Effects of maternal vitamin D supplementation on childhood health

3 4

Nanna S. Svensson^{1,2}, Tabia Volqvartz², Anna Louise Vestergaard^{1,2}, Esben T. Vestergaard^{2,3}, Agnete Larsen^{2,4}, Pinar Bor^{2,5}.

- 5 6
- ¹Dep. of Obstetrics and Gynaecology, Regional Hospital Randers, Denmark
- 8 ²Dep. of Clinical Medicine, Aarhus University, Denmark
- 9 ³Dep. of Paediatrics, Aarhus University Hospital, Denmark
- 10 ⁴Dep. of Biomedicine, Aarhus University, Denmark
- ⁵Dep. of Obstetrics and Gynaecology, Aarhus University Hospital, Denmark
- 12

13 Corresponding author

- 14 Name: Nanna Søndermølle Svensson
- 15 Address: Østervangsvej 54, 8930 Randers NØ, Denmark
- 16 ORCID-ID: 0009-0002-0678-4152
- 17 e-mail address: nansvs@rm.dk
- **18** Telephone: +45 40539317
- 19

20 Disclosure summary

- 21 The authors declare no potential conflicts of interest or disclosures with respect to the research, authorship, and
- 22 publication of this paper.

23 Keywords

- 25 > Vitamin D supplementation in pregnancy
- 26 ≻ Development of children
- 27 > Intrauterine vitamin D exposure

28 Funding sources

- 29 The salary of the first author was supported by the deficit guarantee from Randers Regional Hospital, Denmark
- 30 during a research year. No further funding was received.
- 31

© The Author(s) 2025. Published by Oxford University Press on behalf of the Endocrine Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com. See the journal About page for additional terms.

Abstract

Vitamin D deficiency during pregnancy is associated with an increased risk of health issues in the offspring. Accordingly, recent Endocrine Society guidelines strongly support supplementation in pregnancy, also underlining that without consensus on optimal maternal vitamin D levels, routine screening is currently irrelevant. Knowledge of organ-specific effects of vitamin D and its association with maternal vitamin D status may aid to optimize vitamin D supplementation. This systematic review outlines the proposed next-generation effects of vitamin D supplementation \geq 400 IU/d, and explores whether such effects are attributed to a specific maternal vitamin D level obtained during pregnancy.

A systematic literature search was conducted in PubMed and Embase according to the PRISMA guidelines, focusing on health outcomes from ten days post-partum and beyond.

Of the 2,383 screened articles, 39 were included. In 11 of 16 studies, vitamin D supplementation reduced respiratory tract infections in the first years of life. Growth or bone development benefits were observed in six of 12 studies. Positive effects on neurodevelopment and reduced autoimmune risk (diabetes-related antibodies) were noted, although further research is needed to determine the role of vitamin D. Very few studies have measured vitamin D concentrations, but even 1,600 IU/d supplementation was associated with high frequency of infant vitamin D insufficiency.

Current recommendations may not ensure sufficient vitamin D levels at birth, among others, increasing the risk of early-life infections. Further studies linking maternal and infant vitamin D levels to specific outcomes would aid in personalized nutritional advice during pregnancy and improve next-generation health.

2

3

4 Abbreviations

- 5 ARI Acute respiratory infection
- 6 BMC Bone mineral content
- 7 BMD Bone mineral density
- 8 DM1 Diabetes mellitus type I
- 9 DXA Dual-energy X-ray absorptiometry
- 10 EH Enamel hypoplasia
- 11 GW Gestational week
- 12 IFA Iron and folic acid
- 13 IVF In-vitro fertilisation
- 14 LAZ-score Length-for-age Z-score

- 1 LNS Lipid-based nutrient supplements
- 2 NOS Newcastle-Ottawa scale
- 3 PUFA Polyunsaturated fatty acids
- 4 RCT Randomised controlled trial
- 5 RSV Respiratory syncytial virus
- 6 VDAART Vitamin D Antenatal Asthma Reduction Trial
- 7 VDR Vitamin D receptor
- 8 VitD Vitamin D
- 9 25(OH)D 25-hydroxyvitamin D = calcidiol
- 10

11 Background

12 Vitamin D deficiency - a global health problem in pregnancy

13 Vitamin D (vitD) deficiency is a global health issue estimated to affect around one billion people

- 14 worldwide(1-4). From an obstetric perspective, a high prevalence of maternal vitD deficiency is
- 15 disturbing, as it is associated with a multitude of complications, including recurrent pregnancy
- 16 loss(5,6), gestational diabetes(7-12), preeclampsia(13,14), preterm birth(7-9,11,15), and postpartum
- 17 depression(16,17), thereby increasing the morbidity and mortality of the mother and child.
- 18

The main natural source of vitD is the conversion of cutaneous 7-dehydrocholesterol to pre-vitD₃
following exposure to sunlight(18). Notably, vitD production is dependent on the degree of skin
pigmentation. Therefore, people with dark complexion require up to 10-50 times more sun exposure to
produce the same amount of vitD(19). Clothing habits(2), sunscreen use(2,20), and seasonal differences
in sun exposure(21,22) also affect vitD production. In countries at high latitudes, such as Northern
Europe, the angle of the sun inhibits vitD production in the skin from October to April, increasing the
prevalence of vitD deficiency in this period(13,23-25).

1	VitD occurs naturally in foods such as fish, eggs, milk, and legumes and may also be obtained through
2	dietary supplements. To ameliorate the potential consequences of inadequate vitD supply during
3	pregnancy, many national health authorities recommend daily vitD supplementation, which is also in
4	line with the recently updated (June 2024) guidelines from the Endocrine Society (Figure 1)(26). VitD-
5	fortified foods may also be a solution, and several countries use the fortification of food objects, such
6	as milk, cereal grains, and margarine, to improve the vitD status within their population(27-31).
7	VitD levels below 25-30 nmol/L are associated with an increased risk of rickets and osteomalacia(32)
8	and have often been used as the definition of vitD deficiency(33,34). With increasing awareness of the
9	physiological importance of vitD(13,35,36), definitions have changed, and the US Institute of Medicine
10	currently defines vitD deficiency as a 25(OH)D concentration <50 nmol/L(37,38). According to this
11	guideline, vitD deficiency is highly prevalent in Asia (e.g., 60% in India and 45% in Pakistan) but also
12	common in Europe (e.g., 35% of the pregnant population in the United Kingdom (UK) and 23% in the
13	Netherlands)(37,39). Most current recommendations regarding vitD supplementation during pregnancy
14	are 25(OH)D concentration >50 nmol/L(3). Similarly, the recommendations for vitD intake in
15	childhood are aimed at maintaining a 25(OH)D concentration >50 nmol/L(13). However, an increasing
16	volume of research suggests that a maternal 25(OH)D level between 50 and 75 nmol/L are insufficient.
17	In contrast to the lack of consensus, the latest guidelines of the Endocrine Society do not suggest
18	screening for specific 25(OH)D levels to define vitD sufficiency or deficiency. Instead, the focus
19	should be on increasing vitD levels in vulnerable populations such as the elderly and pregnant women,
20	as data strongly indicate that low levels are common in these groups(26). However, vitD plays an
21	important role in sensitive prenatal development; for example it plays an important role in brain
22	development(40) and pancreatic development(41). This underlines that individual vitD status during
23	pregnancy may have life-long effects on offspring that are solely dependent on pre-natal vitD exposure.

Foetal vitD status depends on maternal supply(7,42,43), and it is estimated that only about 60-80% of maternal 25(OH)D reaches the foetus bound to the vitD binding protein (VDBP)(44,45). Therefore, the need for a higher cutoff value to determine maternal vitD sufficiency is still debated (44,45). In this respect, knowledge of maternal vitD levels in the presence of other risk factors affecting the intrauterine life could provide insights into organ-specific roles of vitD in human development, as several studies point toward long-term health risks for children born to mothers with vitD deficiency(4,8,15,23,46-52).

8

9 Vitamin D - in human health and development

10 VitD plays a vital role in bone(53-55), tooth formation(56,57), and the regulation of muscle

11 strength(13,21), underpinning its crucial effect on calcium phosphate homeostasis during pregnancy.

12 The activation of vitD is feedback-regulated by calcium, and vitD maintains plasma calcium levels

13 with the help of the parathyroid hormones(15,21,58). Additional calcium is needed for foetal growth;

14 hence, the need for vitD increases during pregnancy(15). Thus, pregnant women and their unborn

15 children are at greater risk of vitD deficiency than the background population.

16 In addition to calcium phosphate homeostasis, vitD plays an essential role in a variety of central body

17 functions such as glycaemic control(59), immunomodulation(15,59), blood pressure control(60), and

18 mood regulation(19,61) (*Figure 2*). Many studies have highlighted a decreased immunity with

19 increased risk of infection(15,47) and a higher risk of asthma(62) in children who had inadequate

20 exposure to vitD during prenatal development(62,63). Some studies have also suggested a link between

- vitD deficiency in foetal life and an increased risk of obesity and diabetes among children(62-65).
- 22 Furthermore, high intrauterine vitD exposure has been associated with higher muscle strength in

children(66), and vitD may increase the number of type II muscle cells and inhibit muscle cell
apoptosis(66,67).

In recent years, the potential role of vitD in brain development has received increased attention. VitD

4 exposure during pregnancy is thought to affect the risk of neurodevelopmental disorders (8,68), autism, 5 and schizophrenia(15.69). Furthermore, low vitD levels in pregnancy have been linked to an increased 6 risk of neurodegenerative diseases, such as multiple sclerosis, later in life(70). 7 Overall, existing knowledge strongly suggests that suboptimal vitD status during pregnancy has longterm effects on offspring health. So far, much research has focused on how vitD supply may be 8 beneficial in reducing the risk of pregnancy-related complications(5-12,15). However, as emphasized 9 10 by the widely recognized Developmental Origins of Health and Disease (DOHaD) Hypothesis (71-74) we need a deeper understanding of how vitD supplementation during pregnancy could support human 11 12 development and the health of the next generation. 13 To ensure adequate vitD supply in all pregnancies, it is crucial to identify the organ systems that are sensitive to vitD and clarify the sufficient levels of maternal vitD needed to promote optimal foetal 14 development in terms of later health risks. 15 We therefore systematically searched the existing literature for studies that examined how maternal use 16 17 of vitD supplements of at least 400 IU/d (10 μ g/d) during pregnancy affects child health, with a focus

- 18 on organ-specific effects of relevance both in the first years of life and later. We also aimed to
- investigate the current knowledge on how higher doses of vitD and differences in the timing andduration of supplementation affect the health of the exposed children.

21

1 Methods

2 Search strategy

3 Prior to initiation, this study was registered in the international PROSPERO database (ID:
4 CRD42022385495). A literature search was conducted in the medical databases PubMed and Embase
5 according to the PICO approach(75), including papers published from database inception until January
6 17, 2023.

7

8 Inclusion and exclusion criteria

9 The study population consisted of pregnant women receiving a minimum of 400 IU/d (10 µg/d) of vitD supplements during pregnancy, as well as studies comparing this exposure to a placebo condition with 10 11 no supplementation (vitD doses of 0 IU/d) during pregnancy. The eligible studies had to include a follow-12 up examination of the health and development of the children ten days or more postpartum. Studies that 13 focused solely on the effects of vitD on maternal serum or birth outcomes were excluded. Reviews, 14 systematic reviews, commentaries, preprints and letters are excluded. Only human experimental 15 randomized and observational studies were included, and the inclusion was limited to papers written in 16 English, Danish, Swedish, and Norwegian.

17

18 Screening of articles and data extraction

19 The screening process was performed according to the guidelines for systematic reviews and meta-20 analyses (PRISMA)(76). This process was performed in the review management program Covidence 21 (Melbourne, Australia), which also ensured the removal of duplicates. All titles and abstracts of the 22 papers were independently screened by two reviewers and excluded if they did not meet the inclusion 1 criteria. The remaining full texts were independently assessed for content, analysis, and data extraction,

2 which included year of publication, country of origin, population size, study design, dose and time of

3 vitD supplementation, ethnicity of participants, inclusion of twins, season of birth, and birth outcomes.

- 4 Any conflicts of interest were resolved by agreement between the two reviewers (Figure 4)
- 5

6 Quality assessment

7 The quality of the studies was assessed using the JADAD scale for randomized studies(77) and

Newcastle–Ottawa Scale (NOS) for non-randomized studies(78). Within the JADAD score, the studies
were assessed based on the randomization procedure, blinding, and dropout of participants, whereas the
NOS score relies on the procedure of participant selection, information retrieval, comparability of the
study design, and control of confounders. In addition, the valuation of exposure or outcome was

12 assessed, as the studies were either cohort or case-control studies.

13

14 **<u>Results</u>**

15 Study selection

16 Of the 2,383 found articles, 1,311 studies were eligible for screening after removing of duplicates.

17 Based on titles and abstracts, 266 studies underwent full-text screening of which 219 studies were

18 excluded because they did not fulfil the inclusion criteria. After excluding randomized controlled trials

- 19 (RCT) with a JADAD rating of less than three (n=3)(79-81) and cohort- and case-control studies with a
- 20 NOS rating of less than seven (n=5)(68,82-84), a total of 39 articles were included in the systematic
- 21 review (Figure 2).
- 22
- 23

1 Quality assessment of the articles included

2 As many as 18(85-102) of 31(51,85-114) RCT studies were rated as the highest quality, with a JADAD 3 score of five, and the remaining 13 RCTs were rated with good quality with a JADAD score of four 4 (n=9)(103,105-107,109-111,113,114) or three (n=4)(51,104,108,112). A JADAD score of four was 5 mainly caused by the lack of double blinding. The six cohort studies included were of good quality 6 with NOS scores between seven and eight (n=6)(22,115-118) (maximal points are nine), and both casecontrol studies included also received a NOS score of seven (n=2)(119,120). However, it should be 7 8 noted, that although we only included studies with a high score in their quality assessment, many of 9 them lacked information on the maternal vitD concentration in the blood during pregnancy. 10 11 **Study characteristics** 12 *Population size and geography* The 39 included studies were categorized into eight different outcomes (Figure 3), and their 13 14 geographical location and whether they had significant outcomes are shown in Figure 4. Overall, the included studies varied considerably in size from 31 to 3,000 participants in the RCT 15 16 studies, from 156 to 16,070 participants in the cohort studies, and from 245 to 738 participants in the case-control studies (Figure 4). Altogether, they provided information about 30,384 pregnancies and 17 30,357 children. Most of the studies (n=13) were conducted in Europe (26,645 children)(51,85-18 19 88,92,96,99,102,105,106,112,115-117). Eleven studies were conducted in North America (7,373) 20 children)(22,91,100,101,103,113,114,119-121) and two studies (520 children) were conducted in New 21 Zealand (89,90). Of the remaining studies, nine studies were performed in Asia (10,704 children), seven 22 in Bangladesh(94,98,104,108-111) and two in India(95,107). Only two studies were performed in

Africa (2,468 children), Ghana(93), and Tanzania(97) (*Figure 4*). Finally, one study was conducted in
 multiple countries (8,676 children)(118).

3 It should be noted that these studies largely included healthy women who gave birth at term. Thus, we
4 lack information about mothers with pregnancy related diseases and have little knowledge on the effect
5 of vitD in preterm children.

6

7 Vitamin D supplementation – timing and dose

The maternal vitD supplement regimes used in the studies were heterogeneous in terms of both dosage 8 and duration. In 28 studies vitD supplementation was initiated during the second trimester(51,85-9 10 99,102,104-113,119), while five studies(100,101,103,114,120) examined the effect of supplementation initiated in the first trimester. Lastly, six of the studies collected information on supplementation habits 11 in pregnancy from the participants postpartum(22,115-118,121), either a few weeks postpartum 12 (n=2)(22,115), a few months postpartum (n=2)(117,118), and two studies collected this information as 13 late as one year postpartum (n=2)(116,121). In the majority of the studies (n=29)(22,85-93,96,97,99-1)14 106,108,112-116,118-120), women received a daily oral vitD supplement ranging from 400 IU/d to 15 4,400 IU/d (Figure 5). Among the six studies in which the women received a weekly dose of oral vitD, 16 the exposure was either 28,000 IU/week(98,109-111) or 35,000 IU/week(94), and in one Indian study, 17 18 60,000 IU was administrated every fourth week(95), which did not show a significant effect on child 19 health outcomes. Finally, two studies examined the effect of a single oral dose administrated in the 20 second trimester as 120,000 IU(107) and 200,000 IU(51) (Figure 5).

21

22 Notably, in all six cohort studies(22,115-118,121), individual information regarding vitD

23 supplementation during pregnancy was self-reported and did not include information regarding the

1	consistency of supplementation. In as many as 32 studies, intake of supplements were reported until
2	delivery(51,85-96,98-114,119,120) and in one study they reported intake until one year
3	postpartum(97), potentially affecting vitD supply during breastfeeding(122,123).
4	
5	Variation in follow-up time
6	The follow-up time of the individual studies can be seen in Figure 6, with most studies focusing on the
7	first three years.
8	
9	Respiratory infections in early life
10	Intrauterine vitD deficiency has been associated with decreased immunity and an increased risk of
11	infection(15,47). Here, we identified four studies(90,98,109,115) that investigated the association
12	between the maternal use of vitD supplements and the risk of respiratory infections among children
13	(Table 1).
14	
15	The prevalence of respiratory syncytial virus (RSV) infections among children at the age of 12 months
16	was examined by Belderbos et al.(115) based on parent-reported symptoms and nose-throat swap
17	specimens during the first year of life. This small cohort study $(n=156)$ found no association between
18	the women's retrospective self-reported use of vitD supplements of 400 IU/d and children's risk of
19	RSV. This study did not describe the duration or consistency of 400 IU/d supplementation during
20	pregnancy. However, the children developing RSV had a 1.3-fold lower vitD level at birth compared to

those not affected by RSV (65 \pm 7 vs. 84 \pm 11 nmol/L, p=0.009)(115).

1	In addition, three RCT studies examined the risk of infection by comparing different doses of maternal
2	vitD supplements with placebo exposure. Two of these studies estimated the risk of acute respiratory
3	infection (ARI) in children(90,109). Grant et al.(90) found that, the children of women taking a
4	supplement of either 1,000 or 2,000 IU/d vitD from gestational week (GW) 27 until birth had a
5	statistically significantly lower number of ARI episodes within the first six months compared to the
6	offspring from the placebo group (placebo=79; 1,000 IU/d =76; 2,000 IU/d=67) ($p=0.03$)(90). On the
7	contrary, the study by Morris <i>et al.</i> (109) ($n=1,174$) did not find any association between the risk of
8	ARI in children in the first six months of age and maternal use of weekly vitD supplements from GW
9	17-24 until birth when comparing three dosing regimens, that is, 4,200 IU/week, 16,800 IU/week,
10	28,000 IU/week, with placebo. In the same cohort, Taghivand et al.(98) examined the risk of
11	pneumococcal disease in children, known to cause meningitis, pneumonia, and sepsis, and found no
12	relationship between maternal vitD supplementation and pneumococcal acquisition among children at
13	six months of age.
4.4	

14

15 Asthma and wheezing during the first years of life

Fifteen studies(22,51,86,87,89,99-101,103,106,112,114,119-121) investigated the association between
vitD supplementation in pregnancy and the risk of asthma, croup, and wheezing, i.e. the presence of
airflow turbulence causing a high-pitched sound during breathing (*Table 2*).

19The largest RCT identified, the Vitamin D Antenatal Asthma Reduction Trial (VDAART)(100)

20 (n=810), reported a reduced risk of asthma and recurrent wheezing in genetically predisposed children

- at the age of three years if a maternal supplement of 4,400 IU/d vitD was initiated from GW 10-18 until
- 22 birth instead of the typical 400 IU/d supplement. The VDAART cohort was subsequently used for
- 23 several further studies(101,103,114,119,120), finding that maternal plasma levels of vitD prior to

1	supplementation also affected health risk (as judged by parental reports and wheezing verified by
2	trained professionals). In contrast to the children with the lowest intrauterine exposure (offspring from
3	women with an initial maternal vitD level <75 nmol/L and receiving a 400 IU/d supplement), these
4	further studies on VDAART children reported a beneficial effect regardless of genetic background for
5	those born to pregnancies receiving a high dose vitD supplement with an initial maternal vitD level
6	above 75 nmol/L. Further studies also found a significant association between maternal vitD measured
7	at GW 10-18, and a decrease in the risk of asthma/recurrent wheezing in children at the age of three
8	years(114). However, at six years of age, this association with maternal vitD status was no longer
9	evident(101).
10	In addition, a possible association between maternal vitD supplementation and allergic rhinitis in
11	children was examined in a subset of the VDAART cohort ($n=414$). Chen et al.(103) found a
12	statistically significantly reduced risk of allergic rhinitis at the age of six.
13	Supporting the beneficial effect of vitD supplementation in pregnancy, Blighe et al.(119) found
14	evidence of a vitD linked reduction in susceptibility to allergic airway diseases based on the presence
15	of inflammatory fatty acids in the blood metabolome. In this study, maternal plasma vitD concentration
16	in late pregnancy was statistically significantly correlated with the inflammatory profile at the age of
17	three years(119). The results remained significant after adjusting for sample storage time, maternal age,
18	education, and known asthma status in the children. In addition, exploring the effect of vitD on risk
19	factors for asthma development, Hjelmsø et al.(106) examined the association between the airway
20	microbiome in Danish children and their intrauterine vitD exposure from GW 24 until birth.
21	Comparing, a maternal vitD intake of 400 IU/d to an intake of 2,800 IU/d the increased vitD intake
22	exhibited a beneficial effect on the airway microbiome at six years of age, with a significant decrease in
23	firmicutes and a corresponding increase in proteobacteria such as Moraxella(106).

1	In contrast, Omand et al.(121) did not find any statistically significant association between vitD intake
2	and the frequency of childhood asthma. Notably, mothers were questioned about vitD supplementation
3	during their pregnancies postpartum. Therefore, neither the duration of vitD intake nor the dosage was
4	specified in this study(121). Similarly, Brustad et al.(112) found no beneficial effects of vitD in their
5	RCT study ($n=736$), comparing the health effects of a maternal vitD supplement of 2,800 IU/d from
6	GW 24 onwards to the effects of the 400 IU/d standard treatment in a Danish population(124). Based
7	on asthma diagnoses made by a paediatrician (following a predefined, validated diagnostic algorithm),
8	this study found no association between maternal dose of vitD supplementation and asthma
9	development at the age of six years(112).
10	The effects of vitD on wheezing are not unanimous. Camargo et al.(22) found a reduced risk of parent-
11	reported wheezing in children at the age of three in an American cohort when comparing a (self-
12	reported) maternal vitD intake of 160 IU/d with 421 IU/d in pregnancy ($n=1,194$). In contrast, the
13	RCT study by Chawes <i>et al.</i> (87) ($n=623$) did not find a significant reduction in the risk of wheezing at
14	this age when comparing the effects of a 2,800 IU/d vitD supplement during pregnancy to a 400 IU/d
15	vitD regime. In this study, vitD supplementation was provided from GW 24 onwards, and a previously
16	validated quantitative algorithm was used to standardize wheezing(87). Furthermore, the RCT study by
17	Goldring <i>et al.</i> (51) ($n=180$) did not find that a single high dose vitD exposure of 200,000 IU during
18	GW 27 resulted in a significant reduction in the number of parents reporting at least one incidence of
19	"wheezing ever" among children at the age of three. However, their control group included pregnancies
20	in which a daily supplement of 800 IU/d was used from GW 27 and onwards(51).
21	

1 *Croup, allergy, and vitamin D*

Using data from their previously described Danish cohort, Brustad *et al.*(86) found that by the age of
three, an increased vitD supplement of 2,800 IU/d from GW 24 onwards reduced the risk of croup
(diagnosed by a clinician) by 7% compared to the standard vitD supplementation regime of 400 IU/d
vitD. These results remained significant after adjustment for persistent wheezing and lower respiratory
tract infections(86).

