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A B S T R A C T

Background: Per-and polyfluoroalkyl substances (PFAS) contamination may disrupt sleep through disrupted 
metabolic and immune functions. The study aims to investigate the association and potential mechanism be-
tween PFAS and sleep.
Methods: We included 136 young adults recruited between 2014-2018 and 76 were re-assessed between 2020- 
2022. Additional 8 participants only had complete data between 2020-2022. Plasma PFAS (PFOS, PFOA, 
PFHxS, PFHpS, PFPeS, PFNA, PFDA) were measured at both visits using liquid-chromatography high-resolution 
mass spectrometry. Plasma proteins were measured by Olink® Explore 384 Cardiometabolic and Inflammation 
Panel I. Sleep duration was self-reported at both visits along with follow-up sleep disturbance and sleep-related 
impairment using validated instruments. We utilized multiple linear regression to explore the association be-
tween individual PFAS (in tertile) and these sleep outcomes. PFAS associated with sleep outcomes were subjected 
to computational toxicology analysis using the Comparative Toxicogenomics Database and Toxicology in the 
21st Century database to identify potential genetic links between them. Mediation analysis using proteomic data 
was then performed to confirm the findings from computational toxicology analysis.
Results: At baseline, one tertile increase in PFDA was associated with 0.39 (95 % CI: 0.05, 0.73) hours of shorter 
nightly sleep duration, and, at follow-up, PFHxS and PFOA were associated with 0.39 (95 % CI: 0.05, 0.72) and 
0.32 (95 % CI: 0.01, 0.63) hours shorter sleep duration, respectively. One tertile increase in PFOS exposure was 
associated with a 2.99-point increase in sleep disturbance scores (95 % CI: 0.67, 5.31) and a 3.35-point increase 
in sleep-related impairment scores (95 % CI: 0.51, 6.20). Computational toxicology and mediation analyses 
identified potential mediating roles for several proteins in the PFAS-sleep associations, including 11-beta-dehy-
drogenase isozyme 1 (HSD11B1), cathepsin B (CTSB) and several immune system-related proteins.
Conclusion: Future large scale epidemiological and mechanistic studies should confirm our findings and test effect 
measure modification of the associations by age.

Introduction

Sleep deprivation and sleep disorders can exert an immediate impact 
on daily activities, mood, and health (Colten et al., 2006). Over the long 
term, sleep disturbance is linked to adverse effects in different parts of 
the human body, including the heart, liver, and brain (Dutil et al., 2018). 

However, a significant proportion of adults fail to obtain an adequate 
amount of sleep (Adjaye-Gbewonyo et al., 2022). Although some of 
these effects are due to known demographic, social, and behavioral risk 
factors, they do not fully explain differences in insufficient sleep and 
sleep quality (Grandner et al., 2015). Addressing modifiable factors that 
contribute to poor sleep is vital in mitigating the risk of these negative 
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health outcomes and informing public health interventions to promote 
sleep health.

Per-and polyfluoroalkyl substances (PFAS) constitute a group of 
chemicals commonly used in consumer products due to their water- and 
stain-resistant properties. They are pervasive in the population and 
possess a long half-life in the human body (Andrews and Naidenko, 
2020; Li et al., 2018). Three previous studies (in pregnant women, in-
fants, and early childhood) in China showed that both individual PFAS 
and PFAS mixtures are associated with worse sleep disturbance (Huang 
et al., 2023, 2022; Xie et al., 2022). Yet, studies using data from the US 
National Health and Nutrition Examination Surveys (NHANES) showed 
mixed results. Guo et al. found an inverse association between PFAS 
mixture and trouble falling asleep using NHANES data from 2005-2014 
while Shiue et al. found a positive association with wake-up at night, 
unrested during the day, and leg jerks in sleeping using NHANES data 
from 2005-2006 (Guo et al., 2023; Shiue, 2017). The discrepancies 
suggest that the effects of PFAS on sleep may vary across populations 
and sleep measures.

PFAS is hypothesized to have the ability to cross the blood-brain 
barrier (BBB) and disrupt the levels of neurotransmitters (e.g., dopa-
mine, glutamate, and serotonin) and calcium homeostasis, which are all 
important for sleep health (Brown-Leung and Cannon, 2022; Carbone 
et al., 2023; Gvilia, 2010). PFAS may also indirectly affect sleep through 
disrupted immune and metabolic function (Asif et al., 2017; Beans, 
2021; Chen et al., 2020; Morselli et al., 2012). For example, cytokines 
such as interleukin 1 (IL-1) and tumor necrosis factor (TNF) can 
participate in the regulation of sleep, specifically non-rapid eye move-
ment sleep stage (Imeri and Opp, 2009). In addition, many studies have 
linked sleep duration and quality to metabolic function through effects 
in glucose homeostasis (i.e., regulation of growth hormone, glucagon, 
and cortisol), which further contributes to obesity and diabetes (Morselli 
et al., 2012). A recent report by the National Academies of Sciences, 
Engineering, and Medicine points out the gap in the neurological impact 
of PFAS (Guidance on PFAS Exposure, Testing, and Clinical Follow-Up, 
2022). Identifying potential molecular pathways between PFAS and 
sleep may further our understanding of PFAS neurotoxicity.

