- 1 Vitamin D dose response is underestimated by Endocrine Society's Clinical Practice
- 2 Guideline
- 3
- 4 ¹⁻³Malachi J. McKenna,
- ¹Barbara F. Murray
- 6 St. Michael's Hospital, Dún Laoghaire¹, Metabolism Laboratory, St. Vincent's University
- 7 Hospital², and School of Medicine and Medical Sciences, University College Dublin³, Dublin,
- 8 Ireland.
- 9 Presented in oral form at the Annual Meeting of the American Society of Bone and Mineral
- 10 Research, Minneapolis, October 2012.
- 11 Short title: Estimating 25OHD response to vitamin D dose
- 12 Word count: 6041
- 13
- 14 Key Words: vitamin D dose response, Institute of Medicine, Endocrine Society's Clinical
- 15 Practice Guideline

17	Abstract
18	Objective: The recommended daily intakes of vitamin D according to the recent Clinical
19	Practice Guideline (CPG) of the Endocrine Society are 3-to-5-fold higher than the Institute of
20	Medicine (IOM) report. We speculated that these differences could be explained by
21	different mathematical approaches to the vitamin D dose response.
22	Methods: Studies were selected if the daily dose was <=2000 International Units (IU)/d, the
23	duration exceeded 3 months, and 25-hydroxyvitamin D (25OHD) concentrations were
24	measured at baseline and post-therapy. The rate constant was estimated according to the
25	CPG approach. The achieved 25OHD result was estimated according to: (1) the regression
26	equation approach of the IOM; (2) the regression approach of the Vitamin D
27	Supplementation in Older Subjects (VIDOS) study; and (3) the CPG approach using a rate
28	constant of 2.5 (CPG2.5) and a rate constant of 5.0 (CPG5.0). The difference between the
29	expected and observed 25OHD result was expressed as a percentage of observed, and
30	analysed for significance against a value of 0% for the four groups.
31	Results: Forty-one studies were analysed. The mean (CI) rate constant was 5.3(4.4-6.2)
32	nmol/L /100 IU/d, on average 2-fold higher than the CPG rate constant. The mean (CI) for
33	the difference between the expected and observed expressed as a percentage of observed
34	were: (1) IOM, -7(-16,+2)% (t=1.64, p=0.110); (2) VIDOS, +2(-8,+12)% (t=0.40, p=0.69); (3)
35	CPG2.5, -21(-27,-15)% (t=7.2, p<0.0001); and (4) CPG5.0 +3(-4,+10)% (t=0.91, p=0.366).
36 37	Conclusion: The CPG "rule of thumb" should be doubled to 5.0 nmol/L (2.0 ng/ml)/100 IU/d, adopting a more risk-averse position.

16

3	8	

39 Introduction

40	Two conflicting reports on vitamin D intake requirements were published in 2011:
41	Institute of Medicine (IOM) report on Dietary Reference Intakes for Calcium and Vitamin D,
42	and the Endocrine Society's Clinical Practice Guideline (CPG) on Evaluation, Treatment, and
43	Prevention of Vitamin D Deficiency ^{1, 2} . The IOM, on behalf of the U.S. and Canadian
44	governments, were tasked to review data on calcium and vitamin D intake requirements
45	and their roles in human health ¹ . The CPG set its objective to provide guidelines to clinicians
46	with a particular emphasis on the care of patients who are at risk for deficiency 2 .
47	IOM specifies an estimated average requirement of 400 IU/d for those with minimal
48	or no sunlight exposure – namely, those at-risk of privational vitamin D deficiency ³⁻⁵ . CPG
49	recommend an intake for those deemed to be at-risk that is 3-to-5-fold higher at 1500-2000
50	IU/d without any specification about sunlight exposure ^{2, 6} . CPG considers conditions of risk
51	of vitamin D deficiency in need of augmented intakes, but IOM considers that these
52	individuals are at increased risk if sun-deprived, and are therefore within the realm of the
53	IOM specifications 5 . IOM demonstrated that the evidence of benefit plateaus at 30 to 40
54	nmol/L (12 to 16 ng/ml) and covers the majority at 50 nmol/L (20 ng/ml). CPG claim a
55	250HD threshold of 75 nmol/L (30 ng/ml) as necessary for bone health. Conceptually, IOM
56	deem a 250HD concentration as a measure of risk of skeletal disease, but CPG deem a
57	250HD concentration as diagnostic of "deficiency" or "insufficiency". Operationally, IOM
58	specify that there is a distribution of requirements called the dietary reference intakes
59	(DRIs) that correspond to 25OHD concentrations: the estimated average requirement (EAR)
60	which corresponds to 40 nmol/L (16 ng/ml), meets the needs of 50 % of the population;

and, the recommended daily allowance (RDA), which corresponds to 50 nmol/L (20 ng/ml),

meets the needs of all but 97.5% of the population $^{1, 4, 7}$. CPG designate 75 nmol/L (30

ng/ml) as the optimal 250HD concentration for all.

64	According to the CPG, the vitamin D dose response is best described by a rate
65	constant, or "rule of thumb", whereby 250HD is expected to increase by 2.5 nmol/L (1
66	ng/ml) for each 100 IU/d of vitamin D ingested ^{2, 8} . IOM noted a curvilinear response
67	between vitamin D intake and 250HD, as follows: 250HD nmol/L=9.9*In(total vitamin D
68	intake, IU/d). In a study of low-dose oral vitamin D intake (800 IU/d) administered to
69	institutionalized elderly for 16 months with severe hypovitaminosis D, we noted a dose
70	response of 9.1 nmol/L (3.6 ng/ml)/100 IU/d, nearly 4-fold higher than the CPG estimate ^{9,}
71	¹⁰ . Using the IOM regression equation, the predicted mean 250HD for our study should have
72	been 66 nmol/L (26 ng/ml), which is similar to the observed mean value of 79 nmol/L (31.9
73	ng/ml) ¹⁰ . We speculated that the CPG approach by underestimating the vitamin D dose
74	response could be a reason for their higher intake specifications.