7 Based on IgE antibodies in the blood and clinically detectable allergies, two studies found that the maternal use of vitD supplements in pregnancy decreased the risk of disease(89,99). Grant et al.(89) 8 (n=260) found that compared to placebo treatment, supplements of 2,000 IU/d vitD initiated at GW 27 9 10 reduced the risk of allergy, measured as a positive test for house dust mites and mite antigen sensitization in children aged 18 months. Furthermore, El-Heis et al.(99) (n=703) found a significant 11 protective effect of maternal vitD supplementation against the development of atopic eczema at the age 12 of 12 months when studying the benefits of maternal intake of 1,000 IU/d compared to placebo. 13 However, this protective effect weakened as children grew older, and the association was not 14 statistically significant at the age of 24 or 48 months(99). 15

16

17 Vitamin D and the risk of Diabetes Mellitus type I

18 We identified three studies(116-118) that examined the possible associations between vitD intake

19 during pregnancy and the development of diabetes mellitus type I (DM1) among the offspring (Table

- 20 3). The DM1-related outcomes measured were the initial immunological signs of disease activity, that
- 21 is, autoantibodies against insulin, glutamic acid decarboxylase, and islet antigen 2. These
- 22 autoantibodies are highly associated with DM1, as only a few diagnosed patients have autoantibody-

1	negative DM1(125,126). All three studies were cohort studies in which maternal vitD intake was self-
2	reported and recalled after birth and did not include information on the initiation of supplementation.
3	Focusing on the very early debut of DM1, Brekke et al.(116) found that maternal intake of a 400 IU/d
4	vitD supplement reduced the prevalence of diabetes-related autoantibodies among children at the age of
5	one year $(n=16,070)$ (adjusted OR=0.71 [95% CI 0.52–0.96], $p=0.028$); however, this protective effect
6	of maternal vitD supplementation was no longer present when the children reached 2.5 years of age.
7	The effect at one year of age remained significant after adjustment for DM1 in the family, duration of
8	breastfeeding, timing of the introduction of cow's milk protein, and fish intake(116).
9	

10 The two remaining cohort studies(117,118) examined only children with genetic risk factors, that is, 11 HLA-conferred susceptibility to DM1. These studies found no association between maternal vitD 12 intake, and DM1 as judged by the presence of autoantibodies in blood samples at the age of two or ten 13 years of age. However, it must be mentioned that the cohort study by Marjamäki *et al.*(117) was based 14 solely on self-reported information, comparing consumption to non-consumption of vitD and Silvis *et 15 al.*(118) only compared vitD supplementation >2,030 IU/d with all doses of vitD supplementation 16 below 2,030 IU/d.

17

18 Teeth – enamel hypoplasia and enamel defects

We identified two RCT studies(102,113) that investigated the association between vitD and tooth
development (*Table 4*). Nørrisgaard *et al.*(102) (*n*=623) found that, compared to children of women
following the 400 IU/d vitD standard supplementation advice, the prevalence of enamel defects in
permanent teeth at the age of six was lower in children from pregnancies in which the mother received
a 2,800 IU/d vitD supplement from GW 24 until birth (15.1% vs. 27.5%, respectively, *p*<0.05). Reed *et*

al.(113) (*n*=145) examined the risk of enamel hypoplasia in children, comparing the effects of maternal
vitD intake of 4,000 IU/d from GW 12 until birth to 400 IU/d, and found no significant association
between vitD exposure and enamel hypoplasia in their small sample size. However, they did find a
tendency towards a protective effect of vitD, as children with enamel hypoplasia at the age of four were
1.29 times more likely to belong to low-dose pregnancies(113).

6

7 Vitamin D and bone strength and mineralization

8 Six studies(85,88,92,95,105,111) investigated the effect of maternal vitD on bone strength and bone mineralization at different time points within a time span of 16 months to 8 years (Table 5). All 9 outcomes of bone mineralization were measured by whole-body dual-energy X-ray absorptiometry 10 (DXA) scans, and all of the studies were RCTs in which the vitD supplement varied from 1,000 11 IU/d(88,92,105) to 2,800 IU/d(85) or was given as a weekly oral dose of 28,000 IU(111). Three 12 studies(85,88,105) found a statistically significant positive association between vitD and bone health at 13 14 the age of four-six years. Among the studies that did not find statistically significant effects, two focused on the Asian population 15 16 receiving weekly dosing regimens. The first being O'Callaghan et al.(111) investigated BMC and BMD at the age of four years in children born to mothers who received either a placebo or a vitD supplement 17

18 of 4,200 IU/week, 16,800 IU/week, or 28,000 IU/week from GW 17-24 until birth, and found no

difference. Similarly, the second study by Sahoo *et al.*(95) found no difference in bone mineralization
at 16 months when comparing a maternal vitD intake of 60,000 IU every fourth week to a placebo from
GW 20 until birth.

1	In contrast, the UK-based RCT study by Curtis <i>et al.</i> (88) ($n=1,123$) found a beneficial, statistically
2	significant effect on BMD in children at the age of four years, if the mothers had supplemented their
3	diet with 1,000 IU/d vitD from GW 14 until birth compared to placebo, although no statistically
4	significant effects were seen on BMC(88). However, in the Danish cohort by Brustad et al.(85), a
5	maternal vitD intake of 2,800 IU/d from GW 24 until birth significantly increased the children's BMC
6	and BMD at the age of six years compared to the children of women with a vitD intake of 400 IU/d.
7	Moreover, Gopal-Kothandapani et al.(105) found that a maternal vitD intake of 1,000 IU/d from GW
8	14 until birth significantly increased metabolic activity in the bones at the age of four years compared
9	to a placebo group. In this study, blood samples were collected from children to investigate the blood
10	markers for bone turnover, P1NP, before and after exposure to a mechanical stimulus(105).
11	On the other hand, the UK-based RCT study by Moon <i>et al.</i> (92) ($n=965$) found no statistically
12	significant effect on BMC at the age of eight, when comparing maternal vitD supplementation of 1,000
13	IU/d from GW 14 until birth to placebo.
14	
15	Vitamin D and growth in early life
16	Five studies(94,104,107,110,127) investigated the association between maternal vitD intake and growth

Five studies(94,104,107,110,127) investigated the association between maternal vitD intake and growth in early childhood, and three identified significant positive results (*Table 6*). The outcomes were anthropometric measurements performed by trained study professionals or physicians during clinical visits. All studies were RCTs comparing a specific vitD dose with either placebo (n=4)(94,97,107,110) or vitD doses of 200 IU/d (n=1)(104) (*Figure 6*), albeit initiating the vitD supplementation at various time points from GW 12(97), 17(110), 20(104), 26(94), or unspecified between GW 12-24(107). Moreover, none of the five studies stratified the results according to ethnicity or skin tone of the participants.

2	Dewey et al.(104) found that weight-, height- and head circumference were significantly increased in
3	the offspring at the age of 6-24 months if the pregnant women took a daily multivitamin supplement
4	(GW 20 onwards) including 400 IU of vitD compared to findings from the control group in which the
5	supplements only included iron and folic acid. Likewise, in an Indian cohort, Kalra et al.(107) (n=300)
6	found a statistically significant weight and growth improvement at the age of nine months (judged by
7	weight, length, increased head circumference, and a smaller diameter of the anterior fontanelle) when a
8	maternal vitD supplement of 120,000 IU was introduced as a single oral dose in the second trimester.
9	
10	In three of the RCTs(94,97,110), the World Health Organization (WHO) child growth standards and
11	the length-for-age Z-score (LAZ-score) were used to depict the influence of maternal vitD. Using these
12	parameters, Sudfeld <i>et al.</i> (97) ($n=1,148$) defined children with a LAZ score under -2, as having a
13	stunted growth potential. However, their study did not find a statistically significant association
14	between maternal vitD intake and stunting at the age of one year, when comparing the effects of an
15	intake of 3,000 IU/d from GW 12 until one year postpartum to placebo in a group of HIV-positive
16	women(97). Furthermore, the RCT study by Roth <i>et al.</i> (110) ($n=1,300$) did not find a vitD-induced
17	improvement of the LAZ score at the age of one when comparing the effects of a maternal vitD intake
18	of doses of 4,200, 16,800, or 28,000 IU/week from week GW 17-24 onwards to placebo. However, a
19	later study(94) found a statistically significant higher LAZ-score at the age of one in the offspring of
20	women taking a weekly supplement of 35,000 IU from GW 26-30 until birth.
21	

1 Language and motor skills

2 Three studies investigated the association between maternal vitD intake in pregnancy and neuromotor 3 development determined by the evaluation of language or motor skills among children aged 18 months 4 to six years(93,96,108)(Table 7). 5 To examine motor skills at the age of 18 months, Matias *et al.*(108) (n=3,000) examined the cohort 6 previously investigated by Dewey et al.(104) in which the effects of a maternal vitD intake of 400 7 IU/d, iron, and folic acid were compared with a placebo containing only iron and folic acid. At this time point, vitD supplementation exhibited a statistically significant positive effect on motor 8 milestones, but a comparison of the two groups only revealed a non-significant improvement in similar 9 10 parameters at the age of 24 months(108). Regarding language, assessed using the Family Care Indicators scale(128,129) (performed by community health workers), no effect of maternal vitD intake 11 on language development was observed in children aged 18 months. However, at 24 months of age, 12 language development was statistically significantly superior in offspring of the vitD-exposed 13 group(108). On the other hand, Prado *et al.*(93) (n=1,320) found no significant association between 14 maternal vitD exposure and parental reports on motor- or language skills at the age of 18 months when 15 comparing children from pregnant women, taking multivitamins including 400 IU/d vitD from GW 20 16 17 until birth, to the children of women in a placebo group. However, the ability to walk at the age of 12 18 months was more pronounced among children whose mothers had consumed multivitamins with vitD

during pregnancy(93). Targeting the overall development as reported by both parents and trained
clinicians, the RCT study performed by Sass *et al.*(96) (*n*=623) found no significant effects on motor
skills, emotion, or neurodevelopment during the first six years of life when comparing a maternal vitD
intake of 2,800 IU/d from GW 24 until birth to the standard 400 IU/d.

1 Infant 25(OH)D status

- 2 A single study (91) (n=226) was identified, that investigated the relationship between maternal intake
- 3 of vitD supplements and the infant's serum concentration of vitD, determining 25(OH)D at eight weeks
- 4 postpartum (Table 8). The vitD status of the infant was compared based on the maternal intake of either
- 5 400 IU/d, 1,000 IU/d, or 1,600 IU/d from GW 13-24 until birth. Here, a significantly higher vitD
- 6 concentration was found in the offspring of pregnancies exposed to the highest dose of
- 7 supplementation. VitD sufficiency, a serum level of vitD >75 nmol/L, was seen in 44% of the children
- 8 exposed to 1,600 IU/d during pregnancy, whereas only 15% of the children in the other two groups
- 9 (400 or 1,000 IU/d) were vitD sufficient.
- 10

11 **Discussion**

This review highlights the need for greater attention on intrauterine and infant vitD status and the 12 13 public health benefits of vitD supplementation in pregnancy. Beneficial effects of vitD were found in 14 21 of 39 studies(22,85,86,88-91,94,99,100,102-108,114,116,119,120), showing statistically significant outcomes from maternal vitD supplementation at a minimum dosage of 400 IU/d. The positive effects 15 16 of vitD were widespread and included a reduced risk of respiratory infections, asthma, early life reduction of DM1 risk, improving teeth- and bone development as well as language and motor skill 17 enhancements suggesting beneficial effects on brain development and muscle function. However, the 18 19 results were inconsistent, suggesting that the vitD need of the offspring might not be fulfilled solely by a maternal vitD intake of 400 IU/d during pregnancy(130). 20

- 21 Notably, no deleterious effects of vitD supplementation were reported. As vitD is a fat-soluble vitamin,
- 22 with accumulation potentially leading to intoxication (serum level of 25(OH)D >375)(21,131-137),
- 23 safety should be considered. However, vitD supplementation at doses up to 4,100 IU/d or even 35,000

IU/week has been tested and proven safe for pregnant women and their children(138-140). Overall, the
potentially favorable effects on the health of children exceed the low risk of intoxication, whereas a
higher recommended dose of vitD supplementation may be beneficial. From the authors' own
experience, data from a yet unpublished clinical trial in a Danish population demonstrates that 3,600
IU/d vitD doses are safe and do not cause maternal intoxication(140). However, this dose remarkably
reduced vitD insufficiency at birth(141).

7

When contemplating increased vitD supplementation, the possibility of a ceiling effect of vitD is often 8 suggested if increased vitD intake does not increase benefits(142,143). Notwithstanding the possibility 9 10 that the effect investigated might not be responding to vitD *per see*, a possibility that may always be the case when increasing the search for hitherto unknown developmental benefits of supplementation, the 11 presence of a ceiling effect could indeed hamper interpretation. On the one hand, the absence of 12 significant vitD effects could indicate that though the effect is vitD dependent, the vitD supply was not 13 enough to obtain the effect in all or a subgroup of participants. On the other hand, it might also suggest 14 that sufficient vitD levels were already present in most of the participants, meaning the ceiling was 15 already reached. While a ceiling effect cannot be ruled out, especially in studies in relative wealthy 16 17 populations, accustomed to vitD supplementation or exposed to many fortified food objects, a dietary 18 factor not taken into consideration in the studies identified in this review, the low infant concentration 19 of vitD found following a supplementation in the 400 IU/d to 1600 IU/d range, strongly suggests that 20 somewhat higher doses of vitD are needed to reach any ceiling effect(91,141) when it comes to vitD 21 effects on human development.

1 Despite the strong link between recorded maternal intake and the vitD status in offspring, 18 of the 39 2 identified studies(51,87,92,93,95-98,101,109-113,115,117,118,121) did not find a statistically 3 significant positive effect of vitD supplementation. Notably, six studies were cohort studies where the 4 maternal vitD intake was self-reported and recalled after birth and did not include information on time 5 of initiation during pregnancy (22,115-118,121). This may have affected the results, when it comes to 6 the unmet vitD need in subgroups in whom the average vitD concentrations might be lower due to 7 limited nutritional(144), genetic factors and sun exposure(7,21,22,145). This review also points towards a lack of data on significant vitD deficiency risk factors in many studies. Moreover, public 8 health benefits can be underestimated as important subgroups known to be more prone to vitD 9 10 deficiency or with an increased need for vitD, as many studies have deliberately excluded risk pregnancies such as those suffering from preeclampsia, foetal growth restriction, obesity or gestational 11 diabetes(7-15). Future studies should address how both dietary and seasonal variation are likely to 12 13 affect the outcomes measured.

14

Further, impeding the interpretation of the findings, several studies did not report maternal skin 15 pigmentation(19,146). Together with the differences in seasonal variations in sun 16 exposure(7,21,22,145) and use of covering clothes among the participants, the interpretation of such 17 studies becomes difficult, as expected difference in vitD exposure between groups might not have been 18 19 present if real life vitD status had been compared. This is also reflected in Figure 5 which shows that 20 the beneficial effects of vitD cannot, at present be linked to a specific vitD dose during pregnancy. 21 Knowing the actual maternal vitD levels in future studies would combine the effects of the cutaneous 22 and the dietary vitD supply in one measurement. Together, with a more precise timing and duration of 23 the vitD exposure through repeated measurement in pregnancy, this would likely contribute to

1 identifying organ-specific vitD requirements. Therefore, large-scale studies simultaneously examining 2 the impact on several organ systems over time are needed to make health policy decisions regarding 3 recommendations of vitD for pregnant women, especially those at high risk of vitD deficiency. To 4 achieve this, future studies, rather than excluding women with complicated births, low-weight infants or preterm births, should be of a considerable size and include vulnerable women. In addition, they 5 6 need a detailed collection of clinical and biological data to allow for analysis to distinguish between 7 different groups of vulnerable women at a high risk of vitD deficiency. Further, we agree with the latest guidelines of the Endocrine Society(26) that simply measuring vitD status in all pregnancies does not 8 necessarily benefit the individual woman at present, it must be concluded that there is still a need for 9 10 systematic gathering of large dataset for the benefit of improved guidelines.

11

Given the many non-significant studies identified it is striking that although vitD is among the first 12 13 nutritional supplements to be initiated after birth(130), and the recommended dose of vitD for both premature and mature infants is as high as 600 IU/d, the typically recommended dose for pregnant 14 women, the only source of vitD during prenatal life, is as low as 400 IU/d in most parts of the 15 world(38,147). Underlining the potential risks of limiting maternal supplementation to a 400 IU/d dose, 16 a study by March et al.(91) found that a maternal supplement as high as 1,600 IU/d could be needed to 17 18 minimize vitD deficiency i.e. a vitD < 75 nmol/L at birth. As mentioned, 60-80% of the maternal vitD 19 will reach the infant(44,45), requiring a maternal level well above 100 nmol/L 25(OH)D, whereas it 20 seems likely that in the majority of studies identified in this review, many women may have been 21 below this level, and investigations of the benefits of maternal levels in the range of at least 100-125 22 nmol/L 25(OH)D would provide additional knowledge for the future.

As the effects of vitD on prenatal development is likely to include both direct maternal-foetal transfer
as well as vitD benefits for the maternal health such as reducing maternal and placental inflammation, a
known risk factor for foetal development(148-150), it is also evident that there is currently a massive
lack of corresponding vitD measurements from maternal and infant dyads in relation to organ-specific
outcomes. Such approach would also be able to consider the role of the placenta in both the maternal-
foetal transfer and as part of the developmental effects of vitD, as the role of maternal biology in
placental vitD response and vitD transfer is far from understood (150). In line with this, future studies
should also consider genetic differences such as VDBP polymorphisms. Circulating vitD in the form of
25(OH)D is bound to VDBP on the passage from the maternal circulation to the placenta through the
megalin/cubilin complex, similar to the tubular uptake in the kidneys(151,152). The 1F VDBP allele
has been associated with an increased risk of vitD deficiency(153), impacting how much vitD that is
transported from the mother to the offspring. Notably, the VDBP polymorphisms are believed to be
unevenly distributed among races(154), a factor that deserves further scrutiny. Many of the existing
studies were thus performed in a European or North American setting without considering this factor.
Although the findings of this review are not conclusive, most studies examining respiratory tract
infections in this systematic review (11 out of 16)(22,86,89,90,99,100,103,106,114,119,120) reported a
positive effect of maternal vitD supplementation in pregnancy and a reduction in respiratory problems
among children, most evidently in very young children. With the current data it cannot be conclude if
these effects mainly reflect the benefit of an inborn storage of vitD or the benefits of development
programming of the immune system, but it has been shown that intrauterine vitD status may influence
immune regulation in early life through an inverse correlation between umbilical blood mononuclear
cells and umbilical vitD levels(155). Regardless of the mechanisms, the findings emphasise that
alterations in maternal nutrition in pregnancy is an efficient tool to improve overall infant health.

2

3 118,200 annual deaths in children under five years of age worldwide(156). Thus, any positive effects of 4 maternal vitD supplementation seem to be a cheap and easy way to decrease the need for hospitalization and advanced treatment of RSV, especially among newborns, who are at the greatest 5 6 risk for serious complications of the infection. However, based on the studies identified here, it cannot 7 be excluded that these vitD benefits might also reflect that a higher maternal vitD level will lead to a higher transfer of vitD in the maternal milk in the first months of life(157). This aspect of vitD health 8 should be consider in public health initiatives supporting breast-feeding in order to further improve 9 10 perinatal health through an even healthier breast milk composition. 11 After the first years of life, the importance of maternal exposure appeared to be weaning off 12 13 concurrently with the increasing importance of the children's own uptake of vitD from both diet and supplements and the endogenous production of vitD in the skin. This may be the reason why the 14 beneficial effects on asthma and allergy were more ambiguous in this review. The combination of 15 16 maternal and child vitD supplementation must be examined in parallel to see the full potential of vitD. Higher levels of vitD at birth have been associated with a lower number of regulatory T-cells and IFN-17 γ response(155,158). This may suggest that prenatal vitD levels independently may influence the 18 19 development of the immune system of the offspring, and thereby the vulnerability to infections and 20 asthma in early life(155). VitD-mediated changes in the development of the immune system may also 21 have more long-term effects, as they may inhibit the development of autoimmune diseases by affecting 22 immune modulation(159). Over 30 positive effects of vitD on the immune system in general have been 23 reported, as vitD is involved in regulation and differentiation of immune cells both directly on T- and

Respiratory diseases are a major problem among newborns, whereas RSV alone is estimated to result in

1	B- cells and more indirectly on dendritic cells(15,47,160-170). Interestingly, Brekke et al.(116) found a
2	significant association between islet-directed autoimmunity and maternal vitD intake, indicating a
3	potential vitD-protection against DM1 development. Epidemiological studies have shown that
4	autoimmune diseases, in general, seem to cluster among families(171-173), underlining the importance
5	of both environmental and genetic factors. Moreover, the fact that the benefits of vitD did not persist at
6	the age of 2.5(116) underlines the interplay between pre- and postnatal vitD exposure. This is in line
7	with animal studies finding that non-obese diabetic mice showed a delayed progression of DM1 when
8	an active vitD supplement administered to the dams during embryonic development(174,175).
9	However, the supply of vitD was not able to protect the offspring of mice with a strong diabetic
10	phenotype from developing diabetes over their lifetime(175). Studies by Marjamäki et al.(117) and
11	Silvis et al.(118) focused on children with a genetic DM1 risk and found no significant vitD effects.
12	Notably, their data on vitD exposure were very limited in terms of seasons and actual exposures,
13	whereas they may suffer from a high overlap between groups in terms of the actual exposure. It could
14	also be speculated that genetically susceptible individuals have a higher need for vitD. Interestingly,
15	others have found that vitD metabolism itself may be involved in the autoimmune process of DM1, as
16	antibodies against VDBP, the protein to which vitD is bound when taken up in tissues, are increased in
17	DM1 patients(176). If epigenetic changes in the metabolism and autoimmunity of vitD towards VDBP
18	participates in other autoimmune diseases remains to be seen in the coming years. However, previous
19	reports have linked low vitD levels in pregnancy to multiple sclerosis in the offspring(70), supporting
20	that vitD increase in pregnancy could be beneficial in a broader context.

This broader benefit of vitD on human development is also seen in other organ systems. We found that maternal vitD intake had a positive effect on children's growth, bones, and teeth health in seven of 13

1	studies(85,88,94,102,104,105,107). This likely reflects the diversity of the study populations, since
2	vitD, calcium absorption and bone formation have been linked through decades(23,177-181). In
3	general, we found an effect of high doses of vitD among populations from the Western world, whereby
4	theoretically, the effect could be related to the general diet, or it may indicate that the effects of vitD
5	may be hidden if other important vitamins or minerals are lacking in other parts of the world.
6	The degree of vitD exposure of the foetus may also directly affect brain development (181), as studies
7	on neonatal rats have shown that calcitriol stimulates neurite outgrowth, such as hippocampal explants,
8	and induces the expression of nerve growth factor(182,183). Likewise, low prenatal vitD is associated
9	with altered brain shape and enlarged cerebral ventricles(184). In rodents, maternal vitD deficiency
10	impairs the ability of the offspring(185,186). This is in line with one of the human studies included in
11	this review in which maternal vitD supplementation affected motor milestones and language
12	development(108). These findings support that vitD acts as a neurosteroid(61,181,187,188) and that
13	maternal vitD status may alter the developing brain. While the effect of maternal vitD on motor
14	milestones was significant at the age of 12 months, the effect on language development was observed
15	in children at the age of 24 months(108). These results indicate that maternal vitD intake may influence
16	language development more indirectly, perhaps by having a profound epigenetic effect that becomes
17	evident as the brain continues to mature after birth. As vitD has been shown to have direct effects on
18	pregnancy complications(5-12,15-17), future studies on neurodevelopment may benefit from separating
19	the children in vulnerable pregnancies, as important, positive effects may be hidden when excluding
20	children born before GW 37, such as in the study by Sass et al. (96), again underlining the need for
21	inclusion of complicated pregnancies in future studies.