High-throughput proteomics data emerged as a powerful tool to 
profile thousands of proteins and identify differential protein expression 
and dysregulated molecular pathways due to environmental exposures 
including PFAS research (Chen et al., 2024; Dunder et al., 2023; Sali-
hovic et al., 2020). Proteomics data can capture modifications beyond 
transcriptomes and genomes, and proteomics profiling showed PFAS 
associated with pro-inflammation and immunoregulation, which are 
important for sleep as well (Chen et al., 2024; Imeri and Opp, 2009).

In the present study, our primary objective (Step 1) was to leverage a 
prospective cohort of young adults to assess the association between 
multiple PFAS and sleep duration, disturbance, and impairment. To gain 
more insight into the potential molecular mechanisms, our secondary 
objective (Step 2) was to evaluate the current body of evidence through 
a data mining approach in two toxicological databases including 
Comparative Toxicogenomics Database (CTD) and Toxicology in the 
21st Century (Tox21). The goal of data mining is to screen potential 
genetic targets that are shared between PFAS and sleep disorders as well 
as the toxicity of each PFAS. These genetic targets are genes that are 
identified in the toxicological studies when screening toxicity of indi-
vidual chemicals and the expression of genes or associated transcript/ 
proteins could be up or down regulated due to exposure to the chemical 
in the study. To confirm the genetic targets generated through compu-
tational toxicology analysis, we further assessed the potential mediating 
roles of proteins associated with suspected genetic targets of PFAS in the 
association between PFAS and measures of sleep duration and quality 
(Step 3). Our approach provides a more comprehensive understanding 
of the relationship between PFAS and sleep and, by integrating multiple 
data sources, we have significantly enhanced the inferential strength of 
our findings.

Method

Study population

We included study participants from the Metabolic and Asthma 
Incidence Research (Meta-AIR) study (Kim et al., 2019) who were 
recruited between 2014 and 2018 from the Southern California Chil-
dren’s Health Study (CHS) (McConnell et al., 2015). Meta-AIR study 
participants were selected based on having a history of overweight or 
obesity (defined as age- and sex-specific BMI > 85th percentile; BMI was 
obtained between age 14 and 15), and free of diabetes. We included 
participants (n=136) who provided biospecimens and completed 
sleep-related questions. A subset of study participants (n=76) was 
re-examined and n = 8 only had data between 2020 and 2022. This 
study was approved by the USC Institutional Review Board 
(HS-19-00338). We selected this cohort because 1) they were relatively 
healthy and identifying causes of disrupted sleep pattern could lead to 
interventions to prevent worsening adverse health outcomes and 2) 
sleep patterns change frequently in young adults (Owens et al., 2014).

Written informed assent and consent were obtained from partici-
pants and their parents, respectively.

Plasma-level PFAS concentrations

Details on the method for quantification of these environmental 
pollutants were published elsewhere (Goodrich et al., 2023). Briefly, we 
used liquid chromatography–high-resolution mass spectrometry 
(LC-HRMS) to determine the levels of PFAS. Raw data were extracted, 
aligned, batch-effect corrected, and imputed with the limit of detection 
(LOD). Among the 24 PFAS that could be quantified using the method, 
we quantified 7 PFAS, which were perfluorodecanoic acid (PFDA), 
perfluorononanoic acid (PFNA), perfluorohexane sulfonate (PFHxS), 
perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), per-
fluoroheptane sulfonic acid (PFHpS), perfluoropentane sulfonic acid 
(PFPeS). In addition, the same 7 PFAS were measured at follow-up. We 
then converted the concentration (ng/mL) of these pollutants into ter-
tiles to improve model fit and account for potential non-linear associa-
tions which is consistent with previous studies (Guo et al., 2023; Huang 
et al., 2023). The complete list of PFAS and their LODs is available in 
Supplemental Table 1.

Sleep health

At baseline and follow-up, self-reported sleep duration was collected. 
In addition, two sleep outcomes, including sleep disturbance and sleep 
impairment in the past 7 days, were measured at follow-up by the 8-item 
short forms developed from the Patient-Reported Outcomes Measure-
ment Information System (PROMIS™) Sleep Disturbance and Sleep- 
Related Impairment item banks. The short forms are comparable to 
the full item forms and the sleep disturbance and sleep-related impair-
ment item banks have been previously validated (Forrest et al., 2018; Yu 
et al., 2011). Sleep disturbance measures problems with falling and 
staying asleep and sleep-related impairment measures daytime sleepi-
ness, difficulties waking up, and their impact on mood and behavior. 
The instruments were measured on a Likert scale ranging from 1 (Not at 
all) to 5 (Very much) and the higher the score is, the worse the sleep 
disturbance/impairment is. The raw scores were then transformed into a 
t-score. For sleep duration, we further categorized sleep duration as not 
enough sleep (<7 vs ≥ 7 h) based on clinical recommendations for 
enough sleep (Watson et al., 2015).

Covariates

We included the following variables a priori as potential confounders 
based on prior literature (Guo et al., 2023; Huang et al., 2023): ethnicity 
(non-Hispanic White, Hispanic, or Other), sex (male or female), age 
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(continuous; measured at baseline and follow-up), parental education 
(high school and below or above high school), Healthy Eating Index 
(HEI) 2015 (continuous; measured at baseline and follow-up) derived 
from 24-hour recalls, using Nutrition Data System for Research (NDSR) 
(University of Minnesota) at baseline and Automated Self-Administered 
24-hour (ASA24) (NCI) at follow up, physical activity (self-perceived 
physical activity [continuous; the scale of 1 (least active) to 9 (most 
active)] measured at baseline and metabolic equivalents [low, medium, 
and high] measured at follow-up) derived from self-reported number of 
minutes/week spent on various activities (Mendes et al., 2018), ciga-
rette smoking (ever vs never), alcohol drinking (ever vs never). We used 
a single imputation (“mice” package in R) to impute missing values of 
the HEI and self-perceived level of physical activity (Buuren and 
Groothuis-Oudshoorn, 2011; Little and Rubin, 2019).

