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ABSTRACT
The role of vitamin D as a treatment option for neoplastic diseases, once considered to have a bright future, remains controversial. The
preclinical studies discussed herein show compelling evidence that Vitamin D Derivatives (VDDs) can convert some cancer and leukemia cells
to a benign phenotype, by differentiation/maturation, cell cycle arrest, or induction of apoptosis. Furthermore, there is considerable, though
still evolving, knowledge of the molecular mechanisms underlying these changes. However, the attempts to clearly document that the
treatment outcomes of human neoplastic diseases can be positively influenced by VDDs have been, so far, disappointing. The clinical trials to
date of VDDs, alone or combined with other agents, have not shown consistent results. It is our contention, shared by others, that there were
limitations in the design or execution of these trials which have not yet been fully addressed. Based on the connection between upregulation of
JNK by VDDs and DNA repair, we propose a new avenue of attack on cancer cells by increasing the toxicity of the current, only partially
effective, cancer chemotherapeutic drugs by combining them with VDDs. This can impair DNA repair and thus kill the malignant cells,
warranting a comprehensive study of this novel concept. J. Cell. Biochem. 117: 1733–1744, 2016. © 2016 Wiley Periodicals, Inc.
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Two developments in the 1980s generated major excitement
in the cancer research and treatment community. First,

Breitman et al. [1981] reported that human myeloid leukemia cells
in established culture (HL60 and U937 cells), as well as acute
promyelocytic leukemia (APL) cells in primary culture differentiated
into granulocytes in response to exposure to retinoic acid. Following
the production of All Trans Retinoic Acid (ATRA) in Shanghai and
first treatment of patients with APL there [Huang et al., 1988],
subsequent studies established that ATRA induces complete clinical
remissions of the disease. Incorporation of ATRA into APL therapy is
now acknowledged to be superior to the previously conventional

cytotoxic anthracycline therapy, through in vivo terminal differen-
tiation of APL blasts to granulocytes [Castaigne et al., 1990].

In the same time frame, several observations indicated that
the physiological form of vitamin D, 1,25-dihydroxyvitamin D3

(calcitriol), can inducedifferentiationofneoplastic cells and terminate
their proliferation. Abe et al. [1981] and Tanaka et al. [1983] reported
that calcitriol induces bothmouse and humanacutemyeloid leukemia
(AML) cells to differentiate to monocyte lineage, but not to
granulocytes. Also, Colston et al. [1981] demonstrated growth
inhibition of calcitriol-treated malignant melanoma cells. Numerous
other studies then further supported the notion that vitamin D-based
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differentiation therapy can be a therapeutic modality for human
leukemia and solid tumors [Studzinski et al., 1985].

The initial enthusiasm for vitamin D as candidate for differentia-
tion therapy in the clinic was soon tempered by the realization that
the concentrations of vitamin D required to induce differentiation or
growth arrest of malignant human cells cannot be achieved in the
clinic since these would be incompatible with life. Undeterred, this
has stimulated the field of differentiation therapy to search for
synthetic analogs of vitamin D (VDDs) which would be less calcemic,
yet retain differentiation-inducing properties [Jones et al., 1998].
Several thousands of such VDDs have been synthesized, and the
search for an ideal VDDs is still continuing [Trynda et al., 2015; Teske
et al., 2016], but as detailed below, there have been no outstanding
successes in this area. However, this effort has not been entirely a
waste of resources, as some analogs have found place in the
treatment regimens of non-neoplastic diseases, for example,
psoriasis and kidney dialysis patients [Brown, 2007].

Now, three decades after demonstration of the possibility of
differentiation therapy, VDDs are still seeking vindication in cancer
therapy. But even with retinoid based therapy, there is a realization
that although ATRA is able to induce complete remission in almost
all patients with APL, it cannot eliminate the leukemic clone. To be
most effective, ATRA must be used in combination with arsenic
trioxide-based chemotherapy [Burnett et al., 2015]. It is, therefore,
likely that any success with VDDs in treatment or cure of human
cancers will require combination with other compounds. Some
possibilities are discussed in the following sections of this article.