1 Strengths and limitations

2 The design of this review with a systematic, transparent, and reproducible literature search based on the 3 PICO search and PRISMA strategy allowed us to identify both well-known and lesser-known 4 associations between vitD during pregnancy and the health of children. Limiting the search to English 5 and Nordic languages only, may however, have limited the inclusion of studies performed in Asia and 6 other parts of the Global South. The databases selected could also potentially impact the findings, 7 however a subsequent surge in Medline did not disclose any additional studies. Overall, the studies included in this systematic review varied in study design, study population, 8 countries of origin, sample size, and dose and duration of vitD supplementation, and many studies had 9 10 to rely on self-reports with the risk of recall bias. Together with the differences in pigmentation, diet, and sun exposure(7,21,22,145), the interpretation of many studies is difficult, as the vitD status of 11 many participants might to some degree be determined by factors other than the supplement itself, as 12 13 measurements of the maternal and infant serum concentrations of vitD are lacking in most studies, despite being studies with a high quality score. Furthermore, very few studies have specifically targeted 14 the vitD needs of women with an increased risk of deficiency, such as dark skin pigmentation, VDBP 15 polymorphism(189), obesity, and smoking. 16 Heterogeneity among the studies prevented the possibility of performing a meta-analysis that combined 17 18 multiple datasets. In particular, the diverse initiation periods of vitD supplementation, ranging from the

- 19 first trimester to the third trimester, and different vitD dosage regimes make it difficult to compare 20 study results and identify organ-specific needs for vitD. Existence of organ-specific difference in the 21 vitD demand may explain the variation in results when different studies with the same exposure are
- 22 compared. Moreover, evidence from studies on the ceiling effect points towards organ specific
- 23 findings. Studies have thus reported that increased vitD-related benefits in terms of improved muscle

1 function (in middle-aged men) wears off at 60 nmol/L(142), whereas the benefits in terms of a reduced 2 stroke risk in a Chinese population wore off at 50 nmol/L(190). At present there is little knowledge on 3 organ-specific vitD needs, and as most studies focus only on one or a few outcomes, there are no data 4 available for comparison between organs in the same individual. 5 In addition to the next-generation effects discussed, other studies have also focused on later-life 6 outcomes, such as ADHD/autism(8,15), multiple sclerosis(15,46), and neurodegenerative diseases such 7 as Parkinson's disease(191,192). Future studies may support this field by establishing prospective cohorts linking prenatal and postnatal events. However, indications found in human studies may need 8 verification in experimental models to provide evidence of causal relationships within a reasonable 9 10 timeframe.

11

12 **Conclusion**

Maternal vitD supplementation during pregnancy has postnatal effects on offspring growth patterns and the risk of early life respiratory problems, including infections such as RSV, though it remains to be seen if this is a result of prenatal programming or being born with a high vitD reserve. The development of multiple organ systems is affected and in addition to bone development, maternal vitD supplementation can affect brain development and may play a role in the later development of autoimmune diseases. Therefore, we conclude that the development of several organ systems is affected by maternal vitD status.

20 As there is currently a gap in knowledge concerning the optimal vitD level during pregnancy, further

21 studies are essential to identify the maternal vitD response to various vitD supplementation regimens.

22 We lack studies examining the actual vitD levels in both mother and offsprings, also taking into

1	consideration the increased need for vitD in some women e.g., darkly pigmented women, women with
2	obesity, smokers, and those with genetic risk factors such as VDBP polymorphisms. We conclude that
3	larger and higher quality studies are needed to establish appropriate recommended doses for pregnant
4	women especially regarding different vulnerable groups as it is too premature to make health policy
5	decision based on the current available data. To secure the accurate vitD recommendations, and avoid
6	an underestimation of the effects of vitD, we need to measure the vitD concentrations in pregnant
7	women to establish vulnerable groups and examine multiple organ specific effects in the offspring
8	related to different doses of vitD supplementation and the maternal vitD concentration during
9	pregnancy. Systematic studies focused on short-term supplementation may help determine sufficient
10	vitD concentrations until more knowledge is available. Once data is obtained, hopefully, a more
11	personalized approach towards nutrition in pregnancy will be possible, as addressing organ specific
12	needs for vitD during development could ensure well-founded decision about vitD recommendations to
13	improve childhood health of future generations.

14 **<u>References</u>**

- Palacios C, Gonzalez L. Is vitamin D deficiency a major global public health problem? J Steroid Biochem Mol Biol. 2014;144 Pt A:138-145.
- Siddiqee MH, Bhattacharjee B, Siddiqi UR, MeshbahurRahman M. High prevalence of vitamin D deficiency
 among the South Asian adults: a systematic review and meta-analysis. *BMC Public Health*, 2021;21(1):1823.
- 193.Cashman KD. Global differences in vitamin D status and dietary intake: a review of the data. Endocr Connect.202022;11(1).
- 4. Holick MF, Chen TC. Vitamin D deficiency: a worldwide problem with health consequences. *Am J Clin Nutr.* 2008;87(4):1080s-1086s.
- 5. Mumford SL, Matyas RA, Silver RM, Perkins NJ, Schisterman E. Vitamin D and pregnancy loss and live birth:
 Results from the effects of aspirin in gestation and reproduction (EAGeR) trial. *Fertility and Sterility*. 2015;104(3)
 SUPPL. 1):e55.
- 26 6. Gernand AD, Schulze KJ, Stewart CP, West KP, Christian P. Micronutrient deficiencies in pregnancy worldwide:
 27 Health effects and prevention. *Nature Reviews Endocrinology*. 2016;12(5):274-289.
- 7. Vestergaard AL, Justesen S, Volqvartz T, Aagaard SK, Andreasen MF, Lesnikova I, Uldbjerg N, Larsen A, Bor P.
 Vitamin D insufficiency among Danish pregnant women-Prevalence and association with adverse obstetric
 outcomes and placental vitamin D metabolism. Acta Obstet Gynecol Scand. 2021;100(3):480-488.
- 8. Wagner CL, Hollis BW, Kotsa K, Fakhoury H, Karras SN. Vitamin D administration during pregnancy as prevention for pregnancy, neonatal and postnatal complications. *Rev Endocr Metab Disord*. 2017;18(3):307-322.
- 33 9. De-Regil LM, Palacios C, Lombardo LK, Pena-Rosas JP. Vitamin D supplementation for women during pregnancy. *The Cochrane database of systematic reviews*. 2016;(1):CD008873. doi(1):CD008873.

- 1 10. Silva-Zolezzi I, Samuel TM, Spieldenner J. Maternal nutrition: opportunities in the prevention of gestational diabetes. Nutr Rev. 2017;75(suppl 1):32-50.
- 234567 Gilani S. Janssen P. Maternal Vitamin D Levels During Pregnancy and Their Effects on Maternal-Fetal Outcomes: 11. A Systematic Review. J Obstet Gynaecol Can. 2020;42(9):1129-1137.
- 12. Zhao R, Zhou L, Wang S, Xiong G, Hao L. Association between maternal vitamin D levels and risk of adverse pregnancy outcomes: a systematic review and dose-response meta-analysis. Food Funct. 2022;13(1):14-37.
- 13. Holick MF. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev Endocr 8 Metab Disord. 2017;18(2):153-165.
- 9 Ullah MI, Koch CA, Tamanna S, Rouf S, Shamsuddin L. Vitamin D deficiency and the risk of preeclampsia and 14. 10 eclampsia in Bangladesh. Horm Metab Res. 2013;45(9):682-687.
- 11 15. Ponsonby AL, Lucas RM, Lewis S, Halliday J. Vitamin D status during pregnancy and aspects of offspring health. 12 Nutrients. 2010;2(3):389-407.
- 13 Miller BJ, Murray L, Beckmann MM, Kent T, Macfarlane B. Dietary supplements for preventing postnatal 16. 14 depression. Cochrane Database of Systematic Reviews. 2013;2013(10):CD009104.
- 15 17. Amini S, Jafarirad S, Amani R. Postpartum depression and vitamin D: A systematic review. Crit Rev Food Sci 16 Nutr. 2019;59(9):1514-1520.
- 17 Macdonald HM, Mavroeidi A, Fraser WD, Darling AL, Black AJ, Aucott L, O'Neill F, Hart K, Berry JL, Lanham -18. 18 New SA, Reid DM. Sunlight and dietary contributions to the seasonal vitamin D status of cohorts of healthy 19 postmenopausal women living at northerly latitudes: a major cause for concern? Osteoporos Int. 2011;22(9):2461-20 2472.
- 21 Zhang R, Naughton DP. Vitamin D in health and disease: current perspectives. Nutr J. 2010;9:65. 19.
- 22 Matsuoka LY, Ide L, Wortsman J, MacLaughlin JA, Holick MF, Sunscreens suppress cutaneous vitamin D3 20. 23 synthesis. J Clin Endocrinol Metab. 1987;64(6):1165-1168.
- 24 Hossein-Nezhad A, Holick MF. Vitamin D for health: A global perspective. Mayo Clinic Proceedings. 21. 25 2013;88(7):720-755.
- 26 22. Camargo CA, Jr., Rifas-Shiman SL, Litonjua AA, Rich-Edwards JW, Weiss ST, Gold DR, Kleinman K, Gillman 27 MW. Maternal intake of vitamin D during pregnancy and risk of recurrent wheeze in children at 3 y of age. Am J 28 Clin Nutr. 2007;85(3):788-795.
- 29 Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266-281. 23.
- 30 Webb AR, Kline L, Holick MF. Influence of season and latitude on the cutaneous synthesis of vitamin D3: 24. 31 exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. J Clin 32 Endocrinol Metab. 1988;67(2):373-378.
- 33 O'Neill CM, Kazantzidis A, Rvan MJ, Barber N, Sempos CT, Durazo-Arvizu RA, Jorde R, Grimnes G, Eiriksdottir 25. 34 G, Gudnason V, Cotch MF, Kiely M, Webb AR, Cashman KD. Seasonal Changes in Vitamin D-Effective UVB 35 Availability in Europe and Associations with Population Serum 25-Hydroxyvitamin D. Nutrients, 2016;8(9).
- 36 26. Demay MB, Pittas AG, Bikle DD, Diab DL, Kiely ME, Lazaretti-Castro M, Lips P, Mitchell DM, Murad MH, 37 Powers S, Rao SD, Scragg R, Tayek JA, Valent AM, Walsh JME, McCartney CR. Vitamin D for the Prevention of 38 Disease: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2024.
- 39 Henderson L IK, Gregory J, Bates C, Prentice A, Perks J, Swan, G FM. National Diet and Nutrition Survey: adults 27. 40 aged 19 to 64 years. Vol. 3: vitamin and mineral intake and urinary analytes. London: TSO; 2003.
- 41 28. Allen RE, Dangour AD, Tedstone AE, Chalabi Z. Does fortification of staple foods improve vitamin D intakes and 42 status of groups at risk of deficiency? A United Kingdom modeling study. Am J Clin Nutr. 2015;102(2):338-344.
- 43 29. Laaksi IT, Ruohola JP, Ylikomi TJ, Auvinen A, Haataja RI, Pihlajamäki HK, Tuohimaa PJ. Vitamin D fortification 44 as public health policy: significant improvement in vitamin D status in young Finnish men. Eur J Clin Nutr. 45 2006;60(8):1035-1038.
- 46 30. Calvo MS, Whiting SJ. Survey of current vitamin D food fortification practices in the United States and Canada. J 47 Steroid Biochem Mol Biol. 2013:136:211-213.
- 48 31. Newmark HL, Heaney RP, Lachance PA. Should calcium and vitamin D be added to the current enrichment 49 program for cereal-grain products? Am J Clin Nutr. 2004;80(2):264-270.
- 50 32. Bouillon R, Marcocci C, Carmeliet G, Bikle D, White JH, Dawson-Hughes B, Lips P, Munns CF, Lazaretti-Castro 51 M, Giustina A, Bilezikian J. Skeletal and Extraskeletal Actions of Vitamin D: Current Evidence and Outstanding 52 Questions. Endocr Rev. 2019;40(4):1109-1151.

- 1 33. Braegger C, Campoy C, Colomb V, Decsi T, Domellof M, Fewtrell M, Hojsak I, Mihatsch W, Molgaard C, Shamir R, Turck D, van Goudoever J. Vitamin D in the healthy European paediatric population. J Pediatr Gastroenterol Nutr. 2013:56(6):692-701.
- Cashman KD. Vitamin D Deficiency: Defining, Prevalence, Causes, and Strategies of Addressing. Calcif Tissue 34. Int. 2020:106(1):14-29.
- 234567 35. Burt LA, Billington EO, Rose MS, Raymond DA, Hanley DA, Boyd SK. Effect of High-Dose Vitamin D Supplementation on Volumetric Bone Density and Bone Strength: A Randomized Clinical Trial. Jama. 8 2019;322(8):736-745.
- 9 Kulda V. [Vitamin D metabolism]. Vnitr Lek. 2012;58(5):400-404. 36.
- 10 Palacios C, Kostiuk LK, Pena-Rosas JP. Vitamin D supplementation for women during pregnancy. Cochrane 37. 11 Database of Systematic Reviews. 2019;2019(7):CD008873.
- Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium Ross AC 12 38. 13 TC, Yaktine AL, et al., editors. Dietary Reference Intakes for Calcium and Vitamin D. 2011; Washington (DC): 14 National Academies Press (US).
- 15 Saraf R, Morton SM, Camargo CA, Jr., Grant CC. Global summary of maternal and newborn vitamin D status - a 39. 16 systematic review. Matern Child Nutr. 2016;12(4):647-668.
- 17 Saidi L, Hammou H, Sicard F, Landrier JF, Mounien L. Maternal vitamin D deficiency and brain functions: a 40. 18 never-ending story. Food Funct. 2023;14(14):6290-6301.
- 19 Ng KY, Ma MT, Leung KK, Leung PS. Vitamin D and vitamin A receptor expression and the proliferative effects 41. 20 of ligand activation of these receptors on the development of pancreatic progenitor cells derived from human fetal 21 pancreas. Stem Cell Rev Rep. 2011;7(1):53-63.
- 22 Christesen HT, Elvander C, Lamont RF, Jorgensen JS. The impact of vitamin D in pregnancy on extraskeletal 42. 23 health in children: a systematic review. Acta Obstet Gynecol Scand. 2012;91(12):1368-1380.
- 24 43. DSOG. D-vitamin mangel. DSOG Obstetric Guideline 2013.
- 25 Kiely M, Hemmingway A, O'Callaghan KM. Vitamin D in pregnancy: current perspectives and future directions. 44. *Ther Adv Musculoskelet Dis*. 2017;9(6):145-154. Amrein K, Scherkl M, Hoffmann M, Neuwersch-Sommeregger S, Köstenberger M, Tmava Berisha A, Martucci G, 26
- 27 45. 28 Pilz S, Malle O. Vitamin D deficiency 2.0: an update on the current status worldwide. European Journal of 29 Clinical Nutrition. 2020;74(11):1498-1513.
- 30 Wagner CL, Hollis BW, Kotsa K, Fakhoury H, Karras SN. Vitamin D administration during pregnancy as 46. 31 prevention for pregnancy, neonatal and postnatal complications. Reviews in endocrine & metabolic disorders. 32 2017;18(3):307-322.
- 33 Pludowski P, Holick MF, Pilz S, Wagner CL, Hollis BW, Grant WB, Shoenfeld Y, Lerchbaum E, Llewellyn DJ, 47. 34 Kienreich K, Soni M, Vitamin D effects on musculoskeletal health, immunity, autoimmunity, cardiovascular 35 disease, cancer, fertility, pregnancy, dementia and mortality-a review of recent evidence. Autoimmun Rev. 36 2013;12(10):976-989.
- 37 48. Bell DS. Protean manifestations of vitamin D deficiency, part 1: the epidemic of deficiency. South Med J. 38 2011;104(5):331-334.
- 39 Kiely ME, Zhang JY, Kinsella M, Khashan AS, Kenny LC. Vitamin D status is associated with uteroplacental 49. 40 dysfunction indicated by pre-eclampsia and small-for-gestational-age birth in a large prospective pregnancy cohort 41 in Ireland with low vitamin D status. Am J Clin Nutr. 2016;104(2):354-361.
- 42 50. Rüdiger IH, Andersen MK, Vestergaard AL, Bor P, Larsen A, Bor MV. Is Vitamin D Deficiency Prothrombotic? 43 A Systematic Review. Semin Thromb Hemost. 2022.
- 44 Goldring ST, Griffiths CJ, Martineau AR, Robinson S, Yu C, Poulton S, Kirkby JC, Stocks J, Hooper R, Shaheen 51. 45 SO, Warner JO, Boyle RJ. Prenatal vitamin d supplementation and child respiratory health: a randomised 46 controlled trial. PLoS One. 2013;8(6):e66627.
- 47 52. Wei S, Bi W, Leduc L. Maternalvitamin D supplementation on infant growth. American Journal of Obstetrics and 48 Gynecology. 2016;214(1 SUPPL. 1):S352.
- 49 53. Viljakainen HT, Saarnio E, Hytinantti T, Miettinen M, Surcel H, Mäkitie O, Andersson S, Laitinen K, Lamberg-50 Allardt C. Maternal vitamin D status determines bone variables in the newborn. J Clin Endocrinol Metab. 51 2010;95(4):1749-1757.
- 52 54. Morley R, Carlin JB, Pasco JA, Wark JD. Maternal 25-hydroxyvitamin D and parathyroid hormone concentrations 53 and offspring birth size. J Clin Endocrinol Metab. 2006:91(3):906-912.

- 1 55. Namgung R, Tsang RC, Lee C, Han DG, Ho ML, Sierra RI. Low total body bone mineral content and high bone 234567 resorption in Korean winter-born versus summer-born newborn infants. J Pediatr. 1998;132(3 Pt 1):421-425. 56. Botelho J, Machado V, Proença L, Delgado AS, Mendes JJ. Vitamin D Deficiency and Oral Health: A
- Comprehensive Review. Nutrients. 2020;12(5).
- 57. Gutierrez Gossweiler A, Martinez-Mier EA. Chapter 6: Vitamins and Oral Health. Monogr Oral Sci. 2020;28:59-67.
- 58. Mousavi SE, Amini H, Heydarpour P, Amini Chermahini F, Godderis L. Air pollution, environmental chemicals, 8 9 and smoking may trigger vitamin D deficiency: Evidence and potential mechanisms. Environ Int. 2019;122:67-90.
- 59. Shin JS, Choi MY, Longtine MS, Nelson DM. Vitamin D effects on pregnancy and the placenta. Placenta. 10 2010;31(12):1027-1034.
- 11 60. Devakumar D, Chaube SS, Wells JCK, Saville NM, Avres JG, Manandhar DS, Costello A, Osrin D. Effect of 12 antenatal multiple micronutrient supplementation on anthropometry and blood pressure in mid-childhood in Nepal: 13 Follow-up of a double-blind randomised controlled trial. The Lancet Global Health, 2014;2(11):e654-e663.
- 14 61. Eyles D, Burne T, McGrath J. Chapter 32 - Vitamin D: A Neurosteroid Affecting Brain Development and 15 Function; Implications for Neurological and Psychiatric Disorders. In: Feldman D, Pike JW, Adams JS, eds. 16 Vitamin D (Third Edition). San Diego: Academic Press; 2011:565-582.
- 17 Mansur JL, Oliveri B, Giacoia E, Fusaro D, Costanzo PR. Vitamin D: Before, during and after Pregnancy: Effect 62. 18 on Neonates and Children. Nutrients. 2022;14(9):1900.
- 19 Yu J, Sharma P, Girgis CM, Gunton JE. Vitamin D and Beta Cells in Type 1 Diabetes: A Systematic Review. Int J 63. 20 Mol Sci. 2022;23(22).
- 21 Mousa A, Naderpoor N, Teede H, Scragg R, de Courten B. Vitamin D supplementation for improvement of 64. 22 chronic low-grade inflammation in patients with type 2 diabetes: a systematic review and meta-analysis of 23 randomized controlled trials. Nutr Rev. 2018;76(5):380-394.
- Li X, Liu Y, Zheng Y, Wang P, Zhang Y. The Effect of Vitamin D Supplementation on Glycemic Control in Type 24 65. 25 2 Diabetes Patients: A Systematic Review and Meta - Analysis. Nutrients. 2018;10(3).
- 26 66. Harvey NC, Moon RJ, Sayer AA, Ntani G, Davies JH, Javaid MK, Robinson SM, Godfrey KM, Inskip HM, 27 Cooper C. Maternal antenatal vitamin D status and offspring muscle development: findings from the Southampton 28 Women's Survey. J Clin Endocrinol Metab. 2014;99(1):330-337.
- 29 Książek A, Zagrodna A, Słowińska-Lisowska M. Vitamin D, Skeletal Muscle Function and Athletic Performance 67. 30 in Athletes-A Narrative Review. Nutrients. 2019;11(8).
- 31 68. Stubbs G, Henley K, Green J. Autism: Will vitamin D supplementation during pregnancy and early childhood 32 reduce the recurrence rate of autism in newborn siblings? Med Hypotheses. 2016;88:74-78.
- 33 McGrath JJ, Eyles DW, Pedersen CB, Anderson C, Ko P, Burne TH, Norgaard-Pedersen B, Hougaard DM, 69. 34 Mortensen PB. Neonatal vitamin D status and risk of schizophrenia: a population-based case-control study. Arch 35 Gen Psychiatry. 2010;67(9):889-894.
- 36 Pierrot-Deseilligny, C. Souberbielle JC. Vitamin D and multiple sclerosis: An update. Mult Scler Relat Disord. 70. 37 2017;14:35-45.
- 38 Bleker LS. de Rooij SR, Painter RC, Ravelli AC, Roseboom TJ. Cohort profile: the Dutch famine birth cohort 71. 39 (DFBC)- a prospective birth cohort study in the Netherlands. BMJ Open. 2021;11(3):e042078.
- 40 Roseboom T, de Rooij S, Painter R. The Dutch famine and its long-term consequences for adult health. Early Hum 72. 41 Dev. 2006;82(8):485-491.
- 42 73. Gillman MW, Barker D, Bier D, Cagampang F, Challis J, Fall C, Godfrey K, Gluckman P, Hanson M, Kuh D, 43 Nathanielsz P, Nestel P, Thornburg KL. Meeting report on the 3rd International Congress on Developmental 44 Origins of Health and Disease (DOHaD). Pediatr Res. 2007;61(5 Pt 1):625-629.
- 74. 45 Ideraabdullah FY, Belenchia AM, Rosenfeld CS, Kullman SW, Knuth M, Mahapatra D, Bereman M, Levin ED, 46 Peterson CA. Maternal vitamin D deficiency and developmental origins of health and disease (DOHaD). J 47 Endocrinol. 2019.
- 48 75. Brown D. A Review of the PubMed PICO Tool: Using Evidence-Based Practice in Health Education. Health 49 Promot Pract. 2020;21(4):496-498.
- 50 76. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, 51 Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate 52 healthcare interventions: explanation and elaboration. Bmj. 2009;339:b2700.
- 53 77. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, McQuay HJ. Assessing the quality of 54 reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996;17(1):1-12.