75 Methods

76 We only selected studies that had been compiled from the three major reports on 77 vitamin D: Agency for Health Research Quality (AHRQ)–Ottawa, Effectiveness and Safety of Vitamin D in Relation to Bone Health ¹¹; AHRQ–Tufts, Vitamin D and Calcium: Systematic 78 *Review of Health Outcomes*¹²; and, the IOM report¹. Studies were chosen in this way 79 80 because all studies are described in detail, including a critical appraisal and a grading of quality ^{1, 11, 12}. Inclusion criteria for selection of studies were as follows: daily oral dose of 81 82 vitamin D (D_2 or D_3) <= 2,000 IU/d; duration at least 3 months; and results of both baseline 83 and post-therapy 25OHD concentrations.

84	The rate constant for each study was calculated and presented according to the CPG
85	approach of nmol/L rise in 250HD per 100 IU/d of vitamin D dose. The ratio of observed-to-
86	expected rate constant for each study was calculated. The achieved 250HD result was
87	estimated according to: (1) the regression equation approach of the IOM; (2) the regression
88	approach of VIDOS (250HD nmol/L = 54.5+24.6*dose/1000-2.5*dose ² /1000 ²) 13 ; and (3) the
89	CPG approach using a rate constant of 2.5 (CPG2.5) and a rate constant of 5.0 (CPG5.0). The
90	difference between the expected (E) and observed (O) was expressed as a percentage of
91	observed and was calculated as follows for each study: [(E-O)/O]*100.
92	Descriptive statistics are presented as mean and confidence intervals (CIs), as
93	median and interquartile range (IQR), or as number and percentage. A one-sample t test
94	was performed to test whether mean differences, as calculated above, were different from
95	0% for each of the four groups. Statistics were performed using IBM SPSS Stats for Windows
96	Version 20 (Armonk, New York).
97	Results
98	Forty-one studies met the selection criteria (Table 1) ¹⁴⁻⁵² . Studies included young
99	adults (n=3), community-dwelling older adults (n=22) and institutionalized elderly adults
100	(n=16). The majority (n=35) were obtained from AHRQ-Ottawa, and six were identified from
101	AHRQ-Tufts ^{16-18, 20, 52} . No additional study was identified in IOM, excluding those studies
102	that were utilized for the simulated vitamin D dose response. Six studies had two sub-
103	groups that were given exactly the same dose; averages of the baseline and post-therapy
104	25OHD concentrations were calculated rather than have duplicate entries ^{24, 26, 34, 35, 48, 50} .
105	Thirty-three of the studies were randomized control studies regarding the effect of vitamin
106	D supplementation on 250HD concentrations.

107	The median (minimum-maximum) dose was 800 (200-2,000) IU/d. The median
108	(minimum-maximum) duration of treatment was 12 (3-60) months. The isoform of
109	administered vitamin D was: vitamin D_2 (n=1); vitamin D_3 (n=33); not specified (n=7). The
110	median (IQR) 250HD concentration pre-therapy was 39(24-61) nmol/L [16(10-24) ng/ml]
111	and post therapy was 72(61-86) nmol/L [29(24-34) ng/ml].
112	The mean (CI) rate constant was 5.3(4.4-6.2) nmol/L/100 IU/d ranging from 1.1 to
113	12.6 nmol/L/100 IU/d (Figure 1). The mean (CI) for the observed:expected ratio of the rate
114	constants with respect to the CPG rate constant of 2.5 nmol/L/100 IU/d was 2.1(1.7-2.5).
115	The mean (CI) for the difference between the expected and observed expressed as a
116	percentage of observed with the result of the one-sample t tests were as follows: (1) for
117	IOM -7(-16,+2)% (t=1.64, p=0.110); (2) for VIDOS +2(-8,+12)% (t=0.40, p=0.69); (3) for CPG
118	using rate constant of 2.5 was -21(-27,-15)% (t=7.2, p<0.0001); and (4) for CPG using rate
119	constant of 5.0 was +3(-4,+10)% (t=0.91, p=0.366) (Figure 2).

120 Discussion

121 The CPG approach is an easy to remember "rule of thumb" whereby the clinician 122 calculates the difference between a patient's 250HD result and the CPG target of 75 nmol/L 123 (30 ng/ml), then divides that difference by their rate constant of 2.5, and finally multiples the answer by 100 to estimate the required vitamin D dose ^{2, 8}. According to the findings of 124 125 our report, this CPG rate constant on average underestimates the rate constant by 2-fold. 126 The reason for the substantial underestimate is explained by the dose response curve for 127 vitamin D. Both IOM and VIDOS noted a curvilinear dose response curve. The CPG rate 128 constant is principally influenced by a dose response study in which the baseline 25OHD 129 concentration approximated 70 nmol/L (28.0 ng/ml) and three high-dose vitamin D

130	schedules were administered, namely 1000 IU/d, 5000 IU/d and 10000 IU/d 31 . When the
131	IOM was deliberating on its approach to vitamin D dose response, it reviewed previous
132	attempts at estimating a rate constant ^{11, 31} . IOM noted that lower intakes had a greater
133	response; but they also concluded that if an individual was already taking 1000 IU/d, then
134	the rate constant would be approximately 2.5 nmol/L (1.0 ng/ml)/100 IU/d. Another
135	important factor is the degree of hypovitaminosis D: the lower the 250HD concentration
136	the greater the response. So the current CPG rate constant should only give an accurate
137	estimate in circumstances when the baseline concentration of 25OHD exceeds 70 nmol/L
138	(28.0 ng/ml) and the intake exceeds 1000 IU/d. Regarding other confounders of the dose
139	response, the VIDOS study demonstrated that body mass index (BMI) was a confounder
140	with 250HD response being attenuated by increased BMI; also there was an interaction
141	effect between BMI and time ¹³ . Other covariates had no effect such as age, calcium intake,
142	smoking status, alcohol use, average caffeine intake, and serum creatinine. The IOM report
143	also excluded an interaction effect with age over a broader age range from childhood to the
144	elderly ¹ .