Step 1: Association study

The analytic workflow is presented in Fig. 1. We used multiple linear 
regression to assess the cross-sectional associations between PFAS ex-
posures (per one tertile increase) measured and sleep measurements at a 
baseline or follow-up visit. We controlled for baseline covariates 
(ethnicity, sex, parental education, age, physical activity, cigarette 
smoking, alcohol drinking, HEI) when assessing outcomes measured at 
baseline, and time-fixed covariates (ethnicity, sex, parental education) 
and covariates measured at follow-up (age, physical activity, cigarette 
smoking, alcohol drinking, HEI) for outcomes measured at follow-up. A 
directed acyclic graph (DAG) is included in Supplemental Fig. 1. To 
assess the joint effect of the PFAS mixture on sleep outcome, we used 
quantile g-computation (“qgcomp” package in R) (Keil et al., 2020). The 
mixture effect was interpreted as per tertile increase in all PFAS. In 
addition, we assessed whether individual PFAS and PFAS mixtures were 
associated with not enough sleep (<7 h) using logistic regression.

Since PFAS have long half-lives in the human body (Li et al., 2018), 
we further assessed whether PFAS measured at baseline were associated 

with sleep duration over time. We used the generalized estimating 
equation (GEE) model (“geepack” in R) to conduct repeated measure 
analysis with exchangeable correlation structure and standard error 
estimated using a robust sandwich estimator. We adjusted for both 
time-fixed covariates and time-varying covariates (age, HEI, cigarette 
smoking, drinking). Since the physical activity was measured differently 
at baseline and follow-up, we only controlled for the follow-up level of 
physical activity. We also included interaction terms between PFAS and 
follow-up time in the model. We adjusted for multiple testing for all 
models using the false discovery rate (FDR) method at the threshold of 
0.20 (Benjamini and Hochberg, 1995). We additionally conducted 
sensitivity analysis using linear mixed model (“lme4” in R).

Since there are sex and racial/ethnic differences in sleep (Billings 
et al., 2021; Meers et al., 2019), we perform stratified analysis by sex or 
ethnicity for each PFAS and three main sleep outcomes (duration, 
disturbance, and impairment).

Since neighborhood socioeconomic status (SES) may influence 
number of PFAS exposure sources and neighborhood SES may also in-
fluence sleep health, we conducted sensitivity analysis by including area 
deprivation index (ADI) at census block group level in the model. ADI 
was downloaded from Neighborhood Atlas and the index ranks neigh-
borhoods by socioeconomic disadvantage (Kind and Buckingham, 2018; 
University of Wisconsin School of Medicine and Public Health, 2015).

Since season/temperature may influence sleep pattern, we addi-
tionally conducted a sensitivity analysis by controlling for season 
(Months in May to October vs Months in November to April).

Step 2: Computational toxicology analysis

CTD is a publicly available database that aims to understand the 
mechanisms of health effects of environmental exposures. As of 
September 2023, the database contains 50 million toxicogenomic re-
lationships including 2.8 million chemical-gene interactions, 32.2 
million gene-disease associations, 0.4 million phenotype-based 

Fig. 1. Analytic workflow.
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interactions, 3.4 million chemical-disease associations, along with re-
lationships among chemical, disease, gene ontology (GO), pathway 
(Davis et al., 2023). In addition, the relationships in CTD are either 
direct (e.g., evidence directly links chemical and gene) or inferred (e.g., 
chemical and gene are linked via an intermediate event). For any 
inferred association, CTD also provides an inference score (0 to infinite), 
and the higher the score is, the more atypical the connection is (King 
et al., 2012).

Tox21 Consortium generates publicly available quantitative high 
throughput screening (qHTS) 10K library data on the toxicity of over 
760,000 chemicals using roughly 70 high-throughput assays that cover 
about 125 biological processes in the body (Huang, 2016; Huang et al., 
2018, 2016; Hur et al., 2018). Toxicity profiling is based on a wide range 
of assays including cardiotoxicity, counter screen, cytotoxicity, devel-
opmental toxicity, gene toxicity, G protein-coupled receptors (GPCR), 
metabolism, neurotoxicity, nuclear receptor (NR), and stress response 
(SR) panels. Details on assay target, cell line, cell type, and target 
category for each protocol used in the toxicity profiling are included in 
Supplemental Table 2. Tox21 used various cell types primarily in liver 
and kidney and cervical and breast cancer cells.

Based on the previously described association study, we selected 
PFAS associated with any of the sleep outcomes (with FDR-adjusted p 
value <0.20) to conduct the following analysis. We performed compu-
tational toxicology analysis using data available from CTD and Tox21 
database.

We selected sleep-wake disorder (MeSH: d012893) as the disease of 
interest in the computational toxicology analysis. The sleep-wake dis-
order is defined as an abnormal sleep-wake schedule or pattern associ-
ated with the circadian rhythm and the disorder is closely related to 
duration, timing, and quality of sleep. In addition, the disease term from 
CTD is presented as a polyhierarchical tree, and sleep-wake disorder is 
the ancestor of many sleep-related disorders on the disease hierarchy. 
We did not include specific disease such as insomnia or obstructive sleep 
apnea since the study was exploratory and aimed at capturing more 
comprehensive list of genes that were associated with sleep. In addition, 
our age group is relatively healthy and therefore, did not have choose a 
specific disease to test in this step.