IN VITRO STUDIES OF VDDs-INDUCED
DIFFERENTIATION OF NEOPLASTIC CELLS, THE
ASSOCIATED CELL CYCLE ARREST, OR APOPTOSIS

CALCITRIOL-INDUCED DIFFERENTIATION
Calcitriol is the physiologically active form of vitamin D that belongs
to the family of secosteroid hormones. Its primary action is the
regulation of intracellular calcium and phosphorus absorption
[Dusso et al., 2005; Morris, 2014; Christakos et al., 2016]. Moreover,
calcitriol exhibits pleiotropic functions by regulating the innate and
adaptive immune responses, or growth and differentiation of
multiple normal and cancer cells [Sarkar et al., 2016]. The main
mechanism by with calcitriol exerts its cellular activity is
transcriptional activation [Marcinkowska, 2001b; Gocek et al.,
2007, 2008]. Within the cell, calcitriol binds to the Vitamin D
Receptor (VDR), which belongs to the superfamily of nuclear
receptors that are ligand-activated transcription factors [Dusso et al.,
2005]. After ligation, VDR as a homodimer or a heterodimer with
Retinoid X Receptor alpha (RXRa), translocates from the cytosol to
the cell nucleus. The dimeric complex then binds to the Vitamin D
Response Elements (VDRE) located in the promoter regions of the
target genes [Carlberg et al., 1993]. Around 3000 calcitriol-regulated
target genes have been identified by the Chip-seq technique
[Ramagopalan et al., 2010; Heikkinen et al., 2011]. These include
genes essential for cell cycle regulation and differentiation, such
as Kinase Suppressor of Ras (KSR), p27Kip1, CD14, b-catenin,
E-cadherin [Sheng et al., 2015]. Some of the differentiation-related

signaling pathways studied in several cell systems involve Mitogen
Activated Kinases (MAPKs) [Tong et al., 1999; Wang et al., 2000;
Wang and Studzinski, 2001b; Qi et al., 2002], Phosphatidylinositol-3
Kinases (PI3Ks)-AKT [Marcinkowska et al., 1998; Zhang et al., 2006],
KSR [Studzinski et al., 2005], ERK5-C/EBPb-MEF2C [Wang et al.,
2006; Zheng et al., 2015], and protein kinase C (PKC) [Marcinkowska
et al., 1997]. The summaries of the calcitriol-induced signaling of the
regulation of cell proliferation and survival principally applicable to
solid tumors (Fig. 7 in reference [Christakos et al., 2016]) and AML
cells (Figs. 3 and 4 in reference [Gocek and Studzinski, 2015] have
recently been published, and can supplement our narrative below.

The principal MAPKs signaling cascades which are activated by
calcitriol during differentiation include ERK1/2, ERK5, JNKs, and
p38 [Wang and Studzinski, 2001a, 2006; Raman et al., 2007;
Ordonez-Moran et al., 2008; Gocek and Studzinski, 2015]. These
kinases constitute the downstream part of a signaling machinery
initiated by growth factors, cytokines or stresses through the small
GTPase Ras, then protein kinases such as Raf1, Cot1, MTK/DLK or
ASK1/TAK1/PTK1, and MAP2Ks (MEK1/2, MEK5, MKK7/MEK4 or
MEK3/6) which phosphorylate ERK1/2 and ERK5 [Wang et al., 2014,
2015b]. Finally, MAPKs activate various transcription factors, such
as c-Myc, c-Jun, c-Fos or Sp1, which in turn activate genes
responsible for differentiation, proliferation or cell survival
[Chambard et al., 2007; Rasola et al., 2010; Maurer et al., 2011;
Deschenes-Simard et al., 2014].

PI3Ks-AKT pathway can be driven by G-protein Coupled
Receptors (GPCRs), tyrosine kinases (receptor and non-receptor) or
Ras downstream to the production of the lipid second messenger,
phosphatidylinositol (3,4,5) triphosphate (PIP3) from phosphatidy-
linositol (4,5) bisphosphate (PIP2). AKT specifically binds the
30-phosphorylated inositol lipids throughout plekstrin homology
domain, hence PIP3 recruits AKT to the cell membrane. Phosphory-
lated AKT initiates downstream signaling, such as mTOR activation
or FOXO inhibition leading to the regulation of differentiation and/
or cell cycle block [Ciruelos Gil, 2013; Jabbour et al., 2014]. AKT also
can phosphorylate the pro-apoptotic protein Bad, which leads to its
degradation, thus being a major factor in increasing the survival of a
large variety of human cells [Datta et al., 1997; Zhang et al., 2006;Xu
et al., 2016]. Activation by calcitriol of signaling pathways
mentioned above is cell-type and cell-context specific, although
the pathways may overlap in several types of the cells. An important
consideration is the variable influence of calcitriol on cells from
different tissue types. For instance, in breast, colon, ovarian,
pancreatic, and prostate cancer cells, calcitriol induces inhibition of
proliferation or apoptosis, while in myeloid cells, calcitriol increases
cell survival or may trigger autophagy.