145 While we demonstrated a very high rate constant in our study of institutionalized 146 patients at 9.1 nmol/L(3.6 ng/ml)/100 IU/d, in a subsequent systematic review of published literature up to 1995 we suggested that the average rate constant was 5.5 nmol/L(2.2 147 ng/ml)/100 IU/d , which is remarkably similar to the current observation ⁵³. This fact had 148 149 been noted and discussed by the authors of the study that formed the basis of the CPG rate constant ³¹. The current finding regarding the rate constant is supported by a meta-150 regression analysis of randomized control trials of vitamin D supplementation (n=51) that 151 has just be published in abstract form ⁵⁴. The authors noted a mean increase of 48 nmol/L 152

(19.2 ng/ml) with a daily dose of 800 IU/d after 6 months that is equivalent to a rate
constant of 6 nmol/L (2.4 ng/ml)/100 IU/d. Similarly, in a recent systematic review, Autier et
al estimated that an intake of 800 IU/d combined with calcium in those with a mean 250HD
level of 25 nmol/L should elevate the level on average by 36 nmol/L, which is equivalent to a
rate constant of 4 nmol/L (1.6 ng/ml)/100 IU/d ⁵⁵.

158 The regression approach, as used by IOM and VIDOS, is much more satisfactory. Both 159 recommend that one should attempt to estimate the target 250HD concentration based on 160 either total daily oral vitamin D intake according to IOM, or on dose administered according 161 to VIDOS. The average observed 25OHD concentration was within the confidence limits 162 according to the 250HD concentration estimated by both the IOM and VIDOS equations, 163 although the confidence intervals are large. The IOM regression equation slightly 164 underestimates the achieved 25OHD concentration, but this is not unexpected since the 165 IOM regression equation is based on total vitamin D intake and the studies only provided 166 information on vitamin D dose, thus underestimating the total oral vitamin D intake. Regarding a similar analysis of the CPG approach, if a rate constant of 5.0 nmol/L (2.0 ng/ml) 167 168 /100 IU/d is chosen instead of a rate constant of 2.5 nmol/L (1.0 ng/ml) /100 IU/d, then the CPG approach is as good at estimating the 25OHD achieved concentration as both IOM and 169 170 VIDOS (Figure 2).

While classical toxicity occurs at 25OHD concentrations above 250 nmol/L (100 ng/ml)², there are concerns about harm at much lower concentrations ^{1, 56}. There are emerging concerns about risks at serum 25OHD concentrations above 125 nmol/L (50 ng/ml)^{1, 3}. There is a substantial safety window between 50 nmol/L (20 ng/ml) and 125 nmol/L (50 ng/ml). There are now five reasons why the Endocrine Society's CPG could lead

176	to either unnecessary overreplacement for many or hypervitaminosis D with potential harm
177	for some: (1) labelling patients as "deficient" or "insufficient" rather than viewing a 25OHD
178	concentration as a measure of risk, thus heightening concern; (2) setting a higher threshold
179	for 250HD at 75 nmol/L (30 ng/ml) compared to 50 nmol/L (20 ng/ml) for IOM; (3) advising
180	that all have 250HD concentrations above the threshold of 75 nmol/L (30 ng/ml), instead of
181	considering that there is a range of requirements like IOM, which specifies that a
182	concentration above 40 nmol/L (16 ng/ml) meets the needs of 50% of the population
183	according to a probabilistic model ⁷ ; (4) failing to distinguish between those "at-risk" for
184	privational hypovitaminosis D, whose intake requirements are covered by IOM
185	specifications, and those "at-risk" for disease-specific reasons; (5) and underestimating the
186	rate constant by 2-fold that is likely to overestimate the intake requirements in those whose
187	concentrations are below 70 nmol/L (28.0 ng/ml) and whose intakes are below 1000 IU/d.
188	One example whereby CPG may lead to toxicity is in infancy. CPG recommends
189	intakes of 400-1000 IU/d for all infants, and 2000 IU/d for 6 weeks for those with
190	concentrations below 50 nmol/L (20 ng/ml) ² . IOM, due to lack of evidence, only specify an
191	"adequate intake" of 400 IU/d, which is likely to meet the needs of the majority 1 . In a
192	recent survey of preterm infants with 250HD concentrations less than 50 nmol/L (20.0
193	ng/ml) who were followed into infancy at about 3-4 months, we observed that an intake of
194	400 IU/d from feeds and supplements yielded an average 25OHD concentration of 83
195	nmol/L (33 ng/ml). Nearly 10% had concentrations above 125 nmol/L (50 ng/ml), and one
196	infant had a 188 nmol/L (75 ng/ml) who was actually ingesting 850 IU/d, which is within the
197	CPG recommendation ⁵⁷ . There is a recent case series of infants with hypercalcemia
198	highlighting the problem of oversupplementation ⁵⁸ . Infants are most at-risk of vitamin D

Page 10 of 20

toxicity due mutations in the vitamin D metabolising enzyme CYP24A1 that increases
 sensitivity to oral vitamin D⁵⁹.