To identify the potential mechanism between selected PFAS and 
sleep-wake disorder, we first queried CTD to generate chemical-gene or 
chemical-gene-associated-protein relationships for each of the PFAS. 
This step identified a list of genetic targets of each PFAS. We then 
queried CTD to generate a list of genes associated with sleep-wake dis-
order. These genes are either marker/mechanism genes for sleep-wake 
disorders or non-marker genes, which are suggestively associated with 
sleep-wake disorders. Lastly, we filtered out genes that are shared by 
both PFAS and sleep-wake disorder. The final list of genes will then be 
used for mediation analysis using proteomics data in the next step.

In CTD, we additionally queried the database to generate GO terms 
that are statistically enriched (Benjamini-Hochberg adjusted p val-
ue<0.05) among genes/proteins associated with each of the PFAS. We 
further assessed whether these GO terms contain “sleep” or “circadian”.

Using the Tox21 Activity Profiler available from the Tox21 Toolbox, 
we extracted toxicity data for each of the selected PFAS tested with 68 
available assays by uploading the CAS registry number of these PFAS. 
We used the point-of-departure method to describe the toxicity of the 
PFAS (value range of log10(M)*(-1)) (Wang, 2018). A value of 1e-4 
means there is inconclusive evidence for toxicity. A value of 0 means a 
chemical is inactive in the assay tested. The higher the value is, the more 
potent/toxic a chemical is.

Step 3: Proteomics and mediation analysis

To test the genetic targets identified in the previous computational 
toxicology analysis (Step 2), we used proteomics data to perform 
mediation analysis in the associations between PFAS and sleep outcomes 
identified in Step 1 (association study).

We used the Proximity Extension Assay (PEA) technology coupled 
with next-generation sequencing (NGS) readout on Illumina instruments 
through Olink® to measure proteins in plasma. Briefly, PEA technology 
by Olink uses pairs of antibodies linked to unique DNA oligonucleotides 
to detect target proteins. When antibodies bind to a protein, their oli-
gonucleotides are brought into proximity, allowing DNA polymerase to 
extend one oligonucleotide using the other as a template. The resulting 
DNA is amplified and sequenced using NGS on Illumina instruments, 
enabling highly sensitive and specific quantification of multiple proteins 
simultaneously (Haslam et al., 2022; Petrera et al., 2021). At baseline, 
we used Olink® Explore 384 Cardiometabolic I (n = 384) to measure the 
concentration of proteins in plasma among all participants. At 
follow-up, we used both Olink® Explore 384 Cardiometabolic I and 
Inflammation Panel I (n = 768) for all participants. Protein columns 
with over 50 % of the observations below limit of detection (LOD) were 
moved (n column removed = 38 at baseline and 63 at follow-up). Data 
values below the LOD were reported for all samples by Olink. Raw 
protein concentration was then log2 transformed.

We selected proteins coded from genes identified in CTD (Step 2). We 
conducted multiple independent mediation analyses (“mediation” 
package in R) to assess the mediating role of each of these proteins in the 
association between individual PFAS and sleep (Tingley et al., 2014). 
The mediation analysis was done separately for baseline and follow-up 
participants. We estimated average direct effect (ADE), average causal 
mediation effect (ACME), and total effect. We included mediation results 
which showed consistent direction of estimates for ADE, ACME, and 
total effect. We controlled for the same covariates in the mediation 
analysis as in the cross-sectional analysis and the same covariates were 
controlled for in both the mediator model and outcome models. We did 
not adjust for multiple comparisons given that individual hypotheses 
were generated for each selected gene/protein based on computational 
toxicology analysis.

Results

Study population description

Table 1a shows the characteristics of the study participants at 
baseline and follow-up. The mean age of the study participants at 
baseline was 19 years old and the mean age at follow-up was 24 years 
old. Study participants were mostly Hispanic (58 %), had parents’ ed-
ucation above high school (67 %), drank alcohol (70 %), and smoked (63 
%), and had a similar proportion of males and females. There was not 
much difference in the characteristics of the study population between 
baseline and follow-up except that slightly more participants ever drank 
alcohol (p<0.01) and HEI was slightly lower at follow-up than baseline 
(p=0.008). The average follow-up time was 4.02 years (SD: 1.07 years). 
Table 1b shows the baseline and follow-up characters only among those 
who were re-examined and Table 1c shows the comparison of baseline 
characteristics between those who were re-examined and those who 
were lost to follow-up.

Participants slept on average 8.04 (SD: 1.49) hours at baseline and 
6.86 (SD: 1.16) hours at follow-up. The average sleep disturbance score 
at follow-up was 48.02 (SD: 7.44) and the average sleep impairment 
score was 50.36 (SD: 9.07). The sleep duration at baseline was some-
what correlated with sleep duration at follow-up (Intraclass correlation 
coefficients with average fixed raters: 0.38, p=0.019). Sleep duration at 
follow-up was negatively correlated with sleep disturbance score and 
sleep-related impairment score (Pearson r=-0.26, p=0.02; r=-0.28, 
p=0.02, respectively).

