absorptive capacity, and fat malabsorption, create substantial obstacles to vitamin D bioavailability and therapeutic efficacy.

Gastrointestinal Manifestations and Malabsorption in HIV Infection

HIV infection profoundly impacts gastrointestinal function through multiple mechanisms that directly compromise nutrient absorption capacity. The virus causes significant damage to intestinal cells, resulting in villous flattening and decreased D-xylose absorption, which leads to carbohydrate and fat malabsorption $^{[5]}$. This intestinal damage particularly affects the absorption of fat-soluble vitamins, including vitamins A, E, and crucially, vitamin $D^{[6]}$. The pathogenesis of malabsorption in HIV is multifactorial, encompassing primary enterocyte injury with partial villus atrophy and crypt hyperplasia, ileal dysfunction with bile salt wasting, and exudative enteropathy $^{[7]}$.

HIV potentially causes intestinal fat malabsorption due to the virus infecting the distal small intestinal mucosa, a mechanism that has been demonstrated in studies using simian immunodeficiency virus in rhesus monkeys $^{[8]}$. The gastrointestinal tract, being the largest lymphoid organ in the body, is directly affected by HIV infection, creating a cascade of absorptive dysfunction $^{[5]}$. Clinical studies demonstrate that intestinal cryptosporidiosis, common in HIV patients, leads to excess fecal losses of approximately 20% for both protein and fat, further compromising nutrient absorption capacity $^{[7]}$.

Environmental enteropathy, characterized by bowel wall edema, reduced nutrient absorption, decreased bowel transit time, and reduced secretory immunoglobulin A production, compounds these absorption difficulties [9]. The resulting inflammatory response produces villous changes similar to malnutrition enteropathy, which significantly reduces nutrient absorption and creates a self-perpetuating cycle of malnutrition and immune dysfunction [9]. These structural and functional alterations to the gastrointestinal system create significant barriers to effective vitamin D absorption, even when adequate supplementation is provided.

Evidence of Poor Response to Vitamin D Supplementation

Clinical evidence consistently demonstrates suboptimal responses to vitamin D supplementation in HIV-infected patients, with absorption-related factors playing a central role. In a comprehensive study of vitamin D repletion, only 40% of 20 compliant HIV-positive men successfully achieved adequate vitamin D levels (>30ng/mL) after a median of 16 weeks of oral D3 supplementation $^{[4]}$. This poor response rate suggests significant barriers to vitamin D absorption and metabolism in this population. Another study by Havens and colleagues demonstrated only a 46% decline in the prevalence of vitamin D deficiency following high-dose supplementation (50,000 IU weekly for 12 weeks), indicating that standard supplementation protocols may be insufficient for HIV patients $^{[4]}$.

The challenges in achieving adequate vitamin D levels through oral supplementation become more apparent when considering drug interactions and metabolic interference. A randomized controlled trial examining 4000 IU of vitamin D3 daily versus placebo found that only subjects on non-efavirenz-containing antiretroviral regimens showed statistically significant improvement in vitamin D levels after 12 weeks [4]. This differential response highlights how antiretroviral medications can further compromise vitamin D metabolism and absorption, compounding the existing gastrointestinal barriers to effective supplementation.

Population pharmacokinetic studies reveal additional complexities in vitamin D supplementation for HIV patients. Despite median baseline vitamin D levels of only 16 ng/mL in HIV-infected patients, with 17% having concentrations below 10 ng/mL, achieving therapeutic levels requires significantly higher doses than typically used in the general population [10]. The recommended dosing scheme of 100,000 IU monthly to obtain concentrations between 30-80 ng/mL demonstrates the substantial supplementation requirements needed to overcome absorption barriers in this population [10].

Mechanisms Underlying Impaired Vitamin D Absorption

The mechanisms responsible for poor vitamin D absorption in HIV patients involve multiple interconnected pathways that compromise both intestinal function and vitamin D metabolism. HIV infection increases pro-inflammatory cytokines, which prevent the body from synthesizing active vitamin D and can affect the function of hydroxylase enzymes from the Cytochromes P450 complex, leading to decreased calcitriol production [2] [11]. Earlier-generation HIV medications, including ritonavir and efavirenz, along with newer medications like tenofovir disoproxil fumarate, can significantly affect how the body metabolizes vitamin D [2].

Chronic inflammation due to HIV infection and subsequent TNF- α overproduction may be responsible for renal 1 α -hydroxylase impairment, reducing the parathyroid hormone stimulatory effect on the production of the hormonally active 1,25-dihydroxyvitamin D^[3]. This inflammatory cascade creates a complex web of metabolic dysfunction that extends beyond simple malabsorption to include impaired vitamin D activation and utilization at the cellular level.