201	IOM has shifted the paradigm from thinking about "more is better" to a more risk
202	averse approach ³ . It has also challenged the notion that harm should just be viewed in
203	terms of vitamin D toxicity such as hypercalcaemia, hypercalciuria, or metastatic
204	calcification. It has advanced the concept of "harm" in terms of chronic disease outcomes
205	and mortality ¹ . This viewpoint is further enhanced by more recent reports on links with all-
206	cause mortality and with prostate cancer ^{56, 60} . Empiric evidence requires demonstration of
207	harm in the setting of a randomised clinical trial. It may be some time before such evidence
208	is forthcoming, but a recent report from Australia is informative. In a randomised trial of
209	annual high-dose oral vitamin D that had falls and fractures as outcome measures,
210	intervention resulted in increased risk of falls and fractures; in a small sample of the treated
211	group, 25OHD levels reached an average concentration of 120 nmol/L that approximates
212	the upper safe level specified by IOM. It is more risk averse to adopt a stochastic approach
213	of harm, rather than a deterministic approach of toxicity.

214 A limitation of this paper is that the original studies were not reviewed by us, but instead the data was extracted from three major reports. In deference to the AHRQ and 215 216 IOM process it would not have been possible to emulate the work of the Evidence-based 217 Practice Centers that assimilated nearly 40 years of clinical studies on vitamin D and distilled 218 out those studies that informed their comprehensive assessments. Furthermore, this paper 219 was not designed as a meta-regression analysis. In fact, it started as a clinical observation 220 that the Endocrine Society's approach to vitamin D dose response was far removed from our 221 clinical and research observations, and was also inclined substantially towards

underestimating the vitamin D response. Another limitation of this study is comparing
reports that use different models of the vitamin D dose response: a linear model with two
curvilinear models.

225 It seems prudent to probe the boundaries of benefit by augmenting vitamin D intake 226 to higher levels in carefully conducted research studies, but clinical practice and clinical 227 guidelines need not leap ahead of the evidence as presented in recent reports from AHRQ, IOM, and the US Preventative Services Task Force^{1, 11, 12, 61, 62}. The way forward is the 228 229 implementation of IOM recommendations, worldwide, especially given that the new 230 specifications have increased 2-3-fold for children and young adults, and increased by 33%-50% for those over age 50 years compared to the last IOM report in 1997 ⁶³. We conclude 231 232 that the CPG advice regarding vitamin D dose to patients, overestimates the rate constant 233 by 2-fold on average. We suggest that the "rule of thumb" of the CPG, if it is to be used, 234 should be doubled to 5.0 nmol/L (2.0 ng/ml)/100 IU/d. This would be more reliable as well 235 as being a more risk-averse approach. 236

Declaration of Interest: There is no conflict of interest that could be perceived as
prejudicing the impartiality of the research reported.

Funding: This research did not receive any specific grant from any funding agency in thepublic, commercial or not-for-funding sector.

Author contributions: The authors' responsibilities were as follows – MJM: conceived the study, analysed the data, and performed the statistical analyses; MJM and BFM: wrote the

- 243 manuscript. Both authors read and approved the final manuscript. The authors declared no
- 244 conflict of interest.

245

246		
247	Refer	ences
248	1.	Committee to Review Dietary Reference Intakes for Vitamin D and Calcium & Institute of
249	1.	Medicine. Dietary Reference Intakes for Calcium and Vitamin D. The National Academies
250		Press, 2011.
251	2.	Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH &
252		Weaver CM. Evaluation, Treatment, and Prevention of Vitamin D Deficiency: an Endocrine
253		Society Clinical Practice Guideline. J Clin Endocrinol Metab 2011 96 1191-1930.
254	3.	Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, Durazo-Arvizu RA,
255		Gallagher JC, Gallo RL, Jones G, Kovacs CS, Mayne ST, Rosen CJ & Shapses SA. The 2011
256		Report on Dietary Reference Intakes for Calcium and Vitamin D from the Institute of
257		Medicine: What clinicians need to know. J Clin Endocrinol Metab 2011 96 53-58.
258	4.	Aloia JF. The 2011 Report on Dietary Reference Intake for Vitamin D: Where Do We Go From
259		Here? J Clin Endocrinol Metabol 2011 96 2987-2996.
260	5.	Rosen CJ, Abrams SA, Aloia JF, Brannon PM, Clinton SK, Durazo-Arvizu RA, Gallagher JC, Gallo
261		RL, Jones G, Kovacs CS, Manson JE, Mayne ST, Ross AC, Shapses SA & Taylor CL. IOM
262		Committee Members Respond to Endocrine Society Vitamin D Guideline. J Clin Endocrinol
263	c	Metabol 2012 97 1146-1152.
264	6.	Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH &
265 266		Weaver CM. Guidelines for Preventing and Treating Vitamin D Deficiency and Insufficiency Revisited. <i>Journal of Clinical Endocrinology & Metabolism</i> 2012 97 1153-1158.
266	7.	Taylor CL, Carriquiry AL, Bailey RL, Sempos CT & Yetley EA. Appropriateness of the
268	7.	probability approach with a nutrient status biomarker to assess population inadequacy: a
269		study using vitamin D. Am J Clin Nutr 2013 97 72-78.
270	8.	Heaney RP & Holick MF. Why the IOM recommendations for vitamin D are deficient. <i>Journal</i>
271	0.	of Bone and Mineral Research 2011 26 455-457.
272	9.	McKenna MJ, Freaney R, Meade A & Muldowney FP. Hypovitaminosis D and elevated serum
273		alkaline phosphatase in elderly Irish people. Am J Clin Nutr 1985 41 101-109.
274	10.	McKenna MJ, Freaney R, Meade A & Muldowney FP. Prevention of hypovitaminosis D in the
275		elderly. Calcif Tissue Int 1985 37 112-116.
276	11.	Cranney A, Horsley T, O'Donnell S, Weiler HA, Puil L, Ooi DS, Atkinson SA, Ward LM, Moher
277		D, Hanley DA, Fang M, Yazdi F, Garritty C, Sampson M, Barrowman N, Tsertsvadze A &
278		Mamaladze V. Effectiveness and Safety of Vitamin D in Relation to Bone Health. Evidence
279		Report/Technology Assessment No. 158. In AHRQ Publication No. 07-E013. Rockville, MD:
280		Agency for Healthcare Research and Quality, 2007.
281	12.	Chung M, Balk EM, Brendel M, Ip S, Lau J, Lee J, Lichtenstein A, Patel K, Raman G, Tatsioni A,
282		Terasawa T & Trikalinos TA. Vitamin D and Calcium: Systematic Review of Health Outcomes.
283		Evidence Report/Technology Assessment No. 183. In AHRQ Publication No. 09-E015.
284 285	13.	Rockville, MD: Agency for Healthcare Research and Quality, 2009.
285	15.	Gallagher JC, Sai A, Templin T, 2nd & Smith L. Dose response to vitamin D supplementation in postmenopausal women: a randomized trial. <i>Ann Intern Med</i> 2012 156 425-437.
280	14.	Aloia JF, Talwar SA, Pollack S & Yeh J. A randomized controlled trial of vitamin D3
288	14.	supplementation in African American women. Arch Intern Med 2005 165 1618-1623.
289	15.	Bischoff-Ferrari HA, Conzelmann M, Dick W, Theiler R & Stahelin HB. [Effect of vitamin D on
290		muscle strength and relevance in regard to osteoporosis prevention]. <i>Z Rheumatol</i> 2003 62
291		518-521.
292	16.	Bjorkman M, Sorva A, Risteli J & Tilvis R. Vitamin D supplementation has minor effects on
293		parathyroid hormone and bone turnover markers in vitamin D-deficient bedridden older
294		patients. Age Ageing 2008 37 25-31.