Plasma level concentrations of each PFAS chemical as well as the 
cutoff values for each tertile are presented in Supplemental Table 3. We 
observed higher concentrations of PFOS, PFOA, and PFHxS among 
participants at baseline, and PFAS levels were reduced overall at follow- 
up except for PFDA (See Supplemental Table 4). Supplemental Table 5 
also shows plasma levels of PFAS by ethnicity and sex. Most of the 
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chemical levels were the same across ethnic groups and sex. PFOS and 
PFOA baseline were higher in White than in Hispanic participants (mean 
[SD] for PFOS: 3.81 [1.66] vs 3.57 [1.76] ng/mL and for PFOA: 1.56 
[0.50] vs 1.35 [0.46] ng/mL) and the similar difference was observed for 
PFAS measured at follow-up.

Step 1: Association study

Fig. 2 shows that one tertile increase in PFDA at baseline was asso-
ciated with an average of 0.39 h of less nightly sleep at baseline (95 % CI: 
-0.73, -0.05 h per one tertile increase, FDR-p value: 0.20), and a similar 
relationship was observed for PFHxS and PFOA at follow-up and shorter 
sleep duration at follow-up (PFHxS: -0.39 [-0.72, -0.05] hours per one 
tertile increase, FDR-p value: 0.11; PFOA: -0.32 [-0.63, -0.01] hours, 

FDR-p value: 0.11). PFAS mixture was suggestively associated with 0.59 
and 0.40 h of reduced sleep at baseline and follow-up (-0.59 [-1.24, 
0.06] and -0.4 [-0.81, 0], respectively). As shown in Fig. 3, only PFOS 
was suggestively associated with insufficient sleep (<7 h) at follow-up 
(OR [95 % CI]: 2.25 [1.04, 4.89] hours, FDR-p value: 0.28). Fig. 4
shows that, at follow-up, PFOS was associated with a higher level of 
sleep disturbance and sleep-related impairment (beta [95 % CI]: 2.99 
[0.67, 5.31], FDR-p value: 0.10; 3.35 [0.51, 6.2], FDR-p value: 0.10, 
respectively). PFDA was associated with a higher level of sleep distur-
bance (beta [95 % CI]: 2.05 [-0.01, 4.12], FDR-p value: 0.19). Full 
summary statistics are shown in Supplemental Tables 6 to 8.

Based on the longitudinal analysis using GEE model shown in Sup-
plemental Table 9, only PFOA at baseline was suggestively associated 
with reduced sleep duration over time but the negative effects of PFOA 
at baseline on sleep were reduced over time (main effect: beta [95 %CI]: 
-0.35 [-0.74, 0.03]; interaction term with time: 0.11 [0.02, 0.20]). The 
results were very similar when using linear mixed model (See Supple-
mental Table 10).

There were no differences in the associations between PFAS and 
sleep outcomes by race/ethnicity or sex (See Supplemental Tables 11 
and 12).

When we additionally adjusted area deprivation index, the effect 
estimates were fairly similar to our main analysis although only PFDA 
was significantly negatively associated with sleep duration at baseline 
(See Supplemental Tables 13 and 14).

When we additionally adjusted season, the effect estimates were 
similar to our main analysis (See Supplemental Tables 15 and 16).

Step 2: Computational toxicology analysis

In our computational toxicology analysis, we selected four PFAS: 
PFDA, PFOA, PFOS, and PFHxS based on their associations with any 
sleep outcome in the association study. Through screening in CTD, we 
identified 161 genes associated with both sleep-wake disorder and 
PFDA, 583 for PFHxS, 3981 for PFOA, and 7231 for PFOS (See Fig. 5). 
Among these marker and non-marker genes, PFOS, PFOA, and PFDA 
were inferred to have associations with sleep-wake disorders through 
marker genes of sleep-wake disorder including IL1B, POMC, BHLHE41, 
and CHRNB2. These PFAS predominantly increase the expression of the 
IL1B gene, and the secretion of proteins produced from the IL1B gene 

Table 1a 
Characteristics of study population at baseline and follow-up.

Characteristic Baseline (N =
136)

Follow-up (N 
= 84)1

p 
value2

Race/ethnicity n (%)   0.78
White  49 (36 %) 30 (36 %) 
Hispanic  79 (58 %) 47 (56 %) 
Other  8 (5.9 %) 7 (8.3 %) 
Male Sex n (%) 75 (55 %) 41 (49 %) 0.44
Age (years) Mean 

(SD)
19.44 (1.30) 23.96 (0.81) < 0.01

Parental education above 
high school

n (%) 91 (67 %) 57 (67 %) 1.00

Healthy Eating Index Mean 
(SD)

53.38 
(13.26)

49.37 
(12.58)

0.03

Missing  13 1 
Never Smoking n (%) 50 (37 %) 31 (37 %) 1.00
Never Drinking n (%) 41 (30 %) 10 (12 %) <0.01
Self-perceived physical 

activity
Mean 
(SD)

6.30 (1.99) NA NA

Missing  9  
Physical Activity  

based on metabolic 
equivalents per hour

n (%)   NA

Low (≥1.5 to 2.99)  NA 16 (19 %) 
Medium (3 to 5.99)  NA 21 (25 %) 
High (≥6)  NA 47 (56 %) 
Duration of nightly sleep 

(hours)
Mean 
(SD)

8.04 (1.49) 6.86 (1.16) < 0.01

Not Enough Sleep (<7 h) n (%) 26 (19 %) 29 (35%) < 0.01
Sleep Disturbance3 Mean 

(SD)
NA 48.02 (7.44) NA

Sleep Impairment3 Mean 
(SD)

NA 50.36 (9.07) NA

1 76 were followed again at this visit and 8 had their first visit at this visit.
2 Wilcoxon rank sum test was performed for continuous variables and Pear-

son’s Chi-squared test was performed for categorical variable.
3 Sleep disturbance measures problems with falling and staying asleep and 

sleep-related impairment measures daytime sleepiness, difficulties waking up, 
and their impact on mood and behavior.