DIFFERENTIATION-ASSOCIATED CELL CYCLE ARREST
Calcitriol and its analogs inhibit proliferation of diverse normal and
cancer cells by arresting them in the G1/S phase of the cell cycle
[Wang et al., 1998] or inhibiting the G2 to M transition [Godyn et al.,
1994]. Induction of cell cycle arrest occurs by calcitriol-induced
upregulation of Cyclin-Dependent Kinases inhibitors (CDKIs) such as
p27Kip1 and p21Cip1 [Steinman et al., 1994; Wang et al., 1996].
Functional VDRE has been identified in the promoter region of
p21Cip1 and thus it can be directly regulated by calcitriol [Liu et al.,
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1996]. Unlike p21Cip1, p27Kip1 has no VDRE and its regulation
by calcitriol is far more complicated. It occurs either transcription-
ally or post-transcriptionally. One of the reported mechanisms of
transcriptional activation of p27Kip1 involves physical interaction
between VDR and Specificity Protein 1 (Sp1) [Inoue et al., 1999;
Huang et al., 2004]. Post-transcriptionally, its expression may be
inhibited, for instance, by microRNA-181a in AML cells [Cuesta
et al., 2009; Wang et al., 2009]. The exposure of AML cells to
calcitriol reduces the level of microRNA-181a, and thus increases the
level of p27Kip1 and the cell cycle block. However, the principal
mechanism of the regulation of cellular abundance of p27Kip1may be
its degradation by the ubiquitin-proteosome pathway, regulated by
the E3 ligase SCF-Skp2 and accessory proteins [Pagano et al., 1995;
Wu et al., 2012]. Interestingly, upregulation of CDKIs by calcitriol is
associated with calcitriol-induced increased expression of Retino-
blastoma protein (pRb) and its later phosphorylation [Ji et al., 2002;
Washington et al., 2011]. This leads to the binding of pRb to E2F
transcription factor causing inactivation of E2F target proteins, such
as cyclin E and c-Myc, and subsequent cell cycle block [Brelvi and
Studzinski, 1986; Gartel et al., 2001; Wilson et al., 2002].

In colon cancer cells, calcitriol enhances the expression of
E-cadherin and subsequent transport of b-catenin from the cell
nuclei to plasmamembrane. In proliferating cells b-catenin interacts
with T-cell Factor 4 (TCF4) [Palmer et al., 2001; Larriba et al., 2013].
This interaction is controlled by Wnt and its surface receptor
Frizzled. Binding ofb-catenin to VDR takes place by the AF2 domain
of VDR [Shah et al., 2006] and leads to the loss of b-catenin from the
transcriptional complex with TCF4. As a consequence, the expres-
sion of TCF4 target genes (c-Myc and cyclin D1) becomes impaired
and cell cycle progression becomes inhibited [Larriba et al., 2013].

The sequence of events initiated by calcitriol described above,
leading to differentiation and associatedwith proliferation blockage,
seems to occur in many normal and cancer cells. These include
keratinocytes, hematopoietic, prostate, breast, pancreatic, colon,
hepatoma, osteosarcoma, squamous, thyroid, ovarian, and neuro-
blastoma cells. Of note, inhibition of cell proliferation by calcitriol is
not always related to cell differentiation. Examples are smooth
muscle cells [Damera et al., 2009], or pituitary corticotroph cells [Liu
et al., 2002].

The anti-proliferative effects of calcitriol can also be due to
activation of genes and proteins responsible for apoptosis of cancer
cells as described below in Section entitled “VDDs Can Decrease Cell
Survival”.