295 296	17.	Blum M, Dallal GE & Dawson-Hughes B. Body size and serum 25 hydroxy vitamin D response to oral supplements in healthy older adults. <i>J Am Coll Nutr</i> 2008 27 274-279.
297	18.	Bolton-Smith C, McMurdo ME, Paterson CR, Mole PA, Harvey JM, Fenton ST, Prynne CJ,
298		Mishra GD & Shearer MJ. Two-year randomized controlled trial of vitamin K1
299		(phylloquinone) and vitamin D3 plus calcium on the bone health of older women. J Bone
300		Miner Res 2007 22 509-519.
301	19.	Brazier M, Grados F, Kamel S, Mathieu M, Morel A, Maamer M, Sebert JL & Fardellone P.
302		Clinical and laboratory safety of one year's use of a combination calcium + vitamin D tablet
303		in ambulatory elderly women with vitamin D insufficiency: results of a multicenter,
304		randomized, double-blind, placebo-controlled study. Clin Ther 2005 27 1885-1893.
305	20.	Bunout D, Barrera G, Leiva L, Gattas V, de la Maza MP, Avendano M & Hirsch S. Effects of
306		vitamin D supplementation and exercise training on physical performance in Chilean vitamin
307	24	D deficient elderly subjects. <i>Exp Gerontol</i> 2006 41 746-752.
308	21.	Chapuy MC, Arlot ME, Duboeuf F, Brun J, Crouzet B, Arnaud S, Delmas PD & Meunier PJ.
309		Vitamin D3 and calcium to prevent hip fractures in the elderly women. <i>The New England</i>
310	22	journal of medicine 1992 327 1637-1642.
311 312	22.	Chapuy MC, Pamphile R, Paris E, Kempf C, Schlichting M, Arnaud S, Garnero P & Meunier PJ. Combined calcium and vitamin D3 supplementation in elderly women: confirmation of
312		reversal of secondary hyperparathyroidism and hip fracture risk: the Decalyos II study.
314		Osteoporos Int 2002 13 257-264.
315	23.	Chel VG, Ooms ME, Popp-Snijders C, Pavel S, Schothorst AA, Meulemans CC & Lips P.
316	25.	Ultraviolet irradiation corrects vitamin D deficiency and suppresses secondary
317		hyperparathyroidism in the elderly. J Bone Miner Res 1998 13 1238-1242.
318	24.	Dawson-Hughes B, Harris SS, Krall EA & Dallal GE. Effect of calcium and vitamin D
319		supplementation on bone density in men and women 65 years of age or older. N Engl J Med
320		1997 337 670-676.
321	25.	Deroisy R, Collette J, Albert A, Jupsin I & Reginster JY. Administration of a supplement
322		containing both calcium and vitamin D is more effective than calcium alone to reduce
323		secondary hyperparathyroidism in postmenopausal women with low 25(OH)vitamin D
324		circulating levels. Aging Clin Exp Res 2002 14 13-17.
325	26.	Deroisy R, Collette J, Chevallier T, Breuil V & Reginster JY. Effects of two 1-year calcium and
326		vitamin D3 treatments on bone remodeling markers and femoral bone density in elderly
327		women. <i>Current Therapeutic Research</i> 1998 59 850-862.
328	27.	Goussous R, Song L, Dallal GE & Dawson-Hughes B. Lack of effect of calcium intake on the
329	20	25-hydroxyvitamin d response to oral vitamin D3. <i>J Clin Endocrinol Metab</i> 2005 90 707-711.
330	28.	Grados F, Brazier M, Kamel S, Duver S, Heurtebize N, Maamer M, Mathieu M, Garabedian M,
331 332		Sebert JL & Fardellone P. Effects on bone mineral density of calcium and vitamin D supplementation in elderly women with vitamin D deficiency. <i>Joint Bone Spine</i> 2003 70 203-
333		208.
334	29.	Grant AM, Avenell A, Campbell MK, McDonald AM, MacLennan GS, McPherson GC,
335	25.	Anderson FH, Cooper C, Francis RM, Donaldson C, Gillespie WJ, Robinson CM, Torgerson DJ
336		& Wallace WA. Oral vitamin D3 and calcium for secondary prevention of low-trauma
337		fractures in elderly people (Randomised Evaluation of Calcium Or vitamin D, RECORD): a
338		randomised placebo-controlled trial. <i>Lancet</i> 2005 365 1621-1628.
339	30.	Harwood RH, Sahota O, Gaynor K, Masud T & Hosking DJ. A randomised, controlled
340		comparison of different calcium and vitamin D supplementation regimens in elderly women
341		after hip fracture: The Nottingham Neck of Femur (NONOF) Study. Age Ageing 2004 33 45-
342		51.
343	31.	Heaney RP, Davies KM, Chen TC, Holick MF & Barger-Lux MJ. Human serum 25-
344		hydroxycholecalciferol response to extended oral dosing with cholecalciferol. Amer J Clin
345		Nutr 2003 77 204-210.