Table 1b 
Sub-cohort with both baseline and follow-up data (n=76).

Characteristic Baseline Follow-up p 
value1

Age (years) Mean 
(SD)

19.45 
(1.20)

23.95 
(0.80)

<0.001

Healthy Eating Index Mean 
(SD)

54.66 
(13.15)

49.97 
(12.80)

0.008

Never Smoking n (%) 51 (67 %) 46 (61 %) 0.4
Never Drinking n (%) 25 (33 %) 7 (9.2 %) <0.001
Duration of nightly sleep 

(hours)
Mean 
(SD)

7.97 (1.55) 6.94 (1.14) <0.001

Not Enough Sleep (<7 h) n (%) 16 (21 %) 23 (30 %) 0.2

1 Wilcoxon rank sum test was performed for continuous variables and Pear-
son’s Chi-squared test was performed for categorical variable.

Table 1c 
Baseline characteristics of study population that were and were not lost to 
follow-up.

Characteristic Baseline (N =
76)

Follow-up (N 
= 60)

p 
value1

Race/ethnicity n (%)   0.5
White  28 (37%) 21 (35%) 
Hispanic  42 (55%) 37 (62%) 
Other  6 (7.9%) 2 (3.3%) 
Male Sex n (%) 36 (47%) 39 (65%) 0.04
Age (years) Mean 

(SD)
19.45 (1.20) 19.43 (1.42) 0.8

Parental education above 
high school

n (%) 53 (70%) 38 (63%) 0.4

Healthy Eating Index Mean 
(SD)

54.69 
(13.24)

51.34 (13.18) 0.2

Missing  1 12 
Never Smoking n (%) 51 (67%) 35 (58%) 0.3
Never Drinking n (%) 25 (33%) 16 (27%) 0.4
Self-perceived physical 

activity
Mean 
(SD)

6.36 (2.08) 6.22 (1.86) 0.4

Missing  4 5 
Duration of nightly sleep 

(hours)
Mean 
(SD)

7.97 (1.55) 8.14 (1.42) 0.5

Not Enough Sleep (<7 h) n (%) 16 (21%) 10 (17%) 0.5

1 Wilcoxon rank sum test was performed for continuous variables and Pear-
son’s Chi-squared test was performed for categorical variable.
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while decreasing the expression of POMC, BHLHE41, and CHRNB2 
genes (See Supplemental Table 17).

There were 4135 enriched GO terms associated with PFOS, 3406 
with PFOA, 1016 with PFDA, and 909 with PFHxS in CTD. Among those 
terms, PFOS and PFOA are associated with four sleep-related GO terms 
including circadian behavior, circadian regulation of gene expression, 
circadian rhythm, and regulation of circadian rhythm while PFDA and 
PFHxS were only associated with circadian rhythm (See Supplemental 
Table 18).

In Tox21, PFDA, PFOA, and PFOS were screened for their toxicity 
using 68 different assays and PFHxS was not screened by Tox21. Fig. 6
depicts the toxicity level for the four included PFAS. All included PFAS 
increased activity of the human Nrf2 transcriptional factor, which is a 
biomarker for oxidative stress. These PFAS also all decreased the activity 
of the human estrogen receptor alpha transcriptional factor, a biomarker 
for sex hormone homeostasis. PFOA increased the activity of the human 
peroxisome proliferator-activated receptor (PPAR) delta transcriptional 
factor, a biomarker for lipid homeostasis, and increased PPAR gamma 
transcriptional factor activities.

Additionally, PFDA can increase activity in estrogen-related re-
ceptors (sex hormone). PFOS showed both mitochondrial toxicity by 
increasing mitochondrial membrane permeability and developmental 
toxicity by decreasing the activity of Transforming Growth Factor-β 
(TGF-β). A full description of the toxicity level of each PFAS and their 
associated assays are included in Supplemental Table 19.

Step 3: Proteomics and mediation analysis

Four PFAS (PFDA and sleep duration at baseline, PFOA and sleep 

duration at follow-up, PFOS and sleep disturbance and sleep-related 
impairment at follow-up, and PFHxS and sleep duration at follow-up) 
were further included in the mediation analysis using proteomics data. 
From the potential target genes (Step 2), we explored mediation path-
ways using 11 proteins for PFDA, 42 for PFHxS, 246 for PFOA, and 327 
for PFOS, based on the availability of proteomics data.

Our analysis revealed that corticosteroid 11-beta-dehydrogenase 
isozyme 1 (HSD11B1) mediated 37 % of the total effect of PFOA on 
sleep duration at follow-up. The total effect of PFOA on sleep duration 
was estimated as beta [95 % CI]: -0.33 [-0.68, 0.07], with an ACME of 
beta [95 % CI]: -0.14 [-0.27, -0.03] for HSD11B1 (See Supplemental 
Table 20).