EXAMPLES OF VDDs INCREASING OR DECREASING
CELL SURVIVAL

VDDs CAN INCREASE CELL SURVIVAL
In some cells, such as fibroblasts, keratinocytes, AML and primary
melanoma, calcitriol-induced differentiation is accompanied by
increased cell survival and decreased apoptosis [Sauer et al., 2005;
Zhang et al., 2006].

Calcitriol-induced differentiation of AML cells can be divided into
several phases. During the initial phase, the cells proliferate normally
and cell cycle progression is driven by the high levels of MEK1/2,
ERK1/2, JNKs [Marcinkowska, 2001a; Wang et al., 2003]. In a latter

phase, Raf1 protein activates ribosomal S6 kinase p90RSK that
together with other kinases, such as ERK1/2 and ERK5, activates the
master transcription factor for monocytes/macrophages differentia-
tion, C/EBPb [Marcinkowska et al., 2006; Wang et al., 2014]. Pro-
survival signals transmitted from Raf1 to downstream targets are
augmented by KSR1 and KSR2, essential for Raf1 activation and/or
phosphorylation [Wang et al., 2007]. KSR2 knockdown decreases
cell survival, which is accompanied by reduced Bcl2/Bax and Bcl2/
Bad ratios and increased cleavage of caspase 3 [Wang et al., 2008].
Moreover, during the later phase of calcitriol-induced differentiation
of AML cells, elevated expression of other anti-apoptotic proteins,
Bcl-xl andMcl1 facilitates differentiation by increasing cell survival
[Xu et al., 1993; Wang and Studzinski, 1997]. Additionally, in
calcitriol-induced differentiating AML cells expression of pro-
apoptotic protein Bim is inhibited by microRNA-32 [Gocek et al.,
2011].

Cytoprotective effect of calcitriol was also found in fibroblasts,
keratinocytes and primary melanocytes [Sauer et al., 2003, 2005]. In
these cells, sphingosine 1-phosphate was identified as a downstream
mediator of calcitriol actions. In fibroblasts and keratinocytes,
enhanced intracellular Bcl-2/Bax ratio was identified as a major
cause of protection against apoptosis [Sauer et al., 2005].

VDDs CAN DECREASE CELL SURVIVAL
Calcitriol can also activate genes and proteins responsible for
apoptosis of cancer cells, such as breast, colon, and prostate [Welsh
et al., 1995; Aggarwal et al., 2016]. It was shown that calcitriol
activates the pro-apoptotic proteins Bak and Bax and suppresses the
anti-apoptotic Bcl family members (Bcl2 and Bcl-xl) [Wagner et al.,
2003; Kizildag et al., 2010]. This suppression causes the influx of
cytochrome c from the mitochondria to the cytoplasm and triggers
the activation of the downstream caspase 3 as well as the upstream
initiator protease caspase 9, and the induction of apoptosis [Guzey
et al., 2002; Suares et al., 2015]. Themechanism of calcitriol-induced
apoptosis varies with the cell type and can be mediated by either
p53-dependent, or independent pathways.

Moreover, it has been shown that calcitriol may induce apoptosis
by dysregulation of the signaling pathways activated by different
growth factors and its receptors. It down-regulates Insulin-like
Growth Factor Receptor (IGFR) [Maestro et al., 2003] as well as up-
regulates Tumor Necrosis Factor alpha (TNFa) [Golovko et al., 2005].

It was also shown that either calcitriol or its analogs, EB1089 and
ILX23-7553 can potentiate the response to ionizing irradiation
[Sundaram et al., 2000; Demasters et al., 2006]. For analog EB1089,
such activity was detected inMCF-7 breast tumor xenografts in nude
mice [Sundaram et al., 2003]. The effect of EB1089 on the radiation
response did not interfere with DNA repair. It seems that cell death
induced by irradiation followed by EB1089 treatment is a
consequence of alterations in signaling pathways downstream of
the DNA damage. These signaling pathways may also involve the
generation of reactive oxygen species, acceleration of cell senes-
cence and c-Myc independent apoptosis, as well as p53-dependent
cell death by autophagy [Demasters et al., 2006].