- 1 78. GA Wells BS, D O'Connell, J Peterson, V Welch, M Losos, P Tugwell. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in metaanalyses. Vol 2023: The Ottawa Hospital Research Institute.: 2023.
- 79. Schroth RJ, Christensen J, Morris M, Gregory P, Mittermuller BA, Rockman-Greenberg C. The Influence of Prenatal Vitamin D Supplementation on Dental Caries in Infants. J Can Dent Assoc. 2020;86:k13.
- 234567 80. Cockburn F, Belton NR, Purvis RJ, Giles MM, Brown JK, Turner TL, Wilkinson EM, Forfar JO, Barrie WJ, McKay GS, Pocock SJ. Maternal vitamin D intake and mineral metabolism in mothers and their newborn infants. 8 Br Med J. 1980;281(6232):11-14.
- 9 81. Su W, Hui Y, Guo Y, Pan Z, Li L. Early life primary prevention against infant bronchial asthma: A 3-year follow-10 up. International Journal of Clinical and Experimental Medicine. 2020;13(3):2009-2015.
- 11 82. Anderson LN, Chen Y, Omand JA, Birken CS, Parkin PC, To T, Maguire JL. Vitamin D exposure during 12 pregnancy, but not early childhood, is associated with risk of childhood wheezing. Journal of developmental 13 origins of health and disease. 2015;6(4):308-316.
- 14 Fronczak CM, Baron AE, Chase HP, Ross C, Brady HL, Hoffman M, Eisenbarth GS, Rewers M, Norris JM. In 83. 15 Utero Dietary Exposures and Risk of Islet Autoimmunity in Children. Diabetes Care. 2003;26(12):3237-3242.
- 16 Konca C, Kahramaner Z, Bulbul M, Erdemir A, Tekin M, Ercan S, Yilmaz S, Arpaci A, Turgut M. Association 84. 17 between serum 25-hydroxyvitamin D levels and TTN. Hormone Research in Paediatrics, 2014;81(6):397-401.
- 18 Brustad N, Garland J, Thorsen J, Sevelsted A, Krakauer M, Vinding RK, Stokholm J, Bonnelykke K, Bisgaard H, 85. 19 Chawes BL. Effect of High-Dose vs Standard-Dose Vitamin D Supplementation in Pregnancy on Bone 20 Mineralization in Offspring Until Age 6 Years: A Prespecified Secondary Analysis of a Double-Blinded, 21 Randomized Clinical Trial. JAMA Pediatr. 2020;174(5):419-427.
- 22 Brustad N, Yang L, Chawes BL, Stokholm J, Gurdeniz G, Bonnelykke K, Bisgaard H, Fish Oil and Vitamin D 86. 23 Supplementations in Pregnancy Protect Against Childhood Croup. The journal of allergy and clinical immunology 24 In practice. 2022.
- 25 Chawes BL, Bonnelykke K, Stokholm J, Vissing NH, Bjarnadottir E, Schoos AM, Wolsk HM, Pedersen TM, 87. 26 Vinding RK, Thorsteinsdottir S, Arianto L, Hallas HW, Heickendorff L, Brix S, Rasmussen MA, Bisgaard H. 27 Effect of Vitamin D3 Supplementation During Pregnancy on Risk of Persistent Wheeze in the Offspring: A 28 Randomized Clinical Trial. JAMA. 2016;315(4):353-361.
- 29 88. Curtis EM, Moon RJ, D'Angelo S, Crozier SR, Bishop NJ, Gopal-Kothandapani JS, Kennedy SH, Papageorghiou 30 AT, Fraser R, Gandhi SV, Schoenmakers I, Prentice A, Inskip HM, Godfrey KM, Javaid MK, Eastell R, Cooper C, 31 Harvey NC. Pregnancy Vitamin D Supplementation and Childhood Bone Mass at Age 4 Years: Findings From the 32 Maternal Vitamin D Osteoporosis Study (MAVIDOS) Randomized Controlled Trial. JBMR Plus. 33 2022:6(7):e10651.
- Grant CC, Crane J, Mitchell EA, Sinclair J, Stewart A, Milne T, Knight J, Gilchrist C, Camargo CA, Jr. Vitamin D 34 89. supplementation during pregnancy and infancy reduces aeroallergen sensitization: a randomized controlled trial. 35 36 Allergy. 2016;71(9):1325-1334.
- 37 90. Grant CC, Kaur S, Waymouth E, Mitchell EA, Scragg R, Ekeroma A, Stewart A, Crane J, Trenholme A, Camargo 38 CA, Jr. Reduced primary care respiratory infection visits following pregnancy and infancy vitamin D 39 supplementation: a randomised controlled trial. Acta Paediatr. 2015;104(4):396-404.
- 40 March KM, Chen NN, Karakochuk CD, Shand AW, Innis SM, von Dadelszen P, Barr SI, Lyon MR, Whiting SJ, 91. 41 Weiler HA, Green TJ. Maternal vitamin D₃ supplementation at 50 µg/d protects against low serum 25-42 hydroxyvitamin D in infants at 8 wk of age: a randomized controlled trial of 3 doses of vitamin D beginning in 43 gestation and continued in lactation. Am J Clin Nutr. 2015;102(2):402-410.
- 92. 44 Moon RJ, Curtis EM, Woolford SJ, Ashai S, Cooper C, Harvey NC. The importance of maternal pregnancy 45 vitamin D for offspring bone health: learnings from the MAVIDOS trial. Therapeutic Advances in Musculoskeletal 46 Disease. 2021;13.
- 47 93. Prado EL, Adu-Afarwuah S, Lartey A, Ocansey M, Ashorn P, Vosti SA, Dewey KG. Effects of pre- and post-natal 48 lipid-based nutrient supplements on infant development in a randomized trial in Ghana. Early Human 49 Development. 2016;99:43-51.
- 50 94. Roth DE, Perumal N, Al Mahmud A, Baqui AH. Maternal vitamin D3 supplementation during the third trimester 51 of pregnancy: effects on infant growth in a longitudinal follow-up study in Bangladesh. J Pediatr. 52 2013;163(6):1605-1611 e1603.
- 53 95. Sahoo SK, Katam KK, Das V, Agarwal A, Bhatia V. Maternal vitamin D supplementation in pregnancy and 54 offspring outcomes: a double-blind randomized placebo-controlled trial. J Bone Miner Metab. 2017;35(4):464-471.

- 1 96. Sass L, Vinding RK, Stokholm J, Bjarnadottir E, Noergaard S, Thorsen J, Sunde RB, McGrath J, Bonnelykke K, 234567 Chawes B, Bisgaard H. High-Dose Vitamin D Supplementation in Pregnancy and Neurodevelopment in Childhood: A Prespecified Secondary Analysis of a Randomized Clinical Trial. JAMA Netw Open. 2020;3(12):e2026018.
- 97. Sudfeld CR, Manji KP, Muhihi A, Duggan CP, Aboud S, Alwy Al-Beity FM, Wang M, Zhang N, Ulenga N, Fawzi WW. Vitamin D3 supplementation during pregnancy and lactation for women living with HIV in Tanzania: A randomized controlled trial. PLoS Medicine. 2022;19(4):e1003973.
- 8 9 Taghivand M, Pell LG, Rahman MZ, Mahmud AA, Ohuma EO, Pullangyeum EM, Ahmed T, Hamer DH, Zlotkin 98. SH, Gubbay JB, Morris SK, Roth DE. Effect of maternal vitamin D supplementation on nasal pneumococcal 10 acquisition, carriage dynamics and carriage density in infants in Dhaka, Bangladesh. BMC Infectious Diseases. 11 2022:22(1):52.
- 12 99. El-Heis S, D'Angelo S, Curtis EM, Healy E, Moon RJ, Crozier SR, Inskip H, Cooper C, Harvey NC, Godfrey KM. 13 Maternal antenatal vitamin D supplementation and offspring risk of atopic eczema in the first 4 years of life: 14 evidence from a randomized controlled trial. Br J Dermatol. 2022:187(5):659-666.
- 15 Litonjua AA, Carey VJ, Laranjo N, Harshfield BJ, McElrath TF, O'Connor GT, Sandel M, Iverson RE, Jr., Lee-100. 16 Paritz A, Strunk RC, Bacharier LB, Macones GA, Zeiger RS, Schatz M, Hollis BW, Hornsby E, Hawrylowicz C, 17 Wu AC, Weiss ST. Effect of Prenatal Supplementation With Vitamin D on Asthma or Recurrent Wheezing in 18 Offspring by Age 3 Years: The VDAART Randomized Clinical Trial. Jama. 2016;315(4):362-370.
- 19 101. Litonjua AA, Carey VJ, Laranjo N, Stubbs BJ, Mirzakhani H, O'Connor GT, Sandel M, Beigelman A, Bacharier 20 LB, Zeiger RS, Schatz M, Hollis BW, Weiss ST. Six-Year Follow-up of a Trial of Antenatal Vitamin D for 21 Asthma Reduction. N Engl J Med. 2020;382(6):525-533.
- 22 Nørrisgaard PE, Haubek D, Kühnisch J, Chawes BL, Stokholm J, Bønnelykke K, Bisgaard H, Association of High-102. 23 Dose Vitamin D Supplementation During Pregnancy With the Risk of Enamel Defects in Offspring: A 6-Year 24 Follow-up of a Randomized Clinical Trial. JAMA Pediatr. 2019;173(10):924-930.
- 25 103. Chen YCS, Mirzakhani H, Lu M, Zeiger RS, O'Connor GT, Sandel MT, Bacharier LB, Beigelman A, Carey VJ, 26 Harshfield BJ, Laranjo N, Litonjua AA, Weiss ST, Lee-Sarwar KA. The Association of Prenatal Vitamin D 27 Sufficiency With Aeroallergen Sensitization and Allergic Rhinitis in Early Childhood. Journal of Allergy and 28 Clinical Immunology: In Practice. 2021;9(10):3788-3796.e3783.
- 29 104. Dewey KG, Mridha MK, Matias SL, Arnold CD, Cummins JR, Khan MSA, Maalouf -Manasseh Z, Siddiqui Z, 30 Ullah MB, Vosti SA. Lipid-based nutrient supplementation in the first 1000 d improves child growth in 31 Bangladesh: A cluster-randomized effectiveness trial. American Journal of Clinical Nutrition. 2017;105(4):944-32 957.
- 33 Gopal-Kothandapani JS, Rigby AS, Harrison R, Eastell R, Moon RJ, Curtis EM, Cooper C, Harvey NC, Bishop N. 105. 34 Maternal pregnancy vitamin D supplementation increases offspring bone formation in response to mechanical 35 loading: Findings from a MAVIDOS Trial sub-study. J Musculoskelet Neuronal Interact. 2020;20(1):4-11.
- 36 106. Hjelmsø MH, Shah SA, Thorsen J, Rasmussen M, Vestergaard G, Mortensen MS, Brejnrod A, Brix S, Chawes B, 37 Bønnelykke K, Sørensen SJ, Stokholm J, Bisgaard H. Prenatal dietary supplements influence the infant airway 38 microbiota in a randomized factorial clinical trial. Nature Communications. 2020;11(1):426.
- 39 Kalra P, Das V, Agarwal A, Kumar M, Ramesh V, Bhatia E, Gupta S, Singh S, Saxena P, Bhatia V. Effect of 107. 40 vitamin D supplementation during pregnancy on neonatal mineral homeostasis and anthropometry of the newborn 41 and infant. Br J Nutr. 2012;108(6):1052-1058.
- 42 108. Matias SL, Mridha MK, Tofail F, Arnold CD, Khan MSA, Siddiqui Z, Ullah MB, Dewey KG. Home fortification 43 during the first 1000 d improves child development in Bangladesh: A cluster-randomized effectiveness trial. 44 American Journal of Clinical Nutrition. 2017;105(4):958-969.
- 109. 45 Morris SK, Pell LG, Rahman MZ, Mahmud AA, Shi J, Ahmed T, Dimitris MC, Gubbay JB, Islam MM, Kashem 46 T, Keya FK, Mohsin M, Pullenayegum E, Science M, Shanta SS, Sumiya MK, Zlotkin S, Roth DE. Effects of 47 Maternal Vitamin D Supplementation During Pregnancy and Lactation on Infant Acute Respiratory Infections: Follow-up of a Randomized Trial in Bangladesh. J Pediatric Infect Dis Soc. 2021;10(9):901-909. 48
- 49 110. Roth DE, Gernand AD, Al Mahmud A. Vitamin D Supplementation in Pregnancy and Lactation and Infant 50 Growth. N Engl J Med. 2018:379(19):1881.
- O'Callaghan KM, Shanta SS, Fariha F, Harrington J, Mahmud AA, Emdin AL, Gernand AD, Ahmed T, Abrams 51 111. 52 SA, Moore DR, Roth DE. Effect of maternal prenatal and postpartum vitamin D supplementation on offspring 53 bone mass and muscle strength in early childhood: Follow-up of a randomized controlled trial. American Journal 54 of Clinical Nutrition. 2022;115(3):770-780.

- 1 112. Brustad N, Eliasen AU, Stokholm J, Bønnelykke K, Bisgaard H, Chawes BL. High-Dose Vitamin D Supplementation During Pregnancy and Asthma in Offspring at the Age of 6 Years. Jama. 2019;321(10):1003-1005.
- 234567 113. Reed SG, Voronca D, Wingate JS, Murali M, Lawson AB, Hulsey TC, Ebeling MD, Hollis BW, Wagner CL. Prenatal vitamin D and enamel hypoplasia in human primary maxillary central incisors: a pilot study. Pediatr Dent J. 2017:27(1):21-28.
- 114. Wolsk HM, Harshfield BJ, Laranjo N, Carey VJ, O'Connor G, Sandel M, Strunk RC, Bacharier LB, Zeiger RS, 8 Schatz M, Hollis BW, Weiss ST, Litonjua AA. Vitamin D supplementation in pregnancy, prenatal 25(OH)D levels, 9 race, and subsequent asthma or recurrent wheeze in offspring: Secondary analyses from the Vitamin D Antenatal 10 Asthma Reduction Trial. J Allergy Clin Immunol. 2017;140(5):1423-1429.e1425.
- 11 115. Belderbos ME, Houben ML, Wilbrink B, Lentjes E, Bloemen EM, Kimpen JL, Rovers M, Bont L. Cord blood 12 vitamin D deficiency is associated with respiratory syncytial virus bronchiolitis. Pediatrics. 2011;127(6):e1513-13 1520.
- 14 116. Brekke HK, Ludvigsson J. Vitamin D supplementation and diabetes-related autoimmunity in the ABIS study. 15 Pediatric Diabetes. 2007;8(1):11-14.
- 16 Marjamaki L, Niinisto S, Kenward MG, Uusitalo L, Uusitalo U, Ovaskainen ML, Kronberg-Kippila C, Simell O, 117. 17 Veijola R, Ilonen J, Knip M, Virtanen SM. Maternal intake of vitamin D during pregnancy and risk of advanced 18 beta cell autoimmunity and type 1 diabetes in offspring. Diabetologia. 2010;53(8):1599-1607.
- 19 Silvis K, Aronsson CA, Liu X, Uusitalo U, Yang J, Tamura R, Lemmark A, Rewers M, Hagopian W, She JX, 118. 20 Simell O, Toppari J, Ziegler A, Akolkar B, Krischer J, Virtanen SM, Norris JM. Maternal dietary supplement use 21 and development of islet autoimmunity in the offspring: TEDDY study. Pediatric Diabetes. 2019;20(1):86-92.
- 22 119. Blighe K, Chawes BL, Kelly RS, Mirzakhani H, McGeachie M, Litonjua AA, Weiss ST, Lasky-Su JA. Vitamin D 23 prenatal programming of childhood metabolomics profiles at age 3 y. Am J Clin Nutr. 2017;106(4):1092-1099.
- 24 Lee-Sarwar K, Kelly RS, Lasky-Su J, Kachroo P, Zeiger RS, O'Connor GT, Sandel MT, Bacharier LB, Beigelman 120. 25 A, Laranjo N, Gold DR, Weiss ST, Litonjua AA, Dietary and Plasma Polyunsaturated Fatty Acids Are Inversely 26 Associated with Asthma and Atopy in Early Childhood, J Allergy Clin Immunol Pract. 2019;7(2):529-538.e528.
- 27 121. Omand JA, To T, O'Connor DL, Parkin PC, Birken CS, Thorpe KE, Maguire JL. 25 -hydroxyvitamin D and health 28 service utilization for asthma in early childhood. Pediatr Pulmonol. 2018;53(8):1018-1026.
- 29 Dawodu A, Davidson B, Woo JG, Peng YM, Ruiz-Palacios GM, de Lourdes Guerrero M, Morrow AL. Sun 122. 30 exposure and vitamin D supplementation in relation to vitamin D status of breastfeeding mothers and infants in the 31 global exploration of human milk study. Nutrients. 2015;7(2):1081-1093.
- 32 Jain V, Gupta N, Kalaivani M, Jain A, Sinha A, Agarwal R. Vitamin D deficiency in healthy breastfed term infants 123. 33 at 3 months & their mothers in India: Seasonal variation & determinants. Indian Journal of Medical Research. 34 2011;133(3):267-273.
- Markestad T, Ulstein M, Aksnes L, Aarskog D. Serum concentrations of vitamin D metabolites in vitamin D 35 124. 36 supplemented pregnant women. A longitudinal study. Acta Obstet Gynecol Scand. 1986;65(1):63-67.
- 37 125. Echeverri AF TG. Autoimmune diabetes mellitus (Type 1A) In: Anaya JM, Shoenfeld Y, Rojas-Villarraga A, et 38 al., editors. . Autoimmunity: From Bench to Bedside El Rosario University Press;.
- 39 Tiberti C. Buzzetti R, Anastasi E, Dotta F, Vasta M, Petrone A, Cervoni M, Torresi P, Vecci E, Multari G, Di 126. 40 Mario U. Autoantibody negative new onset type 1 diabetic patients lacking high risk HLA alleles in a caucasian 41 population: are these type 1b diabetes cases? Diabetes Metab Res Rev. 2000;16(1):8-14.
- 42 127. Sudfeld CR, Manji KP, Muhihi A, Duggan CP, Aboud S, Alwy Al-Beity FM, Wang M, Zhang N, Ulenga N, Fawzi 43 WW. Vitamin D3 supplementation during pregnancy and lactation for women living with HIV in Tanzania: A 44 randomized controlled trial. PLoS Med. 2022;19(4):e1003973.
- 45 128. Hamadani JD, Tofail F, Hilaly A, Huda SN, Engle P, Grantham-McGregor SM. Use of family care indicators and 46 their relationship with child development in Bangladesh. J Health Popul Nutr. 2010;28(1):23-33.
- 47 129. Kariger P, Frongillo EA, Engle P, Britto PM, Sywulka SM, Menon P. Indicators of family care for development 48 for use in multicountry surveys. J Health Popul Nutr. 2012;30(4):472-486.
- 49 130. Jullien S. Vitamin D prophylaxis in infancy. BMC Pediatr. 2021;21(Suppl 1):319.
- Marcinowska-Suchowierska E, Kupisz-Urbańska M, Łukaszkiewicz J, Płudowski P, Jones G. Vitamin D Toxicity-50 131. 51 A Clinical Perspective. Front Endocrinol (Lausanne). 2018;9:550.
- 52 Galior K, Grebe S, Singh R. Development of Vitamin D Toxicity from Overcorrection of Vitamin D Deficiency: A 132. 53 Review of Case Reports. Nutrients. 2018:10(8).

- 1 133. De Vincentis S, Russo A, Milazzo M, Lonardo A, De Santis MC, Rochira V, Simoni M, Madeo B. How Much 234567 Vitamin D is Too Much? A Case Report and Review of the Literature. Endocr Metab Immune Disord Drug Targets. 2021:21(9):1653-1659.
- Larque E, Morales E, Leis R, Blanco-Carnero JE. Maternal and Foetal Health Implications of Vitamin D Status 134. during Pregnancy. Annals of Nutrition and Metabolism. 2018;72(3):179-192.
- 135. Reynolds A, O'Connell SM, Kenny LC, Dempsey E. Transient neonatal hypercalcaemia secondary to excess maternal vitamin D intake: too much of a good thing. BMJ Case Rep. 2017;2017.
- 8 Shephard RM, Deluca HF. Plasma concentrations of vitamin D3 and its metabolites in the rat as influenced by 136. 9 vitamin D3 or 25-hydroxyvitamin D3 intakes. Arch Biochem Biophys. 1980;202(1):43-53.
- 10 137. Deluca HF, Prahl JM, Plum LA. 1,25-Dihydroxyvitamin D is not responsible for toxicity caused by vitamin D or 25-hydroxyvitamin D. Arch Biochem Biophys. 2011;505(2):226-230. 11
- 12 138. Hollis BW, Johnson D, Hulsey TC, Ebeling M, Wagner CL. Vitamin D supplementation during pregnancy: 13 double-blind, randomized clinical trial of safety and effectiveness. J Bone Miner Res. 2011;26(10):2341-2357.
- 14 139. Roth DE, Al Mahmud A, Ragib R, Akhtar E, Perumal N, Pezzack B, Bagui AH, Randomized placebo-controlled 15 trial of high-dose prenatal third-trimester vitamin D3 supplementation in Bangladesh: the AViDD trial. Nutr J. 16 2013;12:47.
- 17 Vestergaard AL, Christensen M, Andreasen MF, Larsen A, Bor P. Vitamin D in pregnancy (GRAVITD) - a 140. 18 randomised controlled trial identifying associations and mechanisms linking maternal Vitamin D deficiency to 19 placental dysfunction and adverse pregnancy outcomes - study protocol. BMC Pregnancy Childbirth. 20 2023;23(1):177.
- 21 Vestergaard AL, Andersen MK, Andersen HH, Bossow KA, Bor P, Larsen A. Effects of High-Dose Vitamin D 141. 22 Supplementation on Placental Vitamin D Metabolism and Neonatal Vitamin D Status, Nutrients, 23 2024:16(13):2145.
- 24 Janssen HC, Emmelot-Vonk MH, Verhaar HJ, van der Schouw YT. Vitamin D and muscle function: is there a 142. 25 threshold in the relation? J Am Med Dir Assoc. 2013;14(8):627.e613-628.
- Schwartz JB, Kane L, Bikle D. Response of Vitamin D Concentration to Vitamin D3 Administration in Older 26 143. 27 Adults without Sun Exposure: A Randomized Double-Blind Trial. J Am Geriatr Soc. 2016;64(1):65-72.
- 28 144. Macdonald HM. Contributions of sunlight and diet to vitamin D status. Calcif Tissue Int. 2013;92(2):163-176.
- 29 Yeum KJ, Song BC, Joo NS. Impact of Geographic Location on Vitamin D Status and Bone Mineral Density. Int J 145. 30 Environ Res Public Health. 2016;13(2):184.
- 31 Clemens TL, Adams JS, Henderson SL, Holick MF. Increased skin pigment reduces the capacity of skin to 146. 32 synthesise vitamin D3. Lancet. 1982;1(8263):74-76.
- 33 WHO Guidelines Approved by the Guidelines Review Committee. Guideline: Vitamin D Supplementation in 147. 34 Pregnant Women. Geneva: World Health Organization
- 35 Copyright © World Health Organization 2012.; 2012.
- 36 148. Kwon HK, Choi GB, Huh JR. Maternal inflammation and its ramifications on fetal neurodevelopment. Trends 37 Immunol. 2022;43(3):230-244.
- 38 Goldstein JA, Gallagher K, Beck C, Kumar R, Gernand AD. Maternal-Fetal Inflammation in the Placenta and the 149. 39 Developmental Origins of Health and Disease. Front Immunol. 2020;11:531543.
- 40 Vestergaard AL, Andersen MK, Olesen RV, Bor P, Larsen A. High-Dose Vitamin D Supplementation 150. 41 Significantly Affects the Placental Transcriptome. Nutrients. 2023;15(24).
- 42 151. Nykjaer A, Dragun D, Walther D, Vorum H, Jacobsen C, Herz J, Melsen F, Christensen EI, Willnow TE. An 43 endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3. Cell. 44 1999;96(4):507-515.
- 45 152. Ashley B, Simner C, Manousopoulou A, Jenkinson C, Hey F, Frost JM, Rezwan FI, White CH, Lofthouse EM, 46 Hyde E, Cooke LDF, Barton S, Mahon P, Curtis EM, Moon RJ, Crozier SR, Inskip HM, Godfrey KM, Holloway 47 JW, Cooper C, Jones KS, Lewis RM, Hewison M, Garbis SDD, Branco MR, Harvey NC, Cleal JK, Placental
- 48 uptake and metabolism of 25(OH)vitamin D determine its activity within the fetoplacental unit. Elife. 2022;11. 49 Newton DA, Baatz JE, Kindy MS, Gattoni-Celli S, Shary JR, Hollis BW, Wagner CL. Vitamin D binding protein 153. polymorphisms significantly impact vitamin D status in children. Pediatr Res. 2019;86(5):662-669. 50
- 51 154. Powe CE, Evans MK, Wenger J, Zonderman AB, Berg AH, Nalls M, Tamez H, Zhang D, Bhan I, Karumanchi SA, 52 Powe NR, Thadhani R. Vitamin D-binding protein and vitamin D status of black Americans and white Americans. 53 N Engl J Med. 2013:369(21):1991-2000.