Shown in Supplemental Tables 21 and 22, we observed that 
cathepsin B (CTSB) mediated the association between PFOS and sleep 
disturbance (ACME: 1.36 [0.04, 4.42]) and the following proteins 
mediated the association between PFOS and sleep-related impairment: 
interleukin-6 receptor subunit beta (IL6ST) (ACME: 1.95 [0.34, 4.23]), 
dickkopf-related protein 3 (DKK3) (ACME: 1.65 [0.04, 3.96]), ectonu-
cleoside triphosphate diphosphohydrolase 5 (ENTPD5) (ACME: 1.37 
[0.05, 3.08]), scavenger receptor cysteine-rich domain-containing 
group B protein (SSC4D) (ACME: 1.76 [0.19, 4.91]), and tyrosine- 
protein kinase receptor (TYRO3) (ACME: 1.83 [0.06, 4.84]).

None of the identified proteins mediated the associations between 
PFDA and PFHxS and sleep durations. Full summary statistics are 
included in Supplemental Tables 23 and 24.

Discussion

On April 10, 2024, EPA announced the Maximum Contaminant 

Fig. 2. Point estimates and 95 % confidence interval of the mean difference in nightly sleep duration (hours) per tertile increase in PFAS measured baseline (A) or 
follow-up (B).
*We controlled baseline covariates (race/ethnicity, sex, parental education, age, physical activity, cigarette smoking, alcohol drinking, HEI) when assessing outcomes 
measured at baseline, and time-fixed covariates (race/ethnicity, sex, parental education) and covariates (age, physical activity, cigarette smoking, alcohol drinking, 
HEI) measured at follow-up for outcomes measured at follow-up. We additionally controlled the time to follow-up visits when assessing sleep outcomes measured at 
follow-up.
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Levels (MCLs) for PFAS including PFOA, PFOS, PFHxS, PFNA, and 
HFPO-DA with individual MCLs, and PFAS mixtures and the National 
Academies of Sciences, Engineering, and Medicine recommended clin-
ical guidance for patients with simple additive sum of serum PFAS levels 
of MeFOSAA, PFHxS, PFOA, PFDA, PFUnDA, PFOS and PFNA (Guidance 
on PFAS Exposure, Testing, and Clinical Follow-Up, 2022). Therefore, 
understanding the health impact of these PFAS is urgently needed. While 
PFAS have been extensively studied and linked to various health out-
comes, only a limited number of studies have explored their impact on 
sleep health (Bell et al., 2021; Wallace et al., 2023). Sleep health plays a 
crucial role in maintaining overall human health, spanning across 
multiple bodily systems, and is especially important for neurological and 
metabolic function (Dutil et al., 2018; Iranzo and Santamaria, 2015; 
Palagini et al., 2022). Our current study employs a comprehensive 
approach by integrating data from a prospective cohort study involving 
young adults, information from two toxicology databases, CTD and 
Tox21, and proteomics data collected from the study participants. Our 
study revealed that PFDA, PFOA, and PFHxS were associated with 
shorter sleep duration while PFOS was associated with higher scores of 
sleep disturbance and sleep-related impairment. The following compu-
tational toxicology analysis suggests genes that are associated with these 
PFAS, and sleep-wake disorders, and these genes are used to select 
proteins for additional mediation analysis. Our mediation analysis 
showed several metabolic and immune function-related proteins medi-
ated the association between these PFAS and sleep outcomes. Our 
approach can improve the inferential power of either association study 
or computational toxicology analysis, and better inform the targeted 
mediation analysis of molecular pathways for testing hypotheses that 
are driven by existing literature.

Our results are consistent with previous studies conducted in infants, 
children, adolescents, and pregnant women and we included a summary 
table of previous studies in Supplemental Table 25. For instance, a study 
involving 4,127 pregnant women in China found that individual PFAS 
was associated with an increased risk of sleep disturbance, lower sleep 
efficiency, and shorter sleep duration across three trimesters. Moreover, 
PFAS mixtures were linked to poor sleep quality and the use of sleep 
medicine (Huang et al., 2022). Our analysis of the PFAS mixture showed 
a suggestive reduction of sleep duration and an increase in the level of 
sleep disturbance and sleep-related impairment. However, we may lack 
the statistical power to detect the mixture effect that was statistically 
significant. In addition, other studies involving infants and 4-year-old 
girls indicated that prenatal exposure to PFAS was associated with an 
elevated risk of sleep disturbance (Huang et al., 2023; Xie et al., 2022). 
One previous study in Belgium also showed PFAS were associated with 
day-time sleepiness among adolescents (van Larebeke et al., 2022).

Conversely, a recent study using data from NHANES spanning from 
2005 to 2014 did not identify any association between PFAS and sleep 
health. It even revealed an inverse association between PFAS mixtures 
and sleep disorders (Guo et al., 2023). These findings contradicted those 
of another study conducted by Shiue et al. using NHANES data, which 
identified specific PFAS such as 2-(N-Methyl perfluorooctane sulfona-
mido) acetate (MeFOSA) and perfluorobutanesulfonic acid (PFBS) as 
being associated with worse sleep outcomes (Shiue, 2017). Given that 
the NHANES study population represents the general U.S. population, 
with a median age of approximately 45 years, it is plausible that the 
effects of PFAS on sleep outcomes may not be as evident as in historically 
marginalized populations. Our study, conducted in young adults aligns 
with the findings in pregnant women, infants, and children (Choi et al., 