Moreover, calcitriol may trigger an “autophagic switch” and
reprogram ZR-75-1 breast cancer cells from cytoprotective
autophagy with radiation alone, to a cytotoxic autophagy with
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the combinatorial treatment [Wilson et al., 2011; Bristol et al.,
2012]. Although interesting, it should be noted that the
analogs used in these studies are no longer available from the
manufacturers.

CLINICAL EXPERIENCE WITH VDDs IN NEOPLASTIC
DISEASES

Poor responsiveness to standard chemotherapy is still a problem for
a significant number of patients with neoplastic diseases. Although
the current focus in the field is on individualized therapy based on
molecular features of the disease, the great heterogeneity of
mutations in most cancer cells makes this a remote aim. Thus, the
possibility that a differentiation-based approach can be used for a
large subset of cancer patients has been attractive. However, the
attempts to utilize the differentiation properties of VDDs have had so
far minimal success, possibly due, at least in part, to the variable
levels of vitamin D receptors in the malignant cells and problems of
designing appropriate conditions for clinical trials [Trump et al.,
2010; Krishnan et al., 2012; Marchwicka et al., 2014].

The principal attempts to demonstrate the therapeutic utility of
VDDs were directed to prostate, breast, and colorectal cancers, as
well as AML cells. Although VDDs have a clear effect on
differentiation of AML cells, described above, it could have been
expected that VDDs may have an easily detected effect on this
disease. However, as summarized in a review by Kim et al.
[2012] which lists clinical trials mainly conducted in the early
1990s, administration of VDDs in these trials have not led to any
major advances in the treatment of AML. Additionally, Harrison and
Bershadskiy [2012] described these clinical trials in depth and listed
two more trials in patients with MDS, often a pre-leukemic disease.
However, neither trial led to dramatic or promising results. More
recently, several other trials of VDDs have been conducted in MDS
patients; but the results of those have not yet appeared in the
literature, and the only phase III trial that could be found at this time
(NCT00804050) has been terminated. Thus, although it is unclear
whether VDDs, with or without potentiators that were used in the
majority of experiments reported to date, will have a significant
therapeutic effect in AML, it has been recently noted that low
circulating 25(OH) vitamin D3 levels are associated with adverse
outcome in intensively treated adult AML [Lee et al., 2014].

The results of the effects of VDDs on solid tumors are also not
definitive yet, similarly to other diseases, such as secondary
hyperparathyroidism or rheumatoid arthritis. Several recent trials
of calcitriol, mostly in combination with other compounds, have

been closed without clear results [Ramnath et al., 2013] (Table I), but
a larger number are continuing (Table II).

In the earlier reported trials, the effects of calcitriol on prostate
cancer varied from encouraging [Liu et al., 2003; Wagner et al.,
2013; Medioni et al., 2014] to no significant association between
serum vitamin D and survival [Gupta et al., 2015], although it was
remarked by others that vitamin D may have different effects for
different stages of prostate cancers [Schenk et al., 2014]. In breast
cancer, a recent I-SPY trial reported that pretreatment vitamin D
levels had no impact on tumor response to neoadjuvant chemother-
apy in women with breast cancer [Clark et al., 2014]. Also, an NIH
sponsored trial of daily supplementation with vitamin D3 (1000 IU),
calcium (1200mg), or both after removal of colorectal adenomas did
not significantly reduce the risk of recurrent colorectal adenomas
over a period of 3–5 years [Baron et al., 2015]. However, the authors
of that report made several caveats, including the point that the dose
of vitamin Dmay not have been sufficient, a not unlikely reason for a
lack of effect. A bright spot in this survey is the report that circulating
levels of vitamin D may be an important determinant of the
development of follicular lymphoma as it was found that low serum
vitamin D levels were associated with inferior survival of patients
with this disease [Kelly et al., 2015].

As mentioned above, problems in drawing conclusions regarding
the efficacy of VDDs in neoplastic diseases based on the clinical trials
reported to date include the great heterogeneity of the patient
populations studied, and the variability in the dose, schedule, and
the chemical nature of the VDDs used. Thus, as of this date clinical
trials of VDDs have not changed any treatment paradigms, and
chemotherapy and irradiation are still the most commonly used in
anti-cancer treatment. Thus, a better understanding of the signaling
pathways underlying VDDs actions may be essential for future
advances in thefield. One possibility is that VDDs interfere with DNA
repair in certain situations and this can be exploited the cancer
therapy.