- 155. Chi A, Wildfire J, McLoughlin R, Wood RA, Bloomberg GR, Kattan M, Gergen P, Gold DR, Witter F, Chen T, Holick M, Visness C, Gern J, O'Connor GT. Umbilical cord plasma 25-hydroxyvitamin D concentration and immune function at birth: the Urban Environment and Childhood Asthma study. *Clin Exp Allergy*. 2011;41(6):842-850.
 156. Shi T, McAllister DA, O'Brien KL, Simoes EAF, Madhi SA, Gessner BD, Polack FP, Balsells E, Acacio S, Aguayo C, Alassani I, Ali A, Antonio M, Awasthi S, Awori JO, Azziz-Baumgartner E, Baggett HC, Baillie VL, Balmaseda A, Barahona A, Basnet S, Bassat Q, Basualdo W, Bigogo G, Bont L, Breiman RF, Brooks WA, Broor
- 156. Shi T, McAllister DA, O'Brien KL, Simoes EAF, Madhi SA, Gessner BD, Polack FP, Balsells E, Acacio S, Aguayo C, Alassani I, Ali A, Antonio M, Awasthi S, Awori JO, Azziz-Baumgartner E, Baggett HC, Baillie VL, Balmaseda A, Barahona A, Basnet S, Bassat Q, Basualdo W, Bigogo G, Bont L, Breiman RF, Brooks WA, Broor 8 S, Bruce N, Bruden D, Buchy P, Campbell S, Carosone-Link P, Chadha M, Chipeta J, Chou M, Clara W, Cohen C, 9 de Cuellar E, Dang DA, Dash-Yandag B, Deloria-Knoll M, Dherani M, Eap T, Ebruke BE, Echavarria M, de 10 Freitas Lázaro Emediato CC, Fasce RA, Feikin DR, Feng L, Gentile A, Gordon A, Goswami D, Goyet S, Groome 11 M, Halasa N, Hirve S, Homaira N, Howie SRC, Jara J, Jroundi I, Kartasasmita CB, Khuri-Bulos N, Kotloff KL, 12 Krishnan A, Libster R, Lopez O, Lucero MG, Lucion F, Lupisan SP, Marcone DN, McCracken JP, Mejia M, Moisi 13 JC, Montgomery JM, Moore DP, Moraleda C, Moyes J, Munywoki P, Mutyara K, Nicol MP, Nokes DJ, 14 Nymadawa P, da Costa Oliveira MT, Oshitani H, Pandey N, Paranhos-Baccalà G, Phillips LN, Picot VS, Rahman 15 M, Rakoto-Andrianarivelo M, Rasmussen ZA, Rath BA, Robinson A, Romero C, Russomando G, Salimi V, 16 Sawatwong P, Scheltema N, Schweiger B, Scott JAG, Seidenberg P, Shen K, Singleton R, Sotomayor V, Strand 17 TA, Sutanto A, Sylla M, Tapia MD, Thamthitiwat S, Thomas ED, Tokarz R, Turner C, Venter M, Waicharoen S, 18 Wang J, Watthanaworawit W, Yoshida LM, Yu H, Zar HJ, Campbell H, Nair H. Global, regional, and national 19 disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children 20 in 2015: a systematic review and modelling study. Lancet. 2017;390(10098):946-958.
- 21 157. Wagner CL, Hollis BW. Early-Life Effects of Vitamin D: A Focus on Pregnancy and Lactation. Ann Nutr Metab.
 2020;76 Suppl 2:16-28.
- Akhtar E, Mily A, Haq A, Al-Mahmud A, El-Arifeen S, Hel Baqui A, Roth DE, Raqib R. Prenatal high-dose vitamin D3 supplementation has balanced effects on cord blood Th1 and Th2 responses. *Nutr J.* 2016;15(1):75.
- 159. Murdaca G, Tonacci A, Negrini S, Greco M, Borro M, Puppo F, Gangemi S. Emerging role of vitamin D in autoimmune diseases: An update on evidence and therapeutic implications. *Autoimmun Rev.* 2019;18(9):102350.
- Wu S, Sun J. Vitamin D, vitamin D receptor, and macroautophagy in inflammation and infection. *Discov Med*. 2011;11(59):325-335.
- 161. Daneshkhah A, Agrawal V, Eshein A, Subramanian H, Roy HK, Backman V. Evidence for possible association of vitamin D status with cytokine storm and unregulated inflammation in COVID-19 patients. Aging Clin Exp Res.
 2020;32(10):2141-2158.
- 162. Cyprian F, Lefkou E, Varoudi K, Girardi G. Immunomodulatory Effects of Vitamin D in Pregnancy and Beyond.
 Front Immunol. 2019;10:2739.
 163. Arnson Y, Amital H, Shoenfeld Y. Vitamin D and autoimmunity: new aetiological and therapeutic considerations.
- Arnson Y, Amital H, Shoenfeld Y. Vitamin D and autoimmunity: new aetiological and therapeutic considerations.
 Ann Rheum Dis. 2007;66(9):1137-1142.
- 36 164. Shapira Y, Agmon-Levin N, Shoenfeld Y. Mycobacterium tuberculosis, autoimmunity, and vitamin D. *Clin Rev Allergy Immunol.* 2010;38(2-3):169-177.
- 38 165. Grant WB, Lahore H, McDonnell SL, Baggerly CA, French CB, Aliano JL, Bhattoa HP. Evidence that Vitamin D
 39 Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. *Nutrients*. 2020;12(4).
- 40 166. Dadaei T, Safapoor MH, Asadzadeh Aghdaei H, Balaii H, Pourhoseingholi MA, Naderi N, Zojaji H, Azimzadeh P,
 41 Mohammadi P, Zali MR. Effect of vitamin D3 supplementation on TNF-α serum level and disease activity index in Iranian IBD patients. *Gastroenterol Hepatol Bed Bench*. 2015;8(1):49-55.
- 43 167. Wu D, Lewis ED, Pae M, Meydani SN. Nutritional Modulation of Immune Function: Analysis of Evidence, Mechanisms, and Clinical Relevance. *Front Immunol*. 2018;9:3160.
- 45 168. Bhat IA, Mir IR, Malik GH, Mir JI, Dar TA, Nisar S, Naik NA, Sabah ZU, Shah ZA. Comparative study of TNF-α and vitamin D reveals a significant role of TNF-α in NSCLC in an ethnically conserved vitamin D deficient
 47 population. *Cytokine*. 2022;160:156039.
- 48 169. Gaffen SL, Liu KD. Overview of interleukin-2 function, production and clinical applications. *Cytokine*.
 49 2004;28(3):109-123.
- 50 170. Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-gamma: an overview of signals, mechanisms and functions. *J Leukoc Biol*. 2004;75(2):163-189.
- 52 171. Eaton WW, Rose NR, Kalaydjian A, Pedersen MG, Mortensen PB. Epidemiology of autoimmune diseases in Denmark. J Autoimmun. 2007;29(1):1-9.

- 1 172. Cárdenas-Roldán J, Rojas-Villarraga A, Anaya JM. How do autoimmune diseases cluster in families? A systematic review and meta-analysis. BMC Med. 2013;11:73.
- 234567 173. Ganapati A, Arunachal G, Arya S, Shanmugasundaram D, Jeyaseelan L, Kumar S, Danda S, Danda D. Study of familial aggregation of autoimmune rheumatic diseases in Asian Indian patients with systemic lupus erythematosus. Rheumatol Int. 2019;39(12):2053-2060.
- Gregori S, Giarratana N, Smiroldo S, Uskokovic M, Adorini L. A 1alpha,25-dihydroxyvitamin D(3) analog 174. enhances regulatory T-cells and arrests autoimmune diabetes in NOD mice. Diabetes. 2002;51(5):1367-1374.
- 8 van Etten E, Decallonne B, Mathieu C. 1,25-dihydroxycholecalciferol: endocrinology meets the immune system. 175. 9 Proc Nutr Soc. 2002;61(3):375-380.
- 10 Kodama K, Zhao Z, Toda K, Yip L, Fuhlbrigge R, Miao D, Fathman CG, Yamada S, Butte AJ, Yu L. Expression -176. 11 Based Genome-Wide Association Study Links Vitamin D-Binding Protein With Autoantigenicity in Type 1 12 Diabetes. Diabetes. 2016;65(5):1341-1349.
- 13 177. Khazai N, Judd SE, Tangpricha V. Calcium and vitamin D: skeletal and extraskeletal health. Curr Rheumatol Rep. 14 2008:10(2):110-117.
- 15 178. Reid IR, Bolland MJ, Grey A. Effects of vitamin D supplements on bone mineral density: a systematic review and 16 meta-analysis. Lancet. 2014;383(9912):146-155.
- 17 Zhu K, Devine A, Dick IM, Wilson SG, Prince RL. Effects of calcium and vitamin D supplementation on hip bone 179. 18 mineral density and calcium-related analytes in elderly ambulatory Australian women: a five-year randomized 19 controlled trial. J Clin Endocrinol Metab. 2008;93(3):743-749,
- 20 Hu Z, Zhou F, Xu H. Circulating vitamin C and D concentrations and risk of dental caries and periodontitis: A 180. Mendelian randomization study. J Clin Periodontol. 2022;49(4):335-344. 21
- 22 181. Dusso AS, Brown AJ, Slatopolsky E. Vitamin D. Am J Physiol Renal Physiol. 2005;289(1):F8-28.
- 23 Neveu I, Naveilhan P, Jehan F, Baudet C, Wion D, De Luca HF, Brachet P. 1,25-dihydroxyvitamin D3 regulates 182. 24 the synthesis of nerve growth factor in primary cultures of glial cells. Brain Res Mol Brain Res. 1994;24(1-4):70-25 76
- 26 183. Brown J, Bianco JI, McGrath JJ, Eyles DW. 1,25-dihydroxyvitamin D3 induces nerve growth factor, promotes 27 neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons. Neurosci Lett. 2003;343(2):139-143.
- 28 184. McGrath JJ, Féron FP, Burne TH, Mackay-Sim A, Eyles DW. Vitamin D3-implications for brain development. J 29 Steroid Biochem Mol Biol. 2004;89-90(1-5):557-560.
- 30 Fu L, Chen YH, Chen X, Xu S, Yu Z, Xu DX. Vitamin D deficiency impairs neurobehavioral development in male 185. 31 mice. Physiol Behav. 2017;179:333-339.
- Yates NJ, Tesic D, Feindel KW, Smith JT, Clarke MW, Wale C, Crew RC, Wharfe MD, Whitehouse AJO, 32 186. 33 Wyrwoll CS. Vitamin D is crucial for maternal care and offspring social behaviour in rats. J Endocrinol. 34 2018;237(2):73-85.
- Groves NJ, McGrath JJ, Burne TH. Vitamin D as a neurosteroid affecting the developing and adult brain. Annu 35 187. 36 Rev Nutr. 2014:34:117-141.
- 37 188. Tsai MJ, O'Malley BW. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu 38 Rev Biochem. 1994;63:451-486.
- 39 Fernando M, Ellery SJ, Marquina C, Lim S, Naderpoor N, Mousa A. Vitamin D-Binding Protein in Pregnancy and 189. 40 Reproductive Health. Nutrients. 2020;12(5).
- 41 190. Zhou Z, Zhang N, Lin T, Song Y, Liu L, Wang Z, Wei Y, Li J, Zhang Y, Huo Y, Ma H, Bi C, Fang C, Wang B, 42 Zhang H. Oin X. Wang X, Guo H, Xu X. Plasma 25-hydroxyvitamin D(3) concentrations and incident risk of 43 ischemic stroke in rural Chinese adults: New insight on ceiling effect. Nutrition. 2022;99-100:111627.
- 44 Wang Y, Li H, Zheng M, Wu Y, Zeng T, Fu J, Zeng D. Maternal Vitamin D deficiency increases the risk of 191. 45 adverse neonatal outcomes in the Chinese population: A prospective cohort study. PLoS ONE. 46 2018;13(4):e0195700.
- 47 192. Bivona G, Gambino CM, Lo Sasso B, Scazzone C, Giglio RV, Agnello L, Ciaccio M. Serum Vitamin D as a 48 Biomarker in Autoimmune, Psychiatric and Neurodegenerative Diseases. Diagnostics (Basel). 2022;12(1).
- 49 193. Oh C, Keats EC, Bhutta ZA. Vitamin and mineral supplementation during pregnancy on maternal, birth, child 50 health and development outcomes in low-and middle-income countries: A systematic review and meta-analysis. 51 Nutrients. 2020;12(2):491.
- 52 194. MinistryOfHealth. Companion Statement on Vitamin D and Sun Exposure in Pregnancy and Infancy in New 53 Zealand: A supplement to the Consensus Statement on Vitamin D and Sun Exposure in New Zealand. Wellington: 54 Ministry of Health. Updated 2020.

1 195. Perez-Lopez FR, Pilz S, Chedraui P. Vitamin D supplementation during pregnancy: an overview. Current opinion 2 3 4 in obstetrics & gynecology. 2020;32(5):316-321.

- 196. Ministeriet for fødevarer LoFF. D-vitamin. 2022.
- 197. Hynes C, Jesurasa A, Evans P, Mitchell C. Vitamin D supplementation for women before and during pregnancy: an update of the guidelines, evidence, and role of GPs and practice nurses. Br J Gen Pract. 2017;67(662):423-424.
- 5 6 7
- **Figures and tables** 8
- 9 Figure 1: Overview of the recommended dose of vitamin D supplementation in pregnancy in selected
- 10 countries(7,51,117,193-197). The zenith angle of 33° latitude during August and March is illustrated in the northern
- 11 hemisphere (blue) and southern hemisphere (pink), as a zenith angle below 33° inhibits cutaneous vitamin D
- 12 production(7.21).
- 13

15

- 14 Figure 2: PRISMA-diagram of the screening process
- 16 Figure 3: The 39 included studies were divided into eight different outcomes. Where n indicates the number of participants,
- 17 followed by the quality assessment score, either the JADAD score (J) or NOS score (N). The star (*) indicates studies with
- 18 significant findings. The number in parentheses represents the reference number.
- 19
- 20 Figure 4: The included studies according to country of origin, study type, and dose of vitamin D supplement. Significant 21 outcomes are marked by stars (*).
- 22
- 23 Figure 5: Dosage of vitD in the 31 different RCT studies in this review divided into having an effect or not on the children's 24 different outcome.
- 25

26 Figure 6: Follow-up time of each study, displayed by the target organ. The stars indicate the presence of a statistically 27 significant effect of vitD exposure. Overall, 22 studies(22,85,86,88-91,94,99,100,102-108,114-116,119,120) reported a 28 beneficial effect of vitD, while 17 studies(51,87,92,93,95-98,101,109-113,117,118,121) found no association between vitD 29 exposure and health outcomes of the exposed children.

- 31 Figure 7: VitD associations with growth, separated according to dose and follow-up time(94,104,107,110,127). The stars 32 (*) indicate significant results of vitD supplementation.
- 33

- 34 Table 1: Overview of studies on respiratory infections included in this review. The studies with a significant effect are
- 35 marked in white, while the studies with no significant findings are marked in grey. The season of inclusion was described,
- 36 although these data were not used in connection with the results. vitD = vitamin D. 1 ARI = acute respiratory infection. 8 GW
- 37 = gestational week. 14 RSV = respiratory syncytial virus. *Taking a maximum of 200 IU/d vitD before inclusion in the study.

Table 2: Overview of included studies on asthma, croup, wheezing, and allergy. Studies with a significant effect are marked
 in white, and studies with no significant findings are marked in grey. The season of inclusion was described, although these
 data were not used in connection with the results. vitD = vitamin D. ⁸GW = gestational age. ⁹PUFA = polyunsaturated fatty
 acid. ¹⁰IVF = in vitro fertilization. *Taking a maximum of 200 IU/d vitD before the inclusion in the study. **Taking a
 maximum of 2,000 IU/d vitD before the inclusion in the study.

7

8 Table 3: Studies evaluating vitD effects on DM1 risk. Studies with a significant effect are marked in white, and studies with
9 no significant findings are marked in grey. The season of inclusion is described, although these data were not used in
10 connection with the results. VitD = vitamin D.

11

12 Table 4: Overview of studies on tooth development. Studies with a significant effect are marked in white, and studies with 13 no significant findings are marked in grey. The season of inclusion was described, although these data were not used in 14 connection with the results. VitD = vitamin D. ⁶EH = enamel hypoplasia. ⁸GW = gestational week. *Taking a maximum of 15 600 IU/d vitD before inclusion in the study.

16

Table 5: Overview of studies on bones included in this review. Studies with a significant effect is marked in white, whereas
 studies with no significant findings are marked in grey. The season of inclusion was described, although these data were not
 used in connection with the results. VitD = vitamin D. ³BMC = bone mineral content. ⁴BMD = bone mineral density, aBMD
 a real bone mineral density. ⁸GW = gestational week. ¹¹DXA = dual-energy X-ray absorptiometry.

21

Table 6: Overview of studies on growth included in this review. Studies with a significant effect are marked in white, and
 studies with no significant findings are marked in grey. The season of inclusion was described, although these data were not
 used in connection with the results. VitD = vitamin D. ⁵LAZ-score = length-for-age z-score. ⁸GW = gestational week. ¹²IFA
 = iron and folic acid. ¹³LNS = lipid-based nutrient supplement.

26

Table 7: Overview of studies on language and motor skills included in this review. Studies with a significant effect are
 marked in white, and studies with no significant findings are marked in grey. The season of inclusion was described,
 although these data were not used in connection with the results. VitD = vitamin D. ⁸GW = gestational week. ¹²IFA = iron
 and folic acid. ¹³LNS = lipid-based nutrient supplements. *Taking a maximum of 600 IU/d vitD before the inclusion in the
 study.

- 32
- 33 *Table 8:* Overview of key parameters in the study on infant vitamin D levels included in this review. The season of
- 34 inclusion was described, although these data were not used in connection with the results. VitD = vitamin D. $^8GW =$
- 35 gestational week. *Taking a maximum of 400 IU/d vitD before inclusion in the study.
- 36

- 1 *Table 1:* Overview of studies on respiratory infections included in this review. The studies with a significant effect are
- 2 marked in white, while the studies with no significant findings are marked in grey. The season of inclusion was described,
- 3 although these data were not used in connection with the results. vitD = vitamin D. ^{1}ARI = acute respiratory infection. ^{8}GW
- 4
- = gestational week. 14 RSV = respiratory syncytial virus. *Taking a maximum of 200 IU/d vitD before inclusion in the study.

First	Study	St	JADAD/N	Materna	Children's	Follow-	Results
author,	design	Study population	OS score	l vitamin	outcome	up time	ICourts
	ucsign		05 50010	D	outcome	up tille	
year,							
country				supplem			
-				entation			
Respiratory					1		
Grant	RCT	Pregnant women*	JADAD 5.	1,000-,	ARI ¹ .	6 months	Maternal vitD doses of 2,000
2014 (96)	n=260	without pregnancy	appropriate	2,000	Parent-reported		IU/d reduced the risk of ARI^1
New		complications	randomizati	IU/d or	and primary		in children significant from
Zealand			on and	placebo.	care visits		99% to 88%, p=0.03
		Season: all year	double	From			
			blinding.	GW ⁸ 27			
				to birth.			
Belderbos	Cohort	Healthy children	NOS 8. No	400 IU/d.	RSV ¹⁴ infection.	1 year	Maternal vitD intake was not
2011(121)	n=156	with an	selection	Recall	Parent-reported		significantly associated with
Holland		uncomplicated birth	bias,	after	symptoms and		reduced risk of RSV14 in
		Ethnicity:	comparabili	birth.	nose-throat		children.
		Caucasian, other	ty in the		swap specimens		
			cohort.	\mathbf{Y}			
		Season: parted in 4	Outcome				
		seasons	from record				
			linkage.				
Morris	RCT	Pregnant women in	JADAD 4.	28,000-,	Microbiological	6 months	Maternal vitD intake was not
2021 (115)	n=1,174	GW 17-24.	appropriate	16,800-,	ly confirmed		significantly associated with
Bangladesh		Age: over 18 years	randomizati	4,200	ARI ¹ .		risk of ARI ¹ in children.
		old	on and	IU/week	Nasal swaps		HR=1.12 [95% CI: 0.90-
			mention of	or	collections		1.40]
		Season: parted in 4	blinding.	placebo.			
		seasons		From			
				GW ⁸ 17-			
	1			24 to			
				birth.			
Taghivand	RCT	Pregnant women in	JADAD 5.	28,000-,	Pneumococcal	6 months	Maternal vitD intake was not
2022 (104)	n=1,174	GW 17-24	appropriate	16,800-,	disease.		significantly associated with
Bangladesh	,	Age >18	randomizati	4,200	Routine home		risk of pneumococcal disease
Budeon		8	on and	IU/week	visits and nasal		in children.
		Season: parted in 4	blinding.	or	swaps.		Placebo: Reference
		seasons	onnunig.	placebo.	swaps.		4,200 IU/week:
		50050115		placebo.			4,200 IO/week. HR=0.87 [95% CI 0.70-1.08]
							IIIX=0.07 [9570 CI 0.70-1.08]

From	16,800 IU/week:
GW ⁸ 1	7- HR=1.16 [95% CI 0.94-1.44]
24 to	28,000 IU/week:
birth.	HR=1.05 [95% CI 0.85-1.30]

Table 2: Overview of included studies on asthma, croup, wheezing, and allergy. Studies with a significant effect are marked in white, and studies with no significant findings are marked in grey. The season of inclusion was described, although these 5 data were not used in connection with the results. vitD = vitamin D. ⁸GW = gestational age. ⁹PUFA = polyunsaturated fatty 6 acid. ¹⁰IVF = in vitro fertilization. *Taking a maximum of 200 IU/d vitD before the inclusion in the study. **Taking a maximum of 2,000 IU/d vitD before the inclusion in the study. .