The deficiencies of fat-soluble micronutrients in HIV infection occur primarily due to fat malabsorption, general malabsorption, diarrhea, gut infection, altered gut barrier function, and altered metabolism [12]. Long-standing fat malabsorption occurs even in early HIV disease due to villous atrophy and impaired enterocyte function, even in the absence of opportunistic gut

infections [12]. This early onset of absorptive dysfunction means that vitamin D supplementation challenges begin early in the course of HIV infection, not just in advanced disease stages.

Malnutrition enteropathy, common in HIV patients, is characterized by reduced nutrient absorption and bowel transit time, changes in mucosal surface morphology resulting in villous blunting, increased permeability, and local inflammation [9]. These structural changes to the intestinal mucosa create physical barriers to vitamin D absorption while simultaneously increasing the metabolic demands for nutrients due to chronic inflammation and immune activation.

Clinical Implications and Potential Solutions

The poor response to standard vitamin D supplementation in HIV patients has significant clinical implications that extend beyond bone health to encompass immune function, disease progression, and overall mortality. Vitamin D supplementation and restoration to normal values in HIV-infected patients may improve immunologic recovery during combination antiretroviral therapy, reduce levels of inflammation and immune activation, and increase immunity against pathogens [1]. However, achieving these benefits requires overcoming the substantial absorption barriers inherent to HIV infection.

Clinical studies suggest that vitamin D supplementation may protect against the development of immune reconstitution inflammatory syndrome events, pulmonary tuberculosis, and mortality among HIV-infected patients [1]. The potential for vitamin D to serve as an adjuvant therapy makes addressing absorption issues critically important for optimizing patient outcomes. Research indicates that dosages of 4000-7000 IU daily for at least 12 weeks show the most success in achieving therapeutic levels, though these doses are substantially higher than typically recommended for the general population [11].

The evidence suggests that alternative supplementation strategies may be necessary for HIV patients with severe malabsorption. Some patients may benefit from parenteral vitamin D administration or higher-dose oral supplementation protocols that account for reduced bioavailability $^{[7]}$. Total parenteral nutrition has been shown to promote weight gain in HIV patients with malabsorption, with body cell mass repletion noted specifically in patients with malabsorption, suggesting that bypassing the gastrointestinal tract may be necessary in severe cases $^{[7]}$.

Addressing the underlying gastrointestinal dysfunction through targeted interventions may improve vitamin D absorption capacity. Vitamin D supplementation itself may help reduce overall inflammation in HIV-infected patients and could potentially reduce malabsorption if adequate stores are maintained [8]. This creates a potential positive feedback loop where successful vitamin D repletion could help restore intestinal function and improve subsequent nutrient absorption.

Conclusion

The evidence clearly demonstrates that people with HIV experience significantly impaired responses to vitamin D supplementation, with gastrointestinal malabsorption serving as a primary contributing factor. The complex interplay between HIV-induced intestinal damage, chronic inflammation, and compromised nutrient absorption pathways creates substantial barriers to achieving adequate vitamin D levels through standard oral supplementation protocols. Success rates of only 40-46% for achieving therapeutic vitamin D levels despite compliant supplementation highlight the magnitude of this clinical challenge.

The mechanisms underlying poor absorption involve HIV-induced villous atrophy, fat malabsorption affecting fat-soluble vitamins, and inflammatory cascades that impair vitamin D metabolism at multiple levels. These absorption barriers necessitate modified supplementation approaches, including higher doses, longer duration protocols, and potentially alternative delivery methods for patients with severe malabsorption. Given the critical role of vitamin D in immune function and disease progression in HIV patients, addressing these absorption challenges is essential for optimizing patient outcomes. Future research should focus on developing targeted interventions that address both the underlying gastrointestinal dysfunction and the need for effective vitamin D repletion in this vulnerable population.

- 1. https://pmc.ncbi.nlm.nih.gov/articles/PMC5857570/
- 2. https://www.thebodypro.com/article/vitamin-d-deficiency-people-with-hiv
- 3. https://pmc.ncbi.nlm.nih.gov/articles/PMC4426898/
- 4. https://pmc.ncbi.nlm.nih.gov/articles/PMC3666828/
- 5. https://pmc.ncbi.nlm.nih.gov/articles/PMC3254022/
- 6. https://www.cambridge.org/core/journals/proceedings-of-the-nutrition-society/article/hivaids-nutritional-implications-and-impact-on-human-development/D21825E91975A8D34F61DBDC4AB6182B
- 7. https://pubmed.ncbi.nlm.nih.gov/9625387/
- 8. https://digitalcollections.ohsu.edu/record/2891/files/3661_etd.pdf
- 9. https://academic.oup.com/jid/article/214/suppl_2/S75/2388030
- 10. https://pmc.ncbi.nlm.nih.gov/articles/PMC3635601/
- 11. https://pmc.ncbi.nlm.nih.gov/articles/PMC6773828/
- 12. https://journals.sagepub.com/doi/pdf/10.1177/154510970200100205