346	32.	Heikkinen A, Parviainen MT, Tuppurainen MT, Niskanen L, Komulainen MH & Saarikoski S.
347		Effects of postmenopausal hormone replacement therapy with and without vitamin D3 on
348		circulating levels of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D. Calcif Tissue Int 1998
349		62 26-30.
350	33.	Hunter D, Major P, Arden N, Swaminathan R, Andrew T, MacGregor AJ, Keen R, Snieder H &
351		Spector TD. A randomized controlled trial of vitamin D supplementation on preventing
352		postmenopausal bone loss and modifying bone metabolism using identical twin pairs. J Bone
353		Miner Res 2000 15 2276-2283.
354	34.	Jensen C, Holloway L, Block G, Spiller G, Gildengorin G, Gunderson E, Butterfield G & Marcus
355		R. Long-term effects of nutrient intervention on markers of bone remodeling and
356		calciotropic hormones in late-postmenopausal women. The American Journal of Clinical
357		Nutrition 2002 75 1114-1120.
358	35.	Kenny A, Prestwood K, Biskup B, Robbins B, Zayas E, Kleppinger A, Burleson J & Raisz L.
359		Comparison of the effects of calcium loading with calcium citrate or calcium carbonate on
360		bone turnover in postmenopausal women. Osteoporosis International 2004 15 290-294.
361	36.	Kenny AM, Biskup B, Robbins B, Marcela J & Burleson JA. Effects of vitamin D
362		supplementation on strength, physical function, and health perception in older,
363		communitydwelling men. J Am Geriatr Soc 2003 51 1762-1767.
364	37.	Komulainen MH, Kröger H, Tuppurainen MT, Heikkinen A-M, Alhava E, Honkanen R &
365		Saarikoski S. HRT and Vit D in prevention of non-vertebral fractures in postmenopausal
366		women; a 5 year randomized trial. <i>Maturitas</i> 1998 31 45-54.
367	38.	Krieg MA, Jacquet AF, Bremgartner M, Cuttelod S, Thiébaud D & Burckhardt P. Effect of
368		Supplementation with Vitamin D3 and Calcium on Quantitative Ultrasound of Bone in Elderly
369		Institutionalized Women: A Longitudinal Study. Osteoporosis International 1999 9 483-488.
370	39.	Lips P. Vitamin D deficiency and osteoporosis: the role of vitamin D deficiency and treatment
371		with vitamin D and analogues in the prevention of osteoporosis-related fractures. European
372		journal of clinical investigation 1996 26 436-442.
373	40.	Lips P, Wiersinga A, van Ginkel FC, Jongen MJ, Netelenbos JC, Hackeng WH, Delmas PD & van
374		der Vijgh WJ. The effect of vitamin D supplementation on vitamin D status and parathyroid
375		function in elderly subjects. J Clin Endocrinol Metab 1988 67 644-650.
376	41.	Lovell GA, Byth JL, Craswell PW, Phillips PA & Thomas MJ. The influence of sunlight or dietary
377		vitamin D on plasma 25-hydroxyvitamin D in institutionalized elderly patients in a sub-
378		tropical climate. Journal of Human Nutrition and Dietetics 1988 1 163-170.
379	42.	Meier C, Woitge HW, Witte K, Lemmer B & Seibel MJ. Supplementation with oral vitamin D3
380		and calcium during winter prevents seasonal bone loss: a randomized controlled open-label
381		prospective trial. J Bone Miner Res 2004 19 1221-1230.
382	43.	Ooms ME, Roos JC, Bezemer PD, van der Vijgh WJ, Bouter LM & Lips P. Prevention of bone
383		loss by vitamin D supplementation in elderly women: a randomized double-blind trial. J Clin
384		Endocrinol Metab 1995 80 1052-1058.
385	44.	Orwoll ES, Weigel RM, Oviatt SK, McClung MR & Deftos LJ. Calcium and cholecalciferol:
386		effects of small supplements in normal men. The American Journal of Clinical Nutrition 1988
387		48 127-130.
388	45.	Patel R, Collins D, Bullock S, Swaminathan R, Blake GM & Fogelman I. The Effect of Season
389		and Vitamin D Supplementation on Bone Mineral Density in Healthy Women: A Double-
390		Masked Crossover Study. Osteoporosis International 2001 12 319-325.
391	46.	Riis B, Christiansen C & Rodbro P. The effect of different vitamin D treatments on serum
392		vitamin D levels in early postmenopausal women. Acta Vitaminol Enzymol 1984 6 77-82.
393	47.	Schaafsma A, van Doormaal JJ, Muskiet FA, Hofstede GJ, Pakan I & van der Veer E. Positive
394		effects of a chicken eggshell powder-enriched vitamin-mineral supplement on femoral neck
395		bone mineral density in healthy late post-menopausal Dutch women. Br J Nutr 2002 87 267-
396		275.