ľ	7	
	/	

First	Study		JADAD/N	Maternal	Children's	Follow-	Results
		Study population		vitamin D			Kesuits
author,	design		OS score		outcome	up time	
year,				supplemen			
country				tation			
Asthma, croi	up, wheezing	and allergy					
Camargo	Cohort	Singleton pregnant	NOS 7. No	Between	Wheezing at	6 years	Higher maternal vitD intake
2007 (22)	n=1,194	women in GW ⁸ <22,	selection	160 IU/d	3 and 6 years		significantly reduced the risk o
USA		English-speaking.	bias,	and 421	of age.		wheezing in the offspring.
		Ethnicity: 74%	comparabili	IU/d.			
		White	ty in the	Recall	Parent-		OR=0.39 [95% CI 0.25-0.62]
		Season: data not	cohort.	during	reported at		p=0.001
		shown	Outcome	pregnancy	study visits.		
			from record	or after			
			linkage and	birth.			
			exposure				
			self-				
			reported.				
Grant	RCT	Pregnant women* in	JADAD 5.	2,000 IU/d,	Allergy,	1.5 years	Maternal vitD intake reduced
2016 (95)	n=260	GW ⁸ <27 without	appropriate	1,000 IU/d	Blood sample		the risk of allergy in children
New		pregnancy	randomizati	or placebo.	at 18 months		significantly.
Zealand		complications.	on and	From GA ⁸	of age.		
		Ethnicity: European,	double	week 27 to			House dust mites:
		Māori, Pacific, other	blinding.	birth.	IgE-		Placebo:
					antibodies		9% had allergy (reference)
		Season: Parted in 4			measured in		1,000 IU/d vitD:
		seasons			blood		3% had allergy (p=0.28)
					samples.		2,000 IU/d vitD:
							0% had allergy (p=0.03)
							Mite antigen sensitization:

							Placebo:
							(Data not shown) Reference
							1,000 IU/d vitD:
							RR=0.71 [95% CI 0.33-1.52]
							2,000 IU/d vitD:
							RR=0.34 [95% CI 0.12-0.94]
Litonjua	RCT	Singleton pregnant	JADAD 5.	4,400 IU/d	Asthma and	3 years	Maternal vitD intake reduced
2016 (106)	n=881	women** in GW ⁸	appropriate	or 400	recurrent	5 years	the risk of asthma and recurrent
USA	11-001	10-18, but without	randomizati	IU/d.	wheezing		wheezing in children
USA		hypertension,	on and	From GW ⁸	Blood sample		significantly.
				10-18 to	at 1 and 3		significantly.
		diabetes, kidney disorder,	blinding.	birth.			4,400 IU/d vitD:
		sarcoidosis, or IVF ¹⁰		onui.	years of age.		
					Dental		24.3% [95% CI 18.7-28.5]
		treatment. Only			Parental		400 IU/d vitD:
		pregnancies where			report		30.4% [95% CI 25.7-73.1]
		at least one of the			of physician's)	
		parents were			diagnosis of		HR=0.8 [95% CI 0.6-1.0],
		diagnose, with		1	asthma.		p=0.051
		asthma/atopy were					
		included.			· ·		
		Maternal age: 18-39			1		
		years old					
		Ethnicity: 44%					
		Afro-American,		Y			
		26% Caucasian non-					
		Hispanic, 14%					
		Caucasian Hispanic,					
		29% other.					
		Season: all year					
Blighe	Case-	Pregnant, non-	NOS 7. No	400- or	Asthma or	3 years	Maternal vitD intake was a
2017 (124)	control	smoking women in	selection	4,400 IU/d	recurrent		significant predictor of
USA	n=245	GW ⁸ 10-18 with a	bias. Same		wheezing.		metabolomics profiles in
	\bigcap	history of asthma,	method of	From GW ⁸	Blood sample		children.
		eczema or allergic	ascertainme	10-18 to	at 3 years of		OR=1.032 [95% CI 1.0021-
		rhinitis.	nt and	birth	age.		1.065], p=0.0014
		Alternatively, the	comparabili				
		father of the child	ty between		Metabolomics		
		with those diseases.	cases and		profiles		
		Ethnicity: Asian	control.		measured by		
F		(n=14), Caucasian			blood		
		(n=78), native			samples.		
		Hawaiian (n=3),					
		African American					

		(n=117), other					
		(n=33).					
		Season: Data not					
		shown					
Wolsk	RCT	Singleton pregnant	JADAD 4.	400- or	Asthma and	3 years	Maternal vitD level above 75
2017 (120)	n=712	women** in GW ⁸	appropriate	4,400 IU/d.	recurrent		nmol/L including vitD
USA		10-18, with a history	randomizati		wheezing.		supplemental use of 4,400 IU/
		of asthma or atopy	on and	From GW ⁸			decreased the risk of asthma
		but without	mention of	10-18 to	Parental		and recurrent wheezing in
		hypertension,	blinding.	birth	report of		children significantly.
		diabetes, kidney			diagnosis of		
		disorder, sarcoidosis			asthma or		aOR = 0.42 [95% CI 0.19-0-
		or IVF ¹⁰ treatment.			recurrent		91], p=0.03
		Alternatively, the			wheeze made	Ċ	
		father of the child			by a	\mathbf{J}	Logistic regression of treatment
		with asthma/atopy.			physician		group and the risk of
		Age: 18-39 years					asthma/wheeze in children:
		old		-			aOR (400 IU/d) = 1.0
		Ethnicity: African					aOR (4,400 IU/d) = 0.74 (0.53
		American (n=312),					1.05), p=0.09
		non-African			<i>Y</i>		
		American (n=400)			1		Stratified for maternal initial
		Age: 18-39 years.					vitD status.
		Season: Data not					Adjusted for clinical site,
		shown		*			maternal education, materna
							age, adherence to vitD
							supplement (>80%), and
							maternal BMI.
Hjelmsø	RCT	Pregnant women in	JADAD 4.	2,800 IU/d	Airway	1 month	Maternal vitD intake positivel
2020 (112)	n=695	GW ⁸ <24	appropriate	or 400	microbiome		changed the airway
Denmark		Ethnicity:	randomizati	IU/d.	as a risk		microbiome of children aged
		Caucasian, other.	on and	From GW ⁸	factor for		month.
		Season: Parted in 4	mention of	24 to birth.	asthma and		
		seasons	blinding.		wheezing.		F=3.740, R ² =0.007, p=0.005
)				Measured in		
					an airway		
					sample from		
Ľ.					infants.		
Lee-Sarwar	Case-	Singleton pregnant	NOS 7. No	400- or	Asthma and	3 years	Maternal vitD intake
2020 (125)	control	women** in GW ⁸	selection	4,400 IU/d.	recurrent	-	significantly reduced the risk of
USA	n=738	10-18 with a history	bias. Same	From GW ⁸	wheezing.		asthma and recurrent wheezin
		of asthma/allergy	method of	10-18 to	-		in children.
		but without	ascertainme	birth			

		hypertension,	nt and		Blood sample		PUFA ⁹ <0.86g/d of the child +
		diabetes, kidney	comparabili		at 1 and 3		400 IU/d during pregnancy
		disorder,	ty between		years of age.		vitD:
		sarcoidosis, or IVF ¹⁰	cases and				
		treatment.	control.		Parental		PUFA ⁹ <0.86g/d of the child +
		Alternatively, the			report of		4,400 IU/d vitD during
		father of the child			physician-		pregnancy:
		with asthma/allergy.			diagnosed		OR=0.57 [95% CI 0.24-1.36],
		Age: 18-39 years			asthma,		p=0.21
		Ethnicity: Black			recurrent		
		(41%), White			wheeze, and		PUFA ⁹ >0.86g/d of the child +
		(20%).			medications.	(400 IU/d vitD during
		Season: Data not					pregnancy:
		shown				C	OR=0.45 [95% CI 0.20-1.00],
							p=0.05
							$PUFA^9 > 0.86g/d of the child +$
				/			4,400 IU/d vitD during
							pregnancy:
							OR=0.37 [95% CI 0.16-0.84],
					<i>Y</i>		p=0.02
Chen	RCT	Pregnant women**	JADAD 4.	4,400 IU/d	Allergic	6 years	Maternal vitD doses of 4,400
2021 (109)	n=414	in GW ⁸ 10-18, with	appropriate	or 400	rhinitis		IU/d compared to 400 IU/d
USA		a history of asthma.	randomizati	IU/d.	Blood		significantly decreased the risk
		Alternatively, the	on, and	From GW ⁸	samples at 3		of allergic rhinitis in children.
		father of the child	mention of	10-18 to	and 6 years of		
		with asthma/atopy.	blinding.	birth.	age.		aOR=0.54 [95% CI 0.32-0.91],
		Age: 18-39 years					p=0.02
		old			Aeroallergen		
		Season: Parted in 4			sensitization		Adjusted for maternal
		seasons			at age 6 years		education, preterm birth, child
					was defined		sex, child race and ethnicity,
					by a positive		parental asthma, and child body
					serum		mass index at the age of 6
					specific IgE.		years.
El-Heis	RCT	Singleton pregnant	JADAD 5.	1,000 IU/d	Atopic	4 years	Maternal vitD intake decreased
2022 (105)	n=703	women in $GW^8 < 17$	appropriate	or placebo	eczema	-	the risk of atopic eczema in
England		with a plasma level	randomizati	From GW ⁸	diagnosis at		children significantly.
Ľ		of 25(OH)D	on and	14 to birth	12, 24 and 48		- · ·
		between 25-100	blinding.		months of		OR (12 months) = 0.55 [95%
<i>P</i>		nmol/L, calcium <	0		age.		CI 0.32-0.97], p=0.04
<i>V</i>					0		J > T
V							OR(24 months) = 0.76 [95%]
<i>P</i>		2.75 nmol/L and not exceeding a vitD			Diagnosis by		OR (24 months) = 0.76 [95% CI 0.47-1.23], p=0.27

		Without metabolic-,			research		OR (48 months) = 0.75 [95%
		kidney disease,			nurse.		CI 0.37-1.52], p=0.42
		hyperparathyroidism					
		, and major					Adjusted for breastfeeding
		anomalies of foetus.					duration.
		Age: >18 years					
		Ethnicity: >95%					
		White.					
		Season: Adjusted for					
		season					
Brustad	RCT	Pregnant women in	JADAD 5.	2,800- or	Croup and	3 years	Maternal intake of 2,800 IU/d
2022 (92)	n=736	$GW^8 < 26$ without	appropriate	400 IU/d.	wheezing		vitD reduced children's risk of
Denmark		endocrine-,	randomizati	From GW ⁸			croup (11% vs 18%)
		cardiovascular- or	on and	24 to birth.	Diagnosed at		significantly.
		nephrological	blinding.		clinical visits.		
		disorders.					HR=0.60 [95% CI 0.38-0.93],
		Season: Data not					p=0.02.
		shown.		1			
							Remained statistically
							significant after adjustment for
					-		persistent wheezing (p<0.01)
							and lower respiratory tract
							infections (p<0.01)
Goldring	RCT	Pregnant women in	JADAD 3.	800 IU/d,	Wheezing	3 years	Maternal vitD intake was not
2013 (32)	n=180	GW ⁸ 27 without	appropriate	200,000 IU	Blood sample		significantly associated with
England		sarcoidosis,	randomizati	x 1 or	at 3 years of		the risk of wheezing in
		osteomalacia,	on and	placebo.	age.		children.
		kidney dysfunction,	-	From GW ⁸			RR=0.86 [95% CI 0.49-1.50],
		and tuberculosis. In	researcher,	27 to birth.	Parent-		p=0.69
		twin pregnancies,	but not		reported and		
		only the firstborn	participants		measured at		
		child was included.	•		clinical visits.		
		Ethnicity: Asian,					
		Middle Eastern,					
		Black and White.					
		Season: April to					
	DOT	November	TID IS -	0.000		2	
Chawes	RCT	Pregnant women in	JADAD 5.	2,800 or	Wheezing	3 years	Maternal vitD intake was not
2016 (93)	n=623	GW ⁸ <26 without	appropriate	400 IU/d.	D'		significantly associated with
Denmark		endocrine-,	randomizati	From GW ⁸	Diagnosed		risk of wheezing in children.
		cardiovascular- or	on and	24 to birth.	according to a		UD-0.76[050/ CL 0.50, 1.10]
		nephrological	blinding.		previously		HR=0.76 [95% CI 0.52-1.12],
		disorder.			validated		p=0.16

		Season: March to			quantitative		
					•		
	~ .	November			algorithm.		
Omand	Cohort	Healthy children	NOS 7. No	Recall after	Asthma	6 years	Maternal vitD intake was not
2018 (126)	n=2,926	aged 0-6 years.	selection	birth.	Blood sample		significantly associated with
Canada		Excluded if having	bias,		7 times		the risk of asthma in children.
		chronic diseases	comparabili		during the		
		(except asthma),	ty in the		first 6 years		Hospital admission:
		developmental	cohort.		of life.		aOR = 0.76 [95% CI 0.54-1.08]
		delay, born < GW ⁸	Outcome				
		32.	from record		Diagnosis of		Emergency department visits
		Ethnicity: European	linkage and		asthma in		aRR = 0.92 [95% CI 0.81-1.04]
		(67%), African	exposure		different		Y
		(7%), Asian (13%),	self-		databases.		Outpatient sick visits
		Latin-American	reported.		~	5	aRR = 1.03 [95% CI 0.99-1.08]
		(4%).					
		Season: Summer					Adjusted for age, sex, BMI, number of children in the
		and winter					
							household, day-care/preschool
							attendance, smoking status,
							birth weight, and gestational
							age.
Brustad	RCT	Pregnant women in GW ⁸ <26. Excluded	JADAD 3.	2,800- or	Asthma at 6	6 years	Maternal vitD intake was not
2019 (118)	n=736		Appropriate	400 IU/d.	years of age.		significantly associated with
Denmark		if any endocrine-,	randomizati	From W ⁸	D: 11		risk of asthma in children.
		cardiovascular- or	on.	24 to birth.	Diagnosed by		OR=1.27 [95% CI 0.67-2.42],
		nephrological			a study		p=0.46
		disorder.			paediatrician		
		Season: Data not			following a		
		shown			predefined,		
		\sim $^{\prime}$			validated		
					diagnostic		
		\sim			algorithm.		
Litonjua	RCT	Singleton pregnant	JADAD 5.	4,400 or	Asthma and	6 years	Maternal vitD intake was not
2020 (107)	n=881	women** in GW ⁸	appropriate	400 IU/d.	recurrent		significantly associated with
USA		10-18, with a history	randomizati	From GW ⁸	wheezing		the risk of asthma or recurrent
		of asthma or atopy	on and	10-18 to	Blood sample		wheezing in children.
		but without	blinding.	birth.	at 1 and 3		HR=1.12, p=0.25
		hypertension,			years of age.		
		diabetes, kidney					
		disorder,			Lung function		
		sarcoidosis, or IVF ¹⁰			was measured		
		treatment.			at clinical		
		A 1 1 1					
		Alternatively, the			visits at 4-6		

father of the child with asthma/atopy. Age: 18-39 years	
old	
Ethnicity: 44%	
Afro-American,	
26% Caucasian non-	\mathbf{O}
Hispanic, 14%	
Caucasian Hispanic,	
29% other.	
Season: All year	

- Table 3: Studies evaluating vitD effects on DM1 risk. Studies with a significant effect are marked in white, and studies with
- no significant findings are marked in grey. The season of inclusion is described, although these data were not used in

connection with the results. VitD = vitamin D.

First	Study	Study	JADAD/NOS	Maternal	Children's outcome	Follow-	Results
author,	design	population	score	vitamin D	Y	up time	
year,				supplemen			
country				tation			
Diabetes					Y		
Brekke	Cohort	Children born	NOS 7. No	400 IU/d.	Diabetes-related	2.5	Maternal vitD intake
2007 (122)	n=	from 1996 to	selection bias,	Recall after	autoimmunity at 1 and 2.5	years	reduced the risk of
Sweden	16,070	1999.	comparability	birth.	years of age.		diabetes-related
		Season:	in the cohort.		Blood sample at 1 and 2.5		autoimmunity in children
		Parted in 2	Outcome		years of age.		at 1 year significantly, but
		seasons	from record				not 2.5 year.
			linkage and		Antibodies measured in		
			exposure is		blood samples.		1 year:
			self-reported.				aOR=0.71 [95% CI 0.52-
							0.96], p=0.028
							2.5 years
							aOR=1.25 [95% CI 0.91-
							1.73])
							Adjusted for familial type
							1 diabetes, maternal
							education, maternal age,
							delivery mode,
							weight increase from birth,
							breast-feeding duration,
							<u> </u>

							introduction of cow's-milk protein, fish intake.
Marjamäki	Cohort	Children with	NOS 8. No	Yes/no	Beta cell autoimmunity	2 years	Maternal vitD intake was
2010 (38)	n=	an HLA-type	selection bias,	intake.	and type 1 diabetes		not significantly associated
	3,723	with risk of	comparability	Recall after	Blood sample at 3, 6, 12,		with beta cell
Finland		diabetes type	in the cohort.	birth.	18 and 24 months of age.		autoimmunity in children.
		1. Exclusion	Outcome				
		of children	from record		Antibodies measured in		HR=1.05 [95% CI 0.95-
		with	linkage and		blood samples.		1.16]
		anomalies,	exposure self-		-		
		immune	reported.				
		system-				(
		disorders, or					
		language-			, C		
		difficulties.				\mathbf{D}	
		Season: Data					
		not reported					
Silvis	Cohort	Children with	NOS 7. No	>2,030,	Islet autoimmunity and	10	Maternal vitD intake was
2018 (123)	n=	an HLA-type	selection bias,	<2,030	progression to diabetes	years	not significantly associated
Finland,	8,676	with risk of	comparability	IU/d vitD	type 1	2	with the risk of islet
Germany,		diabetes type	in the cohort.	or no vitD.	Blood samples every 3		autoimmunity in children.
Sweden,		1.	Outcome	Recall after	months until 4 years of		·
and USA		Season: All	from record	birth.	age.		HR=1.11 [95% CI 0.94-
		year	linkage and		C		1.31]
			exposure self-		Antibodies measured in		
			reported.	1	blood samples.		

Table 4: Overview of studies on tooth development. Studies with a significant effect are marked in white, and studies with no significant findings are marked in grey. The season of inclusion was described, although these data were not used in connection with the results. VitD = vitamin D. 6 EH = enamel hypoplasia. 8 GW = gestational week. *Taking a maximum of 600 IU/d vitD before inclusion in the study.

First author,	Study design	Study population	JADAD/NOS score	Maternal vitamin D	Children's outcome	Follow- up time	Results
year,	uesign		SCOLE	supplemen	outcome	up time	
country				tation			
				tation			
Teeth							
Nørrisgaard	RCT	Healthy pregnant	JADAD 5.	400- or	Enamel	6 years	Only 15.1% of children
2019 (108)	n=623	women* in $GW^8 < 24$.	appropriate	2,800 IU/d	defects and		exposed to maternal vitD
Denmark		Without endocrine,	randomizatio		caries		dose of 2,800 IU/d have
		cardiovascular, or	n and	From GW ⁸			enamel defects compared to
		kidney disorders.	blinding.	24 to birth			27.5% of children exposed to
L							

		Ethnicity: >94% was			Measured at a	maternal vitD dose of 400
		White			dental	IU/d
		Twins included: yes			examination	
		Season: Data not			at 6 years of	OR=0.47, [95% CI 0.27-
		reported			age	0.81], p<0.05
					performed by	
					a dental	No association between
					professional.	supplementation and caries.
Reed	RCT	Singleton pregnant	JADAD 4.	400-,	EH ⁶ 4 years	Maternal vitD intake was not
2018 (119)	n=145	women in $GW^8 > 16$	Appropriate	1,000- or		significantly associated with
USA		without	blinding and	4,000 IU/d	Measured by	EH ⁶ in children.
		calcium/parathyroid	mention of	vitD.	two	
		conditions, diuretic	randomizatio		examiners at	OR=1.29 [95% CI 0.143-
		intake, cardiac	n.	From GW ⁸	digital images	1.543]).
		medication or active		12-16 to	of the buccal	
		thyroid disease		birth.	surfaces of	
		Age: above 16 years			the maxillary	
		Ethnicity: 45% White,		A 199	central	
		31% Hispanic, and			incisors in the	
		24% Black.			children.	
		Season: Data not		NK	*	
		reported				

 Table 5: Overview of studies on bones included in this review. Studies with a significant effect is marked in white, whereas studies with no significant findings are marked in grey. The season of inclusion was described, although these data were not used in connection with the results. VitD = vitamin D. ³BMC = bone mineral content. ⁴BMD = bone mineral density, aBMD = areal bone mineral density. ⁸GW = gestational week. ¹¹DXA = dual-energy X-ray absorptiometry.

First	Study	Study	JADAD/N	Maternal	Children's	Follow-	Results
author,	design	population	OS score	vitamin D	outcome	up time	
year,				supplementatio			
country				n			
Bones							
Brustad	RCT	Pregnant	JADAD 5:	2,800 or 400	Bone	6 years	Maternal vitD intake of
2020 (91)	n=623	women in GW^8	appropriate	IU/d.	mineralization		2,800 IU/d compared to
		<24	randomizatio	From GW ⁸ 24	$(BMC^3 + BMC)$) ⁴).	400 IU/d significantly
Denmark		Ethnicity:	n and	to birth.			increased BMC ³ and
		White	blinding.		Whole body		BMD ⁴ in children.
		Caucasian			DXA ¹¹ scans a	it 3	
		Twins included:			and 6 years of		3 year
		Yes			age.		BMD ⁴ , mean: 0.007
		Season: All year					