Fig. 3. Point estimates and 95 % confidence intervals of the odds ratio of insufficient sleep (less than 7 h) per tertile increase in PFAS measured baseline (A) or 
follow-up (B).
*We controlled baseline covariates (race/ethnicity, sex, parental education, age, physical activity, cigarette smoking, alcohol drinking, HEI) when assessing outcomes 
measured at baseline, and time-fixed covariates (race/ethnicity, sex, parental education) and covariates (age, physical activity, cigarette smoking, alcohol drinking, 
HEI) measured at follow-up for outcomes measured at follow-up. We additionally controlled the time to follow-up visits when assessing sleep outcomes measured at 
follow-up.
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2024; Huang et al., 2023, 2022; Xie et al., 2022).
The age group our study focused on, young adults (age 19 to 24), 

offers a unique time window for interventions including the removal of 
PFAS exposures to prevent the long-term health impacts of disrupted 
sleep due to PFAS exposure. Our study also fills the gap of literature in 
PFAS and sleep research by studying young adults. Unlike young chil-
dren or teens, young adults’ sleep habit is less structured and less 
dependent on the parents, which allows for variability in sleep behavior 
for studying impact of PFAS on sleep in this age group. Future studies 
should aim to validate potential effect modification by age group to 
understand the mixed results for PFAS and sleep health and refine more 
precise windows of susceptibility.

Mostly long-chain PFAS including PFOA, PFOS, and PFDA was 
associated with shorter sleep duration or worse sleep quality except for 
PFHxS, and evidence was less clear based on chemical group (carboxylic 
or sulfonic acid). It is important to note that only a few short-chain PFAS 
were quantified in our study and concentrations of these short-chain 
PFAS were less than long-chain PFAS. Previous studies suggested 
mixed results for the toxicity of these short-chain PFAS in comparison to 
long-chain PFAS. For example, among sulfonic acid, developmental 
neurotoxicity was higher as chain length increased but not for devel-
opmental toxicity based on Zebrafish model (Gaballah et al., 2020). 
Therefore, PFAS chain-length could matter more for neurotoxicity 
leading to greater sleep disruption. It is also likely that these short-chain 
PFAS had less time to accumulate in the blood and therefore, the asso-
ciated health effect may not be evident. Short-chain and ultrashort chain 
PFAS are now dominant in the indoor home environment (Zheng et al., 
2023). In addition, PFOS has a longer half-life compared with other 
PFAS (Li et al., 2018), which could lead to prolonged health effects and 
PFOS. PFOS may also have a greater ability to penetrate BBB and dys-
regulate the brain system more than other PFAS (Hu et al., 2023; Wang 

et al., 2010; Xie et al., 2024). Therefore, PFOS may be more important 
for sleep health.

It is interesting to note that the effect of PFAS, specifically PFOA, is 
reduced over time and our results indicated that short-term exposure 
may be more important for sleep health. As described in our longitudinal 
analysis, the effect of PFOA measured at baseline on sleep duration 
reduced over time while PFOA measured at follow-up was associated 
with shorter sleep duration. The half-life of PFOA is about 3.5 years (Li 
et al., 2018) and our follow-up time is on average 4 years. Therefore, the 
effect of PFOA may not be evident at the time of follow-up but more 
recent exposure to PFOA still has an impact on sleep duration. There-
fore, policies to address PFAS exposure should be considered with more 
timely urgency to better address health consequences that occur more 
proximally to exposure assessment timing.

The analyses conducted in the CTD have provided suggestive evi-
dence linking PFOS, PFDA, and PFOA to sleep-wake disorders through 
the involvement of specific genes, primarily through the IL1B gene. The 
IL1B gene plays a crucial role in producing the IL-1B protein, which is a 
key player in the inflammatory response. Mutations in cytokine genes, 
including IL1B, have been associated with short sleep duration and sleep 
disturbance in previous studies (Alfaro et al., 2014; Illi et al., 2012). 
Furthermore, the interconnection between sleep and the immune system 
has long been recognized, making the inflammatory response a highly 
plausible pathway between PFAS and sleep (Besedovsky et al., 2019; 
Irwin, 2019).

Although we did not directly observe the mediating role of IL1B, we 
found several immune system-related proteins mediating the association 
between PFOS and sleep-related impairment including IL6ST, SSC4D, 
and TYRO3 (Cardoso et al., 2021; Lu and Lemke, 2001, p. 3; Unver and 
McAllister, 2018). One Mendelian randomization study suggested that 
IL6 signaling is the causal link between chronic inflammation and sleep 

Fig. 4. Point estimates and 95% confidence intervals of mean difference in sleep disturbance (A) and sleep-related impairment scores (B) per tertile increase in PFAS 
at follow-up.
*We controlled time-fixed covariates (race/ethnicity, sex, parental education) and covariates (age, physical activity, cigarette smoking, alcohol drinking, HEI) 
measured at follow-up for outcomes measured at follow-up.
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duration (Iakunchykova et al., 2024). Proteins coded from SSC4D acts as 
a pattern recognition receptor for pathogens and involve in the devel-
opment of the immune system and regulation of both innate and adap-
tive immune responses (Cardoso et al., 2021). TYRO3 is a member of the 
TAM family of transmembrane receptor tyrosine kinases and is respon-
sible for many biological processes including immune regulation (Smart 
et al., 2018). TYRO3 is predominantly expressed in nervous system 
which makes the link between TYRO3 and sleep more likely although no 
previous study has assessed the link between TYRO3 and sleep directly. 
However, one recent study showed that TYRP3 can promote the func-
tional maturation of glutamatergic