DNA DAMAGE, DNA DAMAGE RESPONSE (DDR),
AND DNA REPAIR

Many chemotherapeutic agents useful for treatment of neoplastic
diseases induce DNA damage, and since VDDs may augment their
effects [Wang et al., 2015a], it is important to be able to analyze the
mechanisms involved. Although there are multiple ways that cancer
chemotherapeutic agents can damage DNA, the principal ones
include alkylating agents such as nitrogen mustards or mitomycin C
which form DNA crosslinks [Volpato and Phillips, 2007; Carreras

TABLE I. Selected Completed/Terminated Clinical Trials With Calcitriol During the Years 2009–2015

Study number Type of cancer Compounds Phase Comments/completion year

NCT00794547 Non-small-cell
lung carcinoma

Calcitriol, cisplatin, docetaxel I/II Pharmacokinetics studies; results published/2013
[Ramnath et al., 2013]

NCT00524589 Androgen independent
prostate cancer

Calcitriol, dexamethasone II Interventional studies; closed due to absence
of results/2014

NCT01093092 Inoperable advanced
solid tumors

Calcitriol, cisplatin,
gemcitabine hydrochloride

I Pharmacological studies;terminated due to absence
of results/2015

NCT01293682 Breast cancer Calcitriol II Efficacy and feasibility studies; closed due to absence
of results/2015
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Puigvert et al., 2016], topoisomerase inhibitors which block the
ligation step of DNA replication, generating single and double
stranded breaks [Xu and Her, 2015; Onodera et al., 2016], and
nucleoside analogs such as Cytarabine (AraC) which disrupt normal
DNA replication through incorporation into the extending DNA
strands [Ewald et al., 2008].

Although the exact nature of DNA damage depends on many
factors, including the nature of the external damaging agents or the
endogenously arising compounds, the cell type, and stage of the cell
cycle in which damage occurs, there is a commonality in the cells
responses to this damage. There are three primary outcomes: the
DNA may be restored to its native state without any adverse
consequences, the attempted repair may be inaccurate, and result in
a mutation or chromosomal aberration. Finally, if the damage is
overwhelming or the repair machinery is compromised, the cell dies,
usually by apoptosis or one of its variants [Matt and Hofmann,
2016].

It is outside the scope of this review to dissect the mechanisms
which repair DNA damage caused by all agents, but in an outline,
there are sensors of replication stress which accompany DNA
damage, then transducers and effectors of the variable outcome
[Zhou and Elledge, 2000]. These outcomes can be a cell cycle block,
the enhanced transcription of factors necessary for repair, or as
mentioned above, DNA repair with the alternative of cell death.

The primary event triggered by DNA damage is the recruitment of
DNA damage signaling and repair proteins, collectively known as
DNA Damage Response (DDR), which coordinates the induction of
cell cycle check points with DNA repair, and movement of repair
proteins to the sites of DNA damage [Cortez et al., 1999; Mills et al.,
1999; Brown and Baltimore, 2000; Lim et al., 2000]. In most cells the
principal sensors of DNA damage are ataxia-telangiectasia mutated
(ATM) and Rad3-Related (ATR). These kinases initiate a cascade of
phosphorylation events with Checkpoint 2 (Chk2) kinase a target of
ATM and Chk1 a target of ATR, mediating cell cycle arrest [Ball et al.,
2005; Ciccia and Elledge, 2010]. ATR is also primarily responsible for
the phosphorylation of a histone variant known as H2AX, when
phosphorylated known as gamma H2AX (gH2AX) in response to
replication stress [Ward and Chen, 2001]. Double strand DNA breaks
(DSBs) often result from replicative stress as well as from external
damaging agents, replication fork collision, and gH2AX, massively
accumulates at the chromatin sites surrounding DSBs [West and
Bonner, 1980; Rogakou et al., 1999]. Thus, gH2AX serves as a
valuable marker of DNA damage, both molecularly or visualized as
nuclear foci. In addition, ATR can phosphorylate p53, BRCA1 and
Rad17. These, and a plethora of other factors collectively inhibit
DNA replication and mitosis, while promoting DNA repair or
apoptosis. It is important to emphasize that the choice of apoptosis
rather than continuing repair is not precisely understood in
molecular terms: what is the key factor that makes DNA repair
ineffective and the cell commits suicide?