Gopal- RCT Children aged JADAD 4. 1,000 IU/dor Post-natal bone 4 years Kothandapa n=31 4-5 years appropriate placebo. formation after significantly inc 10 without balance randomizatio From GW 14 mechanical metabolic activit 2020 (111) problems, n and mention to birth. stimuli meshared bone after metabolic activit England liver- or kidney of blinding. PINP. ΔP1NP, 1,000 II RCT ckinesy, bone, of blinding. PINP. ΔP1NP, 1,000 II England liver- or kidney of blinding. PINP. ΔP1NP, 1,000 II Curuis RCT Pregnant JADAD 5. 1,000 IU/dor Bone 4 years Maternal viñD in season: Data other. season: Data other. season: Data other. 3.2.3.2.1.00 IU/dor Bone 4 years Curuis RCT Pregnant JADAD 5. 1,000 IU/dor Bone 4 years)), p=0.04)009).017], ,9
Gopal- ni RCT Children aged 4-5 years JADAD 4. appropriate appropriate ni 1,000 IU/dor significantly inc placebo. Post-natal bone formation after placebo. 4 years Maternal vitiD in significantly inc significantly inc metabolic activit 2020 (111) problems, fractures, bone, diseases, Agi: 4-5 years n and mention placebo. 1000 IU/dor formation after significantly inc metabolic activit 4 years Maternal vitiD in significantly inc metabolic activit 2020 (111) problems, fractures, bone, fractures, bone, diseases, Agi: 4-5 years n and mention placebo. to birth. stimuli measured 5 years Ethnicity: Caucasian or other. Maternal vitiD binding. by the bone formation marker 5 years Blood sample AP1NP, 1,000 II yobar. DP1NP. AP1NP, 1,000 II yofter. AP1NP, 1,000 II yofter. Caucasian or other. full-body Difference in Af yoftar. 5 years between the two not reported Curtis RCT Pregnant JADAD 5. 1,000 IU/dor Bone 4 years), p=0.04 009 0.017], ,9
Gopal- RCT Children aged JADAD 4. 1,000 IU/dor Post-natal bone 4 years Maternal viti D in significantly inc: neight, and weight, and w), p=0.04 009 0.017], ,9
Gopal- RCT Children aged JADAD 4. 1,000 IU/dor Post-natal bone 4 years Maternal vitD in significantly inc: netabolic activit ni	009 0.017], ,9
BMD ⁴ , mear. 0. (95% CI 0.0014) p=0.04BMC ³ , mear. 13 p=0.04Gopal-RCTKothandapan=314-5 yearsappropriate randomizationiwithout balance fractures, bone-, diseases, Age: 4-5 yearsInglandliver- or kidney diseases, Age: 4-5 yearsInglandliver- or kidney diseases, Age: 4-5 yearsEthnicity:of blinding.Ethnicity:by the bone formation markerEthnicity:Blood sampleCaucasian or other.before and after yibrations.Caucasian or not reportedcaucasian or vibrations.CurtisRCTPregnantJADAD 5.1,000 IU/dorBone4 yearsAge: Arch years by the boneapropriate yibration markerAge: 4-5 years by the boneapropriate formation markerCaucasian or other.before and after yibrations.Caucasian or between the two not reportedyibrations.CurtisRCTPregnantJADAD 5.1,000 IU/dorBone4 yearsKothandapaJADAD 5.Kothandapa4 yearsKothandapaJADAD 5.Kothandapa4 yearsKothandapaJADAD 5.Kothandapa4 yearsKothandapaJADAD 5.Kothandapa4 yearsKothandapaJADAD 5.Kothandapa4 yearsKothandapaJADAD 5.Kothandapa4 yearsKothandapaJADAD	9.017],
BMD ⁴ , mear. 0. (95% CI 0.0014) p=0.04BMC ³ , mear. 13 p=0.04Gopal-RCTKothandapan=314-5 yearsappropriate randomizationiwithout balance fractures, bone-, diseases, Age: 4-5 yearsInglandliver- or kidney diseases, Age: 4-5 yearsInglandliver- or kidney diseases, Age: 4-5 yearsEthnicity:of blinding.Ethnicity:by the bone formation markerEthnicity:Blood sampleCaucasian or other.before and after yibrations.Caucasian or not reportedcaucasian or vibrations.CurtisRCTPregnantJADAD 5.1,000 IU/dorBone4 yearsAge: Arch years by the boneapropriate yibration markerAge: 4-5 years by the boneapropriate formation markerCaucasian or other.before and after yibrations.Caucasian or between the two not reportedyibrations.CurtisRCTPregnantJADAD 5.1,000 IU/dorBone4 yearsKothandapaJADAD 5.Kothandapa4 yearsKothandapaJADAD 5.Kothandapa4 yearsKothandapaJADAD 5.Kothandapa4 yearsKothandapaJADAD 5.Kothandapa4 yearsKothandapaJADAD 5.Kothandapa4 yearsKothandapaJADAD 5.Kothandapa4 yearsKothandapaJADAD	9.017],
Gopal- RCT Children aged JADAD 4. 1,000 IU/dor Post-natal bone 4 years Maternal vitD in Kothandapa n=31 4-5 years appropriate placebo. formation after waternal vitD in 102020 (111) problems, n and mention to birth. stimuli measured bones after mech England liver- or kidney of blinding. by the bone stimuli n childre Age: 4-5 years of blinding. by the bone stimuli n childre England liver- or kidney of blinding. by the bone merabolic activit Age: 4-5 years pliver- or kidney ng/mL APINP, 1,000 II Caucasian or other. before and after ng/mL Age: 4-5 years season: Data vibrations. between the two not reported not reported vibrations. between the two 0ther. yibrations. pediced.0, pediced.	9.017],
p=0.04BMC3, mean; 1395% C13.2-24.7Adjusted for ageGopal-RCTChildren agedJADAD 4.1,000 IU/dorPost-natal bone4 yearsMaternal vitD inKothandapan=314-5 yearsappropriateplacebo.formation afterwithout balancerandomizatioFrom GW ⁸ 14mechanical2020 (111)problems,nian and mentionto to irth.stimuli measuredby the bonestimuli in childrefractures, bone,of blinding.by the bonestimuli in childrefractures, bone,of blinding.englandliver- or kidneydiseases,PINP.Age: 4-5 yearspintAge: 4-5 yearspintBlood sampleAP1NP, 1,000 IIng/mLfull-bodyOther.full-bodySeason: Dataother.season: Datavibrations.not reportedvibrations.VurtisRCTPregnantJADAD 5.1,000 IU/dorBone4 yearsMaternal vith in	,9
Gopal- RCT Children aged JADAD 4. 1,000 IU/dor Post-natal bone 4 years Adjusted for age height, and weig Kothandapa n=31 4-5 years appropriate placebo. formation after significantly inc ni without balance randomizatio From GW ⁸ 14 mechanical metabolic activiti 2020 (111) problems, n and mention to birth. stimuli measured bones after meci England liver- or kidney of blinding. by the bone stimuli nchildre Age: 4-5 years of blinding. P1NP. AP1NP, 1,000 II Age: 4-5 years of blinding. P1NP. AP1NP, 1,000 II Age: 4-5 years page page AP1NP, 1,000 II Age: 4-5 years page page page AP1NP, 1,000 II Age: 4-5 years page page page page AP1NP, 1,000 II Age: 4-5 years page page page page page page Age: 4-5 years page page page page page page page page	
Gopal- RCT Children aged JADAD 4. 1,000 IU/dor Post-natal bone 4 years Adjusted for age height, and weig Kothandapa n=31 4-5 years appropriate placebo. formation after significantly inc. ni without balance randomizatio From GW ⁸ 14 mechanical metabolic activit 2020 (111) problems, n and mention to birth. stimuli measured bones after mech England liver- or kidney of blinding. by the bone stimuli n childre stimuli n childre Age: 4-5 years of blinding. by the bone stimuli n childre ng/mL England liver- or kidney of blinding. plocod sample AP1NP, 1,000 IU Age: 4-5 years Lethnicity: Blood sample AP1NP, placebo Caucasian or other. yibrations. pifference in AF Season: Data other. yibrations. between the two not reported vibrations. between the two 133.2 ng/mL [9: 0.4-266.0], p=0 Curtis RCT Pregnant JADAD 5. 1,000 IU/dor Bone 4	
Gopal- RCT Children aged JADAD 4. 1,000 IU/dor Post-natal bone 4 years Maternal vitD in Kothandapa n=31 4-5 years appropriate placebo. formation after significantly inc. ni without balance randomizatio From GW ⁸ 14 mechanical metabolic activit 2020 (111) problems, n and mention to birth. stimuli measured bones after mech England liver- or kidney of blinding. by the bone stimuli n childre stimuli n childre Age: 4-5 years age: 4-5 years ng/mL promation marker ng/mL England liver- or kidney stimuli in childre apropriate placebo plood sample AP1NP, 1,000 IU Age: 4-5 years season: Data season: Data season: Data ng/mL pifference in AF Season: Data other. season: Data season: Data size of the conditions. between the two not reported JADAD 5. 1,000 IU/dor Bone 4 years Maternal vitb in the], p=0.01
Gopal- RCT Children aged JADAD 4. 1,000 IU/dor Post-natal bone 4 years Maternal vitD in Kothandapa n=31 4-5 years appropriate placebo. formation after significantly inc. ni without balance randomizatio From GW [§] 14 mechanical metabolic activit 2020 (111) problems, n and mention to birth. stimuli measured bones after mech 2020 (111) problems, n and mention to birth. stimuli measured bones after mech England liver- or kidney of blinding. by the bone stimuli in childra Age: 4-5 years problems, ng/mL AP1NP, 1,000 IU Age: 4-5 years problems, ng/mL AP1NP, 1,000 IU Caucasian or caucasian or before and after ng/mL other. full-body Difference in AF Season: Data oth reported vibrations. between the two not reported JADAD 5. 1,000 IU/dor Bone 4 years Maternal vitD in	
Gopal- RCT Children aged JADAD 4. 1,000 IU/dor Post-natal bone 4 years Maternal vitD in Kothandapa n=31 4-5 years appropriate placebo. formation after significantly inc. ni without balance randomizatio From GW ⁸ 14 mechanical metabolic activit 2020 (111) problems, n and mention to birth. stimuli measured bones after mech 2020 (111) problems, n and mention to birth. stimuli measured bones after mech 2020 (111) problems, n and mention to birth. stimuli measured bones after mech England liver- or kidney of blinding. by the bone stimuli in childre Age: 4-5 years ng/mL Ap1NP, 1,000 IU ng/mL AP1NP, 1,000 IU Age: 4-5 years liver- or kidney liver. profere and after ng/mL Cutasian or season: Data vibrations. between the two 133.2 ng/mL [92 other. not reported liver. liver. liver. liver. liver. Season: Data	
Gopal- RCT Children aged JADAD 4. 1,000 IU/dor Post-natal bone 4 years Maternal vitD in Kothandapa n=31 4-5 years appropriate placebo. formation after significantly inc. ni without balance randomizatio From GW ⁸ 14 mechanical metabolic activit 2020 (111) problems, n and mention to birth. stimuli measured bones after mech 2020 (111) problems, n and mention to birth. stimuli measured bones after mech 2020 (111) problems, n and mention to birth. stimuli measured bones after mech England liver- or kidney of blinding. by the bone stimuli in childre Age: 4-5 years ng/mL Ap1NP, 1,000 IU ng/mL AP1NP, 1,000 IU Age: 4-5 years liver- or kidney liver. profere and after ng/mL Cutasian or season: Data vibrations. between the two 133.2 ng/mL [92 other. not reported liver. liver. liver. liver. liver. Season: Data	, sex,
Gopal-RCTChildren agedJADAD 4.1,000 IU/dorPost-natal bone4 yearsMaternal vitD inKothandapan=314-5 yearsappropriateplacebo.formation aftersignificantly inclniwithout balancerandomizatioFrom GW ⁸ 14mechanicalmetabolic activit2020 (111)problems,n and mentionto birth.stimuli measuredbones after mechfractures, bone-,of blinding.by the bonestimuli in childreEnglandliver- or kidneyformation markergradeMaternal vitD inAge: 4-5 yearsgradeplacebo.PlNP.AP1NP, 1,000 IIAge: 4-5 yearsgradegradeMaternal vitD.mg/mLEthnicity:Blood sampleAP1NP, placebocaucasian orbefore and afterng/mLother.Season: Datavibrations.between the two133.2 ng/mL [9:outrisRCTPregnantJADAD 5.1,000 IU/dorBone4 yearsMaternal vitD in	
Kothandapan=314-5 yearsappropriateplacebo.formation aftersignificantly inclniwithout balancerandomizatioFrom GW ⁸ 14mechanicalmetabolic activit2020 (111)problems,n and mentionto birth.stimuli measuredbones after mechfractures, bone-,of blinding.by the bonestimuli in childreEnglandliver- or kidneyof blinding.by the bonestimuli in childreAge: 4-5 yearsAge: 4-5 yearsng/mLAP1NP, 1,000 IIEthnicity:Blood sampleAP1NP, placeboCaucasian orother.full-bodyDifference in AFSeason: Datanot reportedvibrations.between the twonot reportedJADAD 5.1,000 IU/dorBone4 yearsMaternal vitD in	
niwithout balancerandomizatioFrom GW ⁸ 14mechanicalmetabolic activity2020 (111)problems,n and mentionto birth.stimuli measuredbones after mechfractures, bone,of blinding.by the bonestimuli in childreEnglandliver- or kidneyof blinding.problems,formation markerMage: 4-5 yearsP1NP.ΔP1NP, 1,000 IIAge: 4-5 yearsng/mLEthnicity:Blood sampleΔP1NP, placeboCaucasian orother.full-bodyDifference in ΔFSeason: Datanot reportedvibrations.between the twonot reportedJADAD 5.1,000 IU/dorBone4 yearsMaternal vitD in	
2020 (111) problems, n and mention to birth. stimuli measured bones after median to birth. England liver- or kidney of blinding. by the bone stimuli in childre England liver- or kidney fractures, bone, diseases, P1NP. AP1NP, 1,000 II Age: 4-5 years ngmL Blood sample AP1NP, placebo Caucasian or before and after ng/mL other. full-body Difference in AF Season: Data vibrations. between the two not reported 133.2 ng/mL [92] 0.4-266.0], p=0 0.4-266.0], p=0	
Englandfractures, bone-, of blinding.by the bonestimuli in childreEnglandliver- or kidneyformation markerdiseases,P1NP.ΔP1NP, 1,000 IIAge: 4-5 yearsng/mLEthnicity:Blood sampleΔP1NP, placeboCaucasian orbefore and afterng/mLother.full-bodyDifference in ΔFSeason: Datavibrations.between the twonot reported1,000 IU/dorBone4 yearsCurtisRCTPregnantJADAD 5.1,000 IU/dor	
Englandliver- or kidney diseases, Age: 4-5 yearsformation markerLAge: 4-5 yearsP1NP.ΔP1NP, 1,000 II Age: 4-5 yearsEthnicity:Blood sampleΔP1NP, placebo 	
diseases, P1NP. ΔP1NP, 1,000 II Age: 4-5 years ng/mL Ethnicity: Blood sample ΔP1NP, placebo Caucasian or before and after ng/mL other. full-body Difference in ΔF Season: Data vibrations. between the two not reported 133.2 ng/mL [94] Ottris RCT Pregnant JADAD 5. 1,000 IU/dor Bone 4 years Maternal vitD in	
Age: 4-5 years ng/mL Ethnicity: Blood sample ΔP1NP, placebo Caucasian or before and after ng/mL other. full-body Difference in ΔF Season: Data vibrations. between the two not reported 133.2 ng/mL [92] Ottris RCT Pregnant JADAD 5. 1,000 IU/dor Bone 4 years Maternal vitD in	1/d· 40.6
Ethnicity: Blood sample ΔP1NP, placebo Caucasian or before and after ng/mL other. full-body Difference in ΔF Season: Data vibrations. between the two not reported 133.2 ng/mL [99] O.4-266.0], p=0 0.4-266.0], p=0	//u. +0.0
Caucasian or before and after ng/mL other. full-body Difference in AF Season: Data vibrations. between the two not reported 133.2 ng/mL [94] Outris RCT Pregnant JADAD 5. 1,000 IU/dor Bone 4 years Maternal vitD in	02.6
other. full-body Difference in AF Season: Data vibrations. between the two not reported 133.2 ng/mL [9: Outris RCT Pregnant JADAD 5. 1,000 IU/dor Bone 4 years Maternal vitD in	-92.0
Season: Data vibrations. between the two not reported 133.2 ng/mL [9: 0.4-266.0], p=0 Curtis RCT Pregnant JADAD 5. 1,000 IU/dor Bone 4 years Maternal vitD in	1100
not reported 133.2 ng/mL [9: 0.4-266.0], p=0 Curtis RCT Pregnant JADAD 5. 1,000 IU/dor Bone 4 years Maternal vitD in	
Curtis RCT Pregnant JADAD 5. 1,000 IU/dor Bone 4 years Maternal vitD in	
Curtis RCT Pregnant JADAD 5. 1,000 IU/dor Bone 4 years Maternal vitD in	
2022 (94) n=1 123 women coming appropriate placebo mineralization 1 000 HU/d signi	
	ficantly
for their first randomizatio From GW ⁸ 14 increased bone	
pregnancy scan n and to birth. Whole body mineralization in	
England between 06. blinding. DXA ¹¹ scan.	children.
October 2008 aBMD ⁴ :	children.
and 11. 1,000 IU/d: mea	
February 2014. g/cm2 [95% CI 0	n 0.477
Age: above 18 0.481]	n 0.477
years Placebo: mean 0	n 0.477
Ethnicity: g/cm2 [95% CI 0	n 0.477).472–
White 0.475], p = 0.04	n 0.477).472– 470
Caucasian or	n 0.477).472– .470).466–
other.	n 0.477).472– .470).466–
Twins included:	n 0.477).472– .470).466–
Yes	n 0.477).472– .470).466–

		Season: Parted in 4 seasons					
Sahoo 2017 (101) India	RCT n=300	Singleton pregnant women in GW ⁸ 14-20 without metabolic disorder, kidney- or liver disease, tuberculosis or epilepsy. Age: >18 years Ethnicity: Non- White population. Season: Data not shown	JADAD 5. appropriate randomizatio n and blinding.	60,000 IU every fourth week, 60,000 IU every eight week or 400 IU/d From GW ⁸ 20 to birth.	BMC ³ and BMD ⁴ . Whole body DXA ¹¹ scan.	16 months	Maternal vitD intake was not associated with better bone health in the children, at the age of 16 months.
Moon 2021 (98) England	RCT n=965	Singleton pregnant women taking <400 IU/d vitD and having 25(OH)D at 25- 100 nmol/L Ethnicity: 94% was White Caucasian. Season: Parted in 4 seasons	JADAD 5. appropriate randomizatio n and blinding.	1,000 IU/dor placebo. From GW ⁸ 14 to birth.	Bone mineralization. Whole body DXA ¹¹ scan.	8 years	Maternal vitD intake was not significantly associated with bone mineralization in children. Whole body BMC ³ : Intervention: mean 61.6 g [95% CI 60.3-62.8 g] Placebo: mean 60.5 g [95% CI 59.3-61.7 g] p=0.21
O'Callagha n 2021 (117) Bangladesh	RCT n=1,300	Healthy singleton pregnant women in GW ⁸ 17-24. Season: All year	JADAD 4. appropriate randomizatio n and mention of blinding.	4,200-, 16,800-, 28,000 IU/week or placebo From GW ⁸ 17-24 to birth.	Bone mineralization (BMC ³ and BMD ⁴). Whole body DXA ¹¹ scan. Blood sample from the children 4 years of age.	4 years	Maternal vitD intake was not significantly associated with BMC ³ or BMD ⁴ in children. Association between placebo and 28,000 IU/week: BMC ³ : mean difference 0.61 g [95% CI–10.90- 12.13], p=0.92 Placebo: mean=276.2 g, SD 48.5 g

28.00 IU/week: mean = 276.8 g., SD 52.8 g.

BMD⁴: mean difference 0.0004 g/cm2 [95% CI – 0.0089-0.0097], p=0.93 Placebo: mean = 0.438 g/cm2, SD 0.039 g/cm2. 28.000 IU/week: mean = 0.439 g/cm2, SD 0.043

g/cm2.

1 2 3

4

5

6

Table 6: Overview of studies on growth included in this review. Studies with a significant effect are marked in white, and studies with no significant findings are marked in grey. The season of inclusion was described, although these data were not used in connection with the results. VitD = vitamin D. 5 LAZ-score = length-for-age z-score. 8 GW = gestational week. 12 IFA

= iron and folic acid.	$^{13}LNS = lipid-based$	nutrient supplement.	

First	Study	Study	JADAD/NOS	Maternal	Children's	Follow-	Results
author,	design	population	score	vitamin D	outcome	up time	
year,				supplementa			
country				tion			
Growth							
Kalra	RCT	Pregnant	JADAD 4.	60,000 IU x1,	Weight, length,	9 months	Maternal vitD intake
2011(113)	n=300	women in	appropriate	120,000 IU x2	head		significantly increased growth
India		GW ⁸ 12-24	randomizati	or placebo.	circumference,		in children at 9 months of age.
		not taking	on and	Dose given in	and diameter of		
		vitD or	mention of	the 2./3.	anterior		
		calcium.	blinding.	trimester.	fontanelle.		Head circumference (cm)
		Without					60,000 IU x1: mean 42.9 (±SD
		kidney or			Measured at		0.7),
		liver			study visits.		120,000 IU x2: mean 42.4
		disorders.					(±SD 2.6),
		Season: Data					Placebo: mean $41.8 (\pm SD 2.2)$,
)	not reported					p=0.012
							Anterior fontanelle (cm)
							60,000IU x1: mean 0.9 (±SD
							0.4)
							120,000 IU x2: mean 0.9 (±SD
							0.3),
							Placebo: mean 1.5 (±SD 0.5),
							p<0.001
							Length (cm):

						60,000 IU x 1: mean 69.3 (±SD
						1.9),
						120,000 IU x2: mean 69.9
						(±SD 1.4),
						(\pm SD 1.4), Placebo: mean 67.4(\pm SD 1.7),
						p<0.001
						Weight (kg):
						60,000 IU x1: mean 8.4 (±SD
						0.6),
						120,000 IU x2; mean 8.5 (\pm SD
						0.5),
					(0.5), Placebo: mean 7.7 (±SD 0.4),
						p<0.001 p<0.001
Denver	RCT	Due en eu t	JADAD 3.	200- or 400	Wright height 2 and	Maternal vitD intake
Dewey 2022 (110)	n=2,011	Pregnant women in	appropriate	IU/d vitD	Weight, height 2 years and head	
2022 (110)	11=2,011	$GW^8 < 20$	randomizati	From GW ⁸ 20	circumference.	significantly increased growth in children at 6-24 months of
Danaladaah			on and	to birth.	circumference.	
Bangladesh		without plans		to birtii.	Advanced by	age.
		to move. In twin	blinding of researcher,		Measured by anthropometrics	0.6 months
		pregnancies,	but not	7	at study visits.	<u>0-6 months:</u> Lengths gain:
		only one child	participants		at study visits.	Lenguis gain. LNS ¹³ = mean 16.1, \pm SD 1.8
		was included.	participants			
		Season: Data	•		1	IFA ¹² =mean 16.1, \pm SD 1.9, p=0.38
		not reported				
		not reported				Head circumference gain: LNS ¹³ = mean 8.1, \pm SD 1.2
)		
			$\langle \rangle \rangle$			IFA ¹² = mean 8.1 \pm SD 1.2,
		· · · · · · · · · · · · · · · · · · ·	XX			
						p=0.15 Weight going
						Weight gain:
						Weight gain: LNS ¹³ = mean 4055, ±SD 742
						Weight gain: LNS ¹³ = mean 4055, ±SD 742 IFA ¹² =mean 4086, ±SD 739,
		R				Weight gain: LNS ¹³ = mean 4055, ±SD 742
		R				Weight gain: LNS ¹³ = mean 4055, ±SD 742 IFA ¹² =mean 4086, ±SD 739, p=0.39
		R				Weight gain: LNS ¹³ = mean 4055, ±SD 742 IFA ¹² =mean 4086, ±SD 739, p=0.39 <u>6-24 months:</u>
	Ć	i.P				Weight gain: $LNS^{13} = mean 4055, \pm SD 742$ $IFA^{12} = mean 4086, \pm SD 739,$ p=0.39 <u>6-24 months:</u> Lengths gain:
Ċ	Ċ					Weight gain: $LNS^{13} = mean 4055, \pm SD 742$ $IFA^{12} = mean 4086, \pm SD 739,$ p=0.39 <u>6-24 months:</u> Lengths gain: $LNS^{13} = mean 5.9, \pm SD 0.6$
	Ć					Weight gain: $LNS^{13} = mean 4055, \pm SD 742$ $IFA^{12} = mean 4086, \pm SD 739,$ p=0.39 <u>6-24 months:</u> Lengths gain: $LNS^{13} = mean 5.9, \pm SD 0.6$ $IFA^{12} = mean 5.8, \pm SD 0.6,$
C						Weight gain: $LNS^{13} = mean 4055, \pm SD 742$ $IFA^{12} = mean 4086, \pm SD 739,$ p=0.39 <u>6-24 months:</u> Lengths gain: $LNS^{13} = mean 5.9, \pm SD 0.6$ $IFA^{12} = mean 5.8, \pm SD 0.6,$ p=0.01
						Weight gain: $LNS^{13} = mean 4055, \pm SD 742$ $IFA^{12} = mean 4086, \pm SD 739,$ p=0.39 <u>6-24 months:</u> Lengths gain: $LNS^{13} = mean 5.9, \pm SD 0.6$ $IFA^{12} = mean 5.8, \pm SD 0.6,$ p=0.01 Head circumference gain:
						Weight gain: $LNS^{13} = mean 4055, \pm SD 742$ $IFA^{12} = mean 4086, \pm SD 739,$ p=0.39 <u>6-24 months:</u> Lengths gain: $LNS^{13} = mean 5.9, \pm SD 0.6$ $IFA^{12} = mean 5.8, \pm SD 0.6,$ p=0.01 Head circumference gain: $LNS^{13} = mean 1.41, \pm SD 0.24$
P.						Weight gain: $LNS^{13} = mean 4055, \pm SD 742$ $IFA^{12} = mean 4086, \pm SD 739,$ p=0.39 <u>6-24 months:</u> Lengths gain: $LNS^{13} = mean 5.9, \pm SD 0.6$ $IFA^{12} = mean 5.8, \pm SD 0.6,$ p=0.01 Head circumference gain:
						Weight gain: $LNS^{13} = mean 4055, \pm SD 742$ $IFA^{12} = mean 4086, \pm SD 739,$ p=0.39 <u>6-24 months:</u> Lengths gain: $LNS^{13} = mean 5.9, \pm SD 0.6$ $IFA^{12} = mean 5.8, \pm SD 0.6,$ p=0.01 Head circumference gain: $LNS^{13} = mean 1.41, \pm SD 0.24$ $IFA^{12} = mean 1.37, \pm SD 0.24,$
						Weight gain: LNS ¹³ = mean 4055, \pm SD 742 IFA ¹² =mean 4086, \pm SD 739, p=0.39 <u>6-24 months:</u> Lengths gain: LNS ¹³ = mean 5.9, \pm SD 0.6 IFA ¹² = mean 5.8, \pm SD 0.6, p=0.01 Head circumference gain: LNS ¹³ = mean 1.41, \pm SD 0.24 IFA ¹² =mean 1.37, \pm SD 0.24, p=0.009

Roth	RCT	Pregnant	JADAD 5.	35,000 IU/week	Anthropometry 1 year	Maternal vitD intake
2022 (100)	n=145	women in	appropriate	or placebo.	and LAZ-score ⁵	significantly enhanced early
Bangladesh		GW ⁸ 26-30	randomizati	From GW ⁸ 26-	Blood sample at	postnatal linear growth in
		Age: 18-35	on and	30 to birth	8 and 24 weeks	children.
		years old.	blinding.		of age.	
		Twins				<u>Birth</u>
		included: yes.			Measured at	Lengths: p=0.18
		Season:			visits by study	Placebo: mean 48.0 \pm SD 2.
		Parted in 4			personnelusing	VitD: mean 48.0 ± SD 1.9
		seasons			a standardized	
					method and	Weight: p=0.32
					supervised by	Placebo: mean $2.8 \pm SD 0.4$
					study	VitD: mean $2.9 \pm SD 0.4$
					physicians.	
					\sim	Head circumference: p=0.97
						Placebo: mean 33.0 \pm SD 1.
						VitD: mean 33.0 \pm SD 1.5
						_
						LAZ ⁵ : p=0.14
						Placebo: mean $0.82 \pm SD 1$.
						VitD: mean $0.56 \pm SD 1.0$
						<u>1 year</u>
						Length: p=0.14
						Placebo: mean 71.8 \pm SD 3.
						VitD: mean 72.6 \pm SD 3.0
			\mathbf{V}'			Weight: p=0.57
						Placebo: mean $8.4 \pm SD 1.0$
						VitD: mean $8.5 \pm SD 1.2$
						(hb) hidai 0.5 <u>+</u> 55 1.2
						Head circumference: p=0.95
						Placebo: mean 44.4 \pm SD 1.4
		7				VitD: mean 44.4 \pm SD 1.4
						LAZ ⁵ : p=0.02
						Placebo: mean -133 \pm SD 1.
						VitD: mean -0.89 ± SD 1.2
Roth	RCT	Pregnant	JADAD 4.	4,200-,16,800-,	LAZ-score ⁵ 1 year	
2018(116)	n=1,300	women in	appropriate	28,000 IU/week	Blood sample	significantly associated with
Bangladesh		GW ⁸ 17-24.	randomizati	or placebo	from the	LAZ-score ⁵ in children.
		Season: Data	on and	From GW ⁸ 17-	children 3 and 6	
		not reported	mention of	24 to birth	years of age.	LAZ ⁵ :