397 398 399 400	48.	Schaafsma A, Muskiet FA, Storm H, Hofstede GJ, Pakan I & Van der Veer E. Vitamin D(3) and vitamin K(1) supplementation of Dutch postmenopausal women with normal and low bone mineral densities: effects on serum 25-hydroxyvitamin D and carboxylated osteocalcin. <i>Eur J Clin Nutr</i> 2000 54 626-631.
401 402 403 404	49.	Sebert JL, Garabedian M, Chauvenet M, Maamer M, Agbomson F & Brazier M. Evaluation of a new solid formulation of calcium and vitamin D in institutionalized elderly subjects. A randomized comparative trial versus separate administration of both constituents. <i>Rev</i> <i>Rhum Engl Ed</i> 1995 62 288-294.
405 406 407	50.	Sorva A, Risteli J, Risteli L, Valimaki M & Tilvis R. Effects of vitamin D and calcium on markers of bone metabolism in geriatric patients with low serum 25-hydroxyvitamin D levels. <i>Calcif Tissue Int</i> 1991 49 Suppl S88-89.
408 409 410	51.	Vieth R, Kimball S, Hu A & Walfish PG. Randomized comparison of the effects of the vitamin D3 adequate intake versus 100 mcg (4000 IU) per day on biochemical responses and the wellbeing of patients. <i>Nutr J</i> 2004 3 8.
410 411 412 413 414	52.	Zhu K, Devine A, Dick IM, Wilson SG & Prince RL. Effects of Calcium and Vitamin D Supplementation on Hip Bone Mineral Density and Calcium-Related Analytes in Elderly Ambulatory Australian Women: A Five-Year Randomized Controlled Trial. J Clin Endocrinol Metab 2008 93 743-749.
414 415 416	53.	Byrne PM, Freaney R & McKenna MJ. Vitamin D supplementation in the elderly: review of safety and effectiveness of different regimes. <i>Calcif Tissue Int</i> 1995 56 518-520.
417 418 419	54.	Bidar SS, Bours S, Geusens P & Van den Bergh J. The influence of vitamin D supplementationon mean changes in serum 25(OH)D: A meta-analysis. <i>J Bone Miner Res</i> 2012 27 (Suppl 1) S331 (Abstr).
420 421	55.	Autier P, Gandini S & Mullie P. A systematic review: influence of vitamin D supplementation on serum 25-hydroxyvitamin D concentration. <i>J Clin Endocrinol Metab</i> 2012 97 2606-2613.
422 423 424	56.	Durup D, Jorgensen HL, Christensen J, Schwarz P, Heegaard AM & Lind B. A reverse J-shaped association of all-cause mortality with serum 25-hydroxyvitamin D in general practice: the CopD study. <i>J Clin Endocrinol Metab</i> 2012 97 2644-2652.
425 426 427	57.	McCarthy RA, McKenna MJ, Oyefeso O, Uduma O, Murray BF, Brady JJ, Kilbane MT, Murphy JF, Twomey A, O'Donnell CP, Murphy NP & Molloy EJ. Vitamin D nutritional status in preterm infants and response to supplementation. <i>Brit J Nutr</i> Available on CJO 2012 2012.
427 428 429	58.	Vanstone MB, Oberfield SE, Shader L, Ardeshirpour L & Carpenter TO. Hypercalcemia in children receiving pharmacologic doses of vitamin D. <i>Pediatrics</i> 2012 129 e1060-1063.
430 431 432 433	59.	Schlingmann KP, Kaufmann M, Weber S, Irwin A, Goos C, John U, Misselwitz J, Klaus G, Kuwertz-Broking E, Fehrenbach H, Wingen AM, Guran T, Hoenderop JG, Bindels RJ, Prosser DE, Jones G & Konrad M. Mutations in CYP24A1 and idiopathic infantile hypercalcemia. <i>N</i> <i>Engl J Med</i> 2011 365 410-421.
434 435 436	60.	Meyer HE, Robsahm TE, Bjorge T, Brustad M & Blomhoff R. Vitamin D, season, and risk of prostate cancer: a nested case-control study within Norwegian health studies. <i>Am J Clin Nutr</i> 2013 97 147-154.
437 438 439	61.	Chung M, Lee J, Terasawa T, Lau J & Trikalinos TA. Vitamin D With or Without Calcium Supplementation for Prevention of Cancer and Fractures: An Updated Meta-analysis for the U.S. Preventive Services Task Force. <i>Annals of Internal Medicine</i> 2011 155 827-838.
440 441	62.	Moyer VA. Vitamin D and Calcium Supplementation to Prevent Fractures in Adults: U.S. Preventive Services Task Force Recommendation Statement. <i>Ann Intern Med</i> 2013.
442 443	63.	Institute of Medicine. Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D and fluoride. pp 250-287. Washington, DC: National Academies Press, 1997.
444		

445

Table 1

Studies of low dose daily vitamin D supplementation drawn for AHRQ-Ottawa report and AHRQ-Tufts report