POTENTIAL OF VDDs TO SIGNAL A SWITCH FROM DNA REPAIR TO
APOPTOSIS
There are several suggestions in the current literature of signals
which could switch DNA repair to apoptosis, though none have been
previously related to vitamin D as a treatment option. Recently, aTA
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model for repair/apoptosis switch has been advanced, which builds
on the accumulated knowledge that following DNA damage Chk1 is
an important suppressor of cell death [Rodriguez and Meuth, 2006;
Sidi et al., 2008]. DNA damage-related replication stress triggers
apoptosis in the absence of ATR-Chk1 function which slows down
the S-phase progression by suppressing inappropriate firing of
replications origins, and helps to maintain fork integrity (e.g. Maya-
Mendoza et al. [2007]). Specifically, DNA replication fork stress
generates single stranded DNA (ssDNA) which is coated by the
Replication Protein A (RPA), and this activates the ATR-Chk1
pathway that leads to cell survival [Zou and Elledge, 2003]. However,
based on studies of human colon cancer cells, it is proposed that
pharmacological inhibition of Chk1 activity results in hyper-
phosphorylation of RPA2 due, in part, to enhanced ATR activation
and results in apoptosis [Zuazua-Villar et al., 2015]. Interestingly,
Chk1 depletion also results in enhanced H2AX phosphorylation
[Gagou et al., 2010]. In the Chk1-suppressed context, it was also
proposed that the Death Domain (DD) protein PIDD can trigger pro-
survival NF-kB signaling when its DD binds RIP1, but when the DD
binds RAIDD it activates the pro-apoptotic caspase 2, and leads to
cell death [Ando et al., 2012]. However, these studies did not make a
clear molecular connection between replicative stress and apoptosis,
and as yet have not been shown to have general applicability.

Another proposal for the switch from DNA repair to apoptosis
posits that tyrosine 142 phosphorylation of H2AX modulates
survival and apoptosis decisions. In this scenario, in addition to
H2AX Ser139 phosphorylation which provides a docking site for
DNA repair factors near the DSBs [Rogakou et al., 1999], Tyr 142 is
also phosphorylated, but in contrast to Ser139 phosphorylation, it is
gradually dephosphorylated following DNA damage [Stucki et al.,
2005; Cook et al., 2009; Stucki, 2009; Xiao et al., 2009]. The switch
depends on whether the repair factor Mediator of DNA Damage
Checkpoint Protein 1 (MDC1), or the stress related MAP kinase JNK1
is recruited to H2AX. MDC1 binds to H2AX when only Ser139 is
phosphorylated, while JNK1 binds when both Ser139 and Tyr 142 are
phosphorylated. The latter leads to apoptosis in the system studied.
Although the studies were not extensively expanded, the hypothesis
provides a potential molecular mechanism for the apoptosis
induction by JNK1 in many systems [Jia et al., 2014; Benzina
et al., 2015; Ning and Du, 2015].

Since it is well established that VDDs upregulate JNK expression
(e.g., [Ji et al., 2002; Wang et al., 2003, 2005a,b]) the above studies
may provide a basis for future use of VDDs in cancer therapy. For
instance, it has been reported that there is positive feedback
signaling between ATM and VDR and this may be important for
cancer chemoprevention [Ting et al., 2012]. Other examples include
the cooperation of JNK pathway to trans-activate VDR and thus
sensitize human breast cancer cells to VDD-induced growth
inhibition [Qi et al., 2002], the activation of JNK which is associated
with anti-proliferative actions of calcitriol in human osteosarcoma
[Wu et al., 2007], and JNK has been reported to be involved in
calcitriol-induced breast cancer death [Brosseau et al., 2010]. Of
potentially more immediate application to treatment of human
neoplastic disease is the recent report that cytotoxicity of AraC, the
standard treatment for AML, is significantly enhanced by a VDD-
based induction of differentiation [Wang et al., 2015a]. Thus, it

seems that in human cells DNA repair is “badly treated” by vitamin D
and analogs.
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