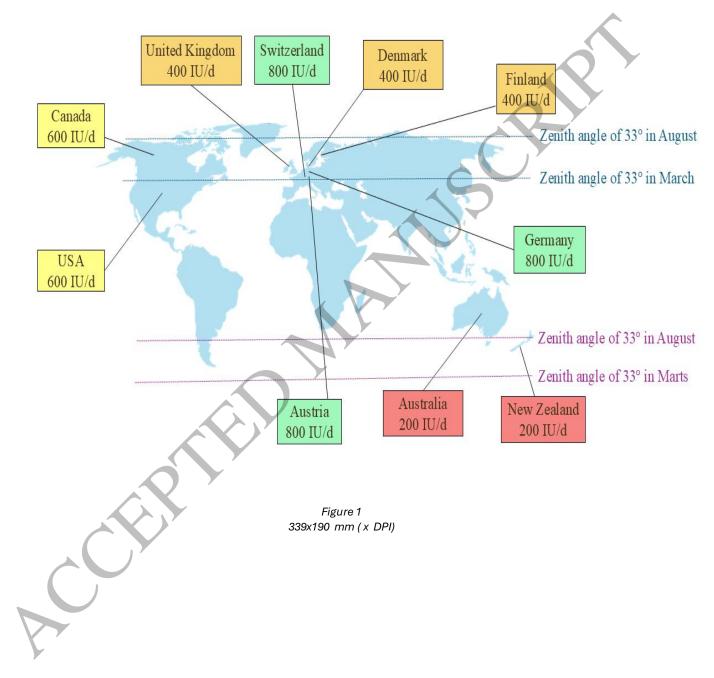
					Measured at a		4,200 IU/d: mean -1.11± SD
					clinical		1.11
					examination by		16,800 IU/d: mean –0.98± SD
					trained		0.97
					personnel		28,000 IU/d: mean -1.06±
					according to		SD1.07
					standardized		p=0.25
					procedures.		
Sudfeld	RCT	Pregnant	JADAD 5.	3,000 IU/d or	Infant stunting	1 year	Maternal vitD intake was not
2022 (103)	n=1,148	women in	appropriate	placebo.	at 1 year of age		significantly associated with
		GW ⁸ 12-27	randomizati	From GW ⁸ 12-	defined by a		infant stunting.
Tanzania		with an HIV	on and	27 to 1 year	LAZ-score ⁵		
		infection and	blinding.	postpartum.			RR=1.00 [95% CI 0.92-1.10],
		normal serum			Measured at		p=0.95
		albumin-			study visits by		
		adjusted			study		
		calcium level.			physicians and		
		Age: above			nurses.		
		18 years old					
		Twins					
		included: yes.					
		Season: Data					
		not reported					

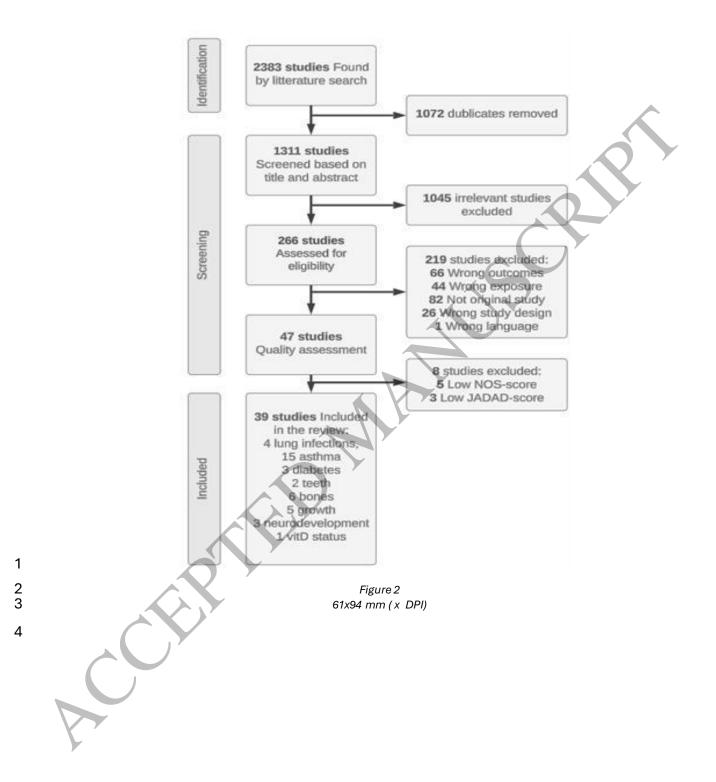
Table 7: Overview of studies on language and motor skills included in this review. Studies with a significant effect are marked in white, and studies with no significant findings are marked in grey. The season of inclusion was described, although these data were not used in connection with the results. VitD = vitamin D. 8 GW = gestational week. 12 IFA = iron and folic acid. 13 LNS = lipid-based nutrient supplements. *Taking a maximum of 600 IU/d vitD before the inclusion in the study.

First	Study	Study	JADAD/N	Maternal	Children's	Follow-	Results
author,	design	population	OS score	vitamin D	outcome	up time	
year,				supplemen			
country				tation			
Language a	nd motor sk	ills					
Matias	RCT	Pregnant	JADAD 3.	400 IU/d or	Motor milestones	2 years	Maternal vitD intake was
2017 (114)	n=3,000	women in GW^8	appropriate	IFA ¹²	and language.		significantly associated
Bangladesh		<20 without	randomizati	(placebo)			positively with motor
		plans to move.	on, and	From GW ⁸	Measured by		milestones at the age of 18
		In twin	blinding of	20 to birth.	home stimulation		months and language in
		pregnancies,	researcher,		at 12, 18, and 24		children at the age of 24
			but not		months of age by		months.

		only one child	participants		using the Family		
		was included.			Care Indicators		Motor milestones, 18 months
		Season: Data			scale.		LNS ¹³ -LNS ¹³ : OR=0.74 [95%
		not reported					CI 0.56-0.99]
							IFA ¹² -LNS ¹³ : OR=0.66 [95%
							CI 0.49-0.89]
							IFA ¹² -MNP: OR=0.75 [95% CI
							0.56-1.00]
							p=0.004
							Language, receptive: 24
							months
							LNS ¹³ -LNS ¹³ : OR=0.70 [95%
							CI 0.53-0.94]
						C	IFA ¹² -LNS ¹³ : OR=0.74 [95%
						\mathbf{T}	CI 0.55-1.00]
							IFA ¹² -MNP: OR=0.77 [95% CI
							0.58-1.02]
							p=0.009
							Milestones, 24 months:
							(data not shown), p=0.141
					X.		Language, receptive, 18
							months:
			/				(data not shown), p=0.415
							(data not snown), p=0.413
Prado	RCT	Pregnant	JADAD 5.	400 IU/d or	Motor milestones	18	Maternal vitD intake was not
Prado 2016 (99)	RCT n=1,320	Pregnant women in GW ⁸	JADAD 5. appropriate	400 IU/d or placebo.	Motor milestones and language.	18 months	-
		-					Maternal vitD intake was not
2016 (99)		women in GW ⁸	appropriate	placebo.			Maternal vitD intake was not significantly associated with
2016 (99)		women in GW ⁸ <20 without	appropriate randomizati	placebo. From GW ⁸	and language.		Maternal vitD intake was not significantly associated with motor milestones and language
2016 (99)		women in GW ⁸ <20 without infections, HIV, asthma, epilepsy,	appropriate randomizati on and	placebo. From GW ⁸	and language. Reported by		Maternal vitD intake was not significantly associated with motor milestones and language
2016 (99)		women in GW ⁸ <20 without infections, HIV, asthma, epilepsy, tuberculosis,	appropriate randomizati on and	placebo. From GW ⁸	and language. Reported by parents in specific		Maternal vitD intake was not significantly associated with motor milestones and language in children.
2016 (99)		women in GW ⁸ <20 without infections, HIV, asthma, epilepsy, tuberculosis, allergies or	appropriate randomizati on and	placebo. From GW ⁸	and language. Reported by parents in specific		Maternal vitD intake was not significantly associated with motor milestones and language in children. Motor milestones: difference in
2016 (99)		women in GW ⁸ <20 without infections, HIV, asthma, epilepsy, tuberculosis, allergies or planning to	appropriate randomizati on and	placebo. From GW ⁸	and language. Reported by parents in specific		Maternal vitD intake was not significantly associated with motor milestones and language in children. Motor milestones: difference in mean z-scores ranged from 0.03 to 0.13, p=0.84 Language: difference in mean
2016 (99)		women in GW ⁸ <20 without infections, HIV, asthma, epilepsy, tuberculosis, allergies or planning to move.	appropriate randomizati on and	placebo. From GW ⁸	and language. Reported by parents in specific		Maternal vitD intake was not significantly associated with motor milestones and language in children. Motor milestones: difference in mean z-scores ranged from 0.03 to 0.13, p=0.84 Language: difference in mean z-scores ranged from 0.01 to
2016 (99)		women in GW ⁸ <20 without infections, HIV, asthma, epilepsy, tuberculosis, allergies or planning to move. Age: above 18	appropriate randomizati on and	placebo. From GW ⁸	and language. Reported by parents in specific		Maternal vitD intake was not significantly associated with motor milestones and language in children. Motor milestones: difference in mean z-scores ranged from 0.03 to 0.13, p=0.84 Language: difference in mean
2016 (99)		women in GW ⁸ <20 without infections, HIV, asthma, epilepsy, tuberculosis, allergies or planning to move. Age: above 18 years old.	appropriate randomizati on and	placebo. From GW ⁸	and language. Reported by parents in specific		Maternal vitD intake was not significantly associated with motor milestones and language in children. Motor milestones: difference in mean z-scores ranged from 0.03 to 0.13, p=0.84 Language: difference in mean z-scores ranged from 0.01 to 0.08, p=0.46
2016 (99)		women in GW ⁸ <20 without infections, HIV, asthma, epilepsy, tuberculosis, allergies or planning to move. Age: above 18 years old. Season: Data	appropriate randomizati on and	placebo. From GW ⁸	and language. Reported by parents in specific		Maternal vitD intake was not significantly associated with motor milestones and language in children. Motor milestones: difference in mean z-scores ranged from 0.03 to 0.13, p=0.84 Language: difference in mean z-scores ranged from 0.01 to 0.08, p=0.46 Walking at 12 months:
2016 (99)		women in GW ⁸ <20 without infections, HIV, asthma, epilepsy, tuberculosis, allergies or planning to move. Age: above 18 years old.	appropriate randomizati on and	placebo. From GW ⁸	and language. Reported by parents in specific		Maternal vitD intake was not significantly associated with motor milestones and language in children. Motor milestones: difference in mean z-scores ranged from 0.03 to 0.13, p=0.84 Language: difference in mean z-scores ranged from 0.01 to 0.08, p=0.46 Walking at 12 months: RR=1.23 [95% CI 1.02–1.49],
2016 (99) Ghana	n=1,320	women in GW ⁸ <20 without infections, HIV, asthma, epilepsy, tuberculosis, allergies or planning to move. Age: above 18 years old. Season: Data not reported	appropriate randomizati on and blinding.	placebo. From GW ⁸ 20 to birth.	and language. Reported by parents in specific checklists.	months	Maternal vitD intake was not significantly associated with motor milestones and language in children. Motor milestones: difference in mean z-scores ranged from 0.03 to 0.13, p=0.84 Language: difference in mean z-scores ranged from 0.01 to 0.08, p=0.46 Walking at 12 months: RR=1.23 [95% CI 1.02–1.49], p=0.025
2016 (99) Ghana Sass	n=1,320	women in GW ⁸ <20 without infections, HIV, asthma, epilepsy, tuberculosis, allergies or planning to move. Age: above 18 years old. Season: Data not reported Pregnant	appropriate randomizati on and blinding. JADAD 5.	placebo. From GW ⁸ 20 to birth. 2,800- or	and language. Reported by parents in specific checklists.		Maternal vitD intake was not significantly associated with motor milestones and language in children. Motor milestones: difference in mean z-scores ranged from 0.03 to 0.13, p=0.84 Language: difference in mean z-scores ranged from 0.01 to 0.08, p=0.46 Walking at 12 months: RR=1.23 [95% CI 1.02–1.49], p=0.025 Maternal vitD intake was not
2016 (99) Ghana Sass 2020 (102)	n=1,320	women in GW ⁸ <20 without infections, HIV, asthma, epilepsy, tuberculosis, allergies or planning to move. Age: above 18 years old. Season: Data not reported Pregnant women* in	appropriate randomizati on and blinding. JADAD 5. appropriate	placebo. From GW ⁸ 20 to birth. 20 to birth. 20 to birth. 20 to birth.	and language. Reported by parents in specific checklists.	months	Maternal vitD intake was not significantly associated with motor milestones and language in children. Motor milestones: difference in mean z-scores ranged from 0.03 to 0.13, p=0.84 Language: difference in mean z-scores ranged from 0.01 to 0.08, p=0.46 Walking at 12 months: RR=1.23 [95% CI 1.02–1.49], p=0.025 Maternal vitD intake was not significantly associated with
2016 (99) Ghana Sass	n=1,320	women in GW ⁸ <20 without infections, HIV, asthma, epilepsy, tuberculosis, allergies or planning to move. Age: above 18 years old. Season: Data not reported Pregnant women* in GW ⁸ <24	appropriate randomizati on and blinding. JADAD 5. appropriate randomizati	placebo. From GW ⁸ 20 to birth. 20 to birth	and language. Reported by parents in specific checklists.	months	Maternal vitD intake was not significantly associated with motor milestones and language in children. Motor milestones: difference in mean z-scores ranged from 0.03 to 0.13, p=0.84 Language: difference in mean z-scores ranged from 0.01 to 0.08, p=0.46 Walking at 12 months: RR=1.23 [95% CI 1.02–1.49], p=0.025 Maternal vitD intake was not significantly associated with cognitive development in
2016 (99) Ghana Sass 2020 (102)	n=1,320	women in GW ⁸ <20 without infections, HIV, asthma, epilepsy, tuberculosis, allergies or planning to move. Age: above 18 years old. Season: Data not reported Pregnant women* in GW ⁸ <24 without	appropriate randomizati on and blinding. JADAD 5. appropriate randomizati on and	placebo. From GW ⁸ 20 to birth. 20 to birth. 20 to birth. 20 to birth.	and language. Reported by parents in specific checklists. Cognitive development assessed at 2.5 years of age.	months	Maternal vitD intake was not significantly associated with motor milestones and language in children. Motor milestones: difference in mean z-scores ranged from 0.03 to 0.13, p=0.84 Language: difference in mean z-scores ranged from 0.01 to 0.08, p=0.46 Walking at 12 months: RR=1.23 [95% CI 1.02–1.49], p=0.025 Maternal vitD intake was not significantly associated with
2016 (99) Ghana Sass 2020 (102)	n=1,320	women in GW ⁸ <20 without infections, HIV, asthma, epilepsy, tuberculosis, allergies or planning to move. Age: above 18 years old. Season: Data not reported Pregnant women* in GW ⁸ <24	appropriate randomizati on and blinding. JADAD 5. appropriate randomizati	placebo. From GW ⁸ 20 to birth. 20 to birth	and language. Reported by parents in specific checklists.	months	Maternal vitD intake was not significantly associated with motor milestones and language in children. Motor milestones: difference in mean z-scores ranged from 0.03 to 0.13, p=0.84 Language: difference in mean z-scores ranged from 0.01 to 0.08, p=0.46 Walking at 12 months: RR=1.23 [95% CI 1.02–1.49], p=0.025 Maternal vitD intake was not significantly associated with cognitive development in

kidney diseases,	language	$\beta = 0.08 [95\% \text{ CI} - 0.26 - 0.43],$
child born <	development, and	p=0.64
GW 37, or child	general	
with a	neurodevelopment	Cognitive development: score
birthweight	at 3 years of age,	difference:
<2,500 g.	and emotional and	0.34 [95% CI -1.32-1.99],
Danish-	behavioural	p=0.70
speaking.	problems at 6	
Ethnicity: 96%	years of age.	Neurodevelopment:
White		(data not shown), p=0.62
Twins included:	Data from both	
yes.	parents and	Emotional and behavioural
Season: Parted	trained clinicians	problems
in 4 seasons	in specific	OR=0.76 [95% CI 0.53-1.09],
	checklists.	p=0.14


3


Table 8: Overview of key parameters in the study on infant vitamin D levels included in this review. The season of

4 inclusion was described, although these data were not used in connection with the results. VitD = vitamin D. 8 GW =

5 gestational week. *Taking a maximum of 400 IU/d vitD before inclusion in the study.

0		C	_			•			
First	Study	Study population	JADAD/N	Maternal	Children's	Follow-	Results		
author,	design		OS score	vitamin D	outcome	up time			
year,				supplementa					
country		Á		tion					
Infant 25(OH)D status									
March	RCT	Pregnant women* in	JADAD 5.	400-, 1,000-,	VitD levels	8 weeks	44% of children exposed to		
2015 (97)	n=226	GW ⁸ 13-24 without	appropriate	1,600 IU/d	in infants		maternal vitD 1,600 IU/d had a		
Canada		metabolic-,	randomizati	vitD.	Blood		25(OH)D level above 75		
		inflammatory or	on and	From GW ⁸	sample at 8		nmol/L, compared to less than		
		genetic disorders	double	13-24 to birth	weeks of		15% in the two other groups		
		(hypertension,	blinding.		age.		(p=0.05).		
	(tuberculosis, heart-							
		and kidney diseases),			Measured		Serum 25(OH)D at the age of 8 $$		
		bowl-disorders or			in blood		weeks:		
		complicated			samples.		400 IU/d: mean=45 [95% CI		
		pregnancy.					38-52]		
		Age: 18-45 years					1,000 IU/d: mean=52 [95 % CI		
		Ethnicity: 72%					45-58]		
		Caucasian, 28% non-					1,600 IU/d: mean=75 [95 % CI		
		Caucasian.					67-83]		
		Season: Parted in 4							
		seasons							

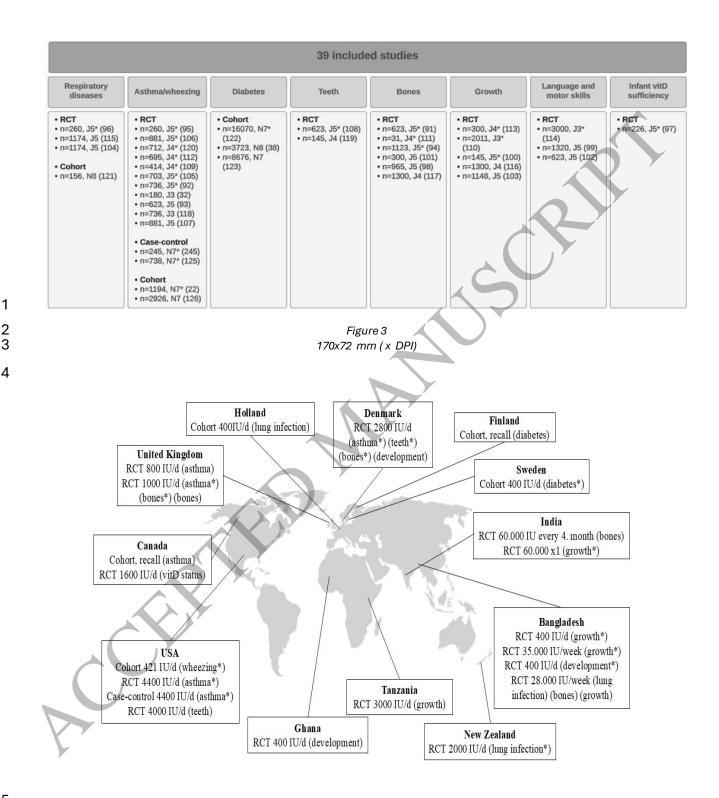
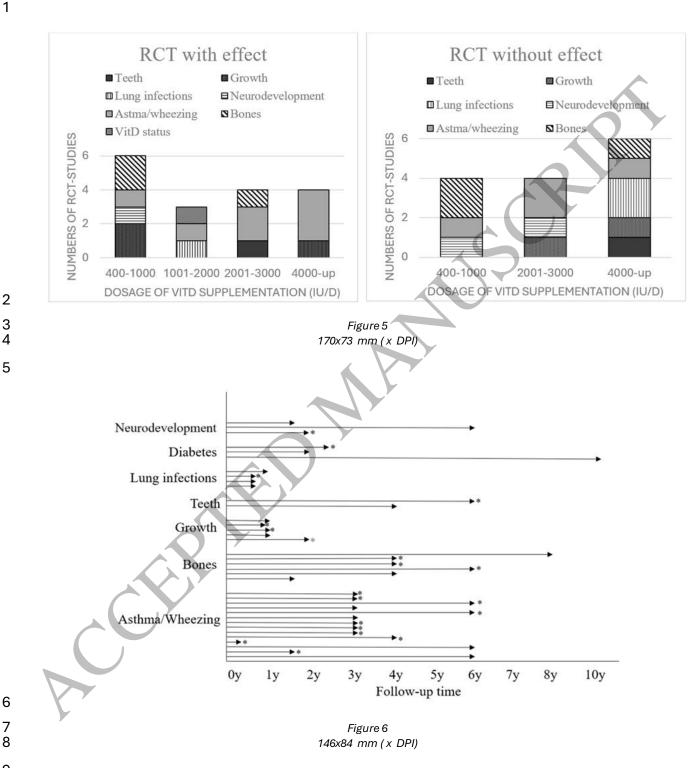
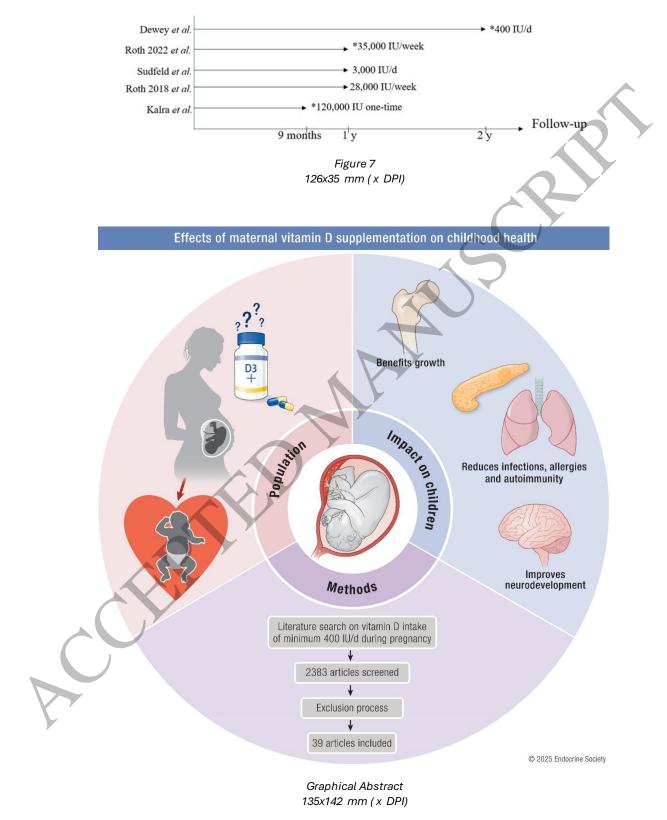




Figure 4 339x190 mm (x DPI)

1 Essential points

- Early exposure to maternal vitamin D supplements ≥ 400 IU/day has a positive effect on growth, bone development, and the risk of early life respiratory problems, including respiratory syncytial virus infection.
 - Existing knowledge is challenged by a lack of data on maternal and infant vitamin D levels in relation to both supplementation regime used, maternal response and the impact of maternal biology on vitamin D status and the actual effect on offspring health
 - Available data on infant levels does however suggest that a 400 IU daily supplement is associated with a high prevalence of vitamin D sufficiency in newborns
 - Maternal vitamin D supplementation has beneficial effects on brain development and autoimmune diseases, such as asthma in the newborn.
- Vitamin D seems to have an ameliorating effect on autoimmune activity in pancreatic islands in the first year of life.
- Further studies are needed to determine organ-specific vitamin D needs and the duration of the effects of intrauterine exposure.

16

5

6 7

8

9

10

11