Study	Country	Group [*]	Dose	Duration (months)	250HD nmol/L		Rate constant	Expected 25OHD nmol/L			
			(IU/d)		Basal	Post	(nmol/L/100 IU/d)	IOM	VIDOS	CPG2.5	CPG5.0
Aloia ¹	USA	2	800	3	48	71	2.0	66	73	68	88
Bischoff-Ferrari ²	Switzerland	3	800	4	31	66	4.4	66	73	51	71
Bjorkman ³	Finland	3	400	6	23	50	6.8	59	64	33	43
Bjorkman ³	Finland	3	1200	6	23	72	4.1	70	80	53	83
Blum ⁴	USA	2	700	12	73	122	7.0	65	70	91	108
Bolton-Smith ⁵	UK	2	400	60	60	72	3.0	59	64	70	80
Brazier ⁶	France	2	800	3	23	65	5.3	66	73	43	63
Bunout ⁷	Chile	2	800	12	40	73	4.1	66	73	60	80
Chapuy ⁸	France	3	800	18	40	105	8.1	66	73	60	80
Chapuy ⁹	France	3	800	24	22	77	6.9	66	73	42	62
Chel ¹⁰	The Netherlands	3	400	4	23	60	9.3	59	64	33	43
Dawson-Hughes ¹¹	USA	2	700	36	77	112	4.1	65	70	95	112
Deroisy ¹²	Belgium	2	200	3	28	43	7.5	52	59	33	38
Deroisy ¹³	Belgium	3	800	12	50	111	9.0	66	73	70	90
Goussos ¹⁴	USA	2	800	3	48	64	2.0	66	73	68	88
Grados 15	France	2	800	12	18	72	6.8	66	73	38	58
Grant ¹⁶	UK	2	800	60	39	62	2.9	66	73	59	79
Harwood ¹⁷	UK	3	800	12	29	50	2.6	66	73	49	69
Heaney ¹⁸	USA	1	1000	5	72	84	1.8	68	77	97	122
Heikkinen ¹⁹	Finland	2	300	12	28	38	3.3	56	62	36	43
Hunter ²⁰	UK	2	800	24	71	105	4.3	66	73	91	111
Jensen ²¹	USA	2	400	36	41	82	9.0	59	64	51	61
Kenny ²²	USA	2	1000	6	65	87	2.2	68	77	90	115

Kenny ²³	USA	2	400	3	61	71	1.5	59	64	71	81
Komulainen ²⁴	Finland	2	300	6	29	38	3.0	56	62	37	44
Kreig ²⁵ Lips ²⁶ Lips ²⁷	Switzerland	3	880	24	30	66	4.1	67	74	52	74
Lips ²⁶	The Netherlands	2	400	36	27	54	6.8	59	64	37	47
Lips ²⁷	The Netherlands	3	400	12	24	72	12.0	59	64	34	44
Lips ²⁷	The Netherlands	3	800	12	24	85	7.6	66	73	44	64
Lovell ²⁸	Australia	3	230	3	18	47	12.6	54	60	24	29.5
Lovell 28	Australia	3	866	3	41	78	4.3	67	74	63	84.3
Meier ²⁹	Australia	2	500	24	75	88	2.6	62	66	88	100
Ooms ³⁰	The Netherlands	2	400	24	27	62	8.8	59	64	37	47
Orwoll ³¹	USA	2	1000	12	60	85	2.5	68	77	85	110
Patel 32	UK	1	800	12	68	77	1.1	66	73	88	108
Riis ³³	Denmark	2	2000	12	33	120	4.4	75	94	83	133
Schaafsma ³⁴	The Netherlands	2	400	12	90	125	11.0	59	64	100	110
Sebert 35	Finland	3	800	6	7	35	3.5	66	73	27	47
Sorva ³⁶	Finland	3	1000	9	12	57	4.4	68	77	37	62
Vieth ³⁷	Canada	1	600	6	46	79	5.5	63	68	61	76
Zhu ³⁸	Australia	2	1000	60	68	104	3.6	68	77	93	118

*Groups: 1 = young adults; 2 = community-dwelling older adults and elderly; 3 = institutionalized elderly adults

IOM refers to Institute of Medicine report; VIDOS refers to Vitamin D in Older Subjects study; CPG2.5 refers to Clinical Practice Guideline using rate constant of 2.5 nmol/L/100 IU/d; and CPG5.0 refers to Clinical Practice Guideline using rate constant of 2.5 nmol/L/100 IU/d. Conversion factor for 250HD: 1 ng/ml = 2.5 nmol/L.

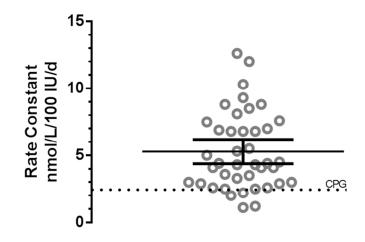


Figure 1. This plot depicts rate constants in the 41 studies. The mean (95% CI) is 5.3 (4.4-6.2) rise of 250HD nmol/L per vitamin D intake of 100 IU/d. The Clinical Practice Guideline (CPG) rate constant of 2.5 nmol/L/100 IU/d is depicted by the broken line. 254x190mm (96 x 96 DPI)

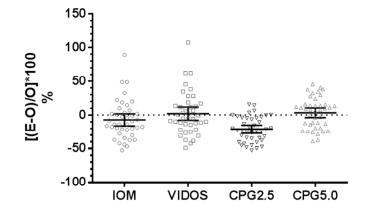


Figure 2. This plot depicts differences between the expected and observed expressed as a percentage of observed in the 41 studies. The mean and 95% CIs are represented by continuous lines. IOM refers to Institute of Medicine report; VIDOS refers to Vitamin D in Older Subjects study; CPG2.5 refers to Clinical Practice Guideline using rate constant of 2.5 nmol/L/100 IU/d; and CPG5.0 refers to Clinical Practice Guideline using rate constant of 5.0 nmol/L/100 IU/d. E = expected 250HD; O = observed 250HD. 254x190mm (96 x 96 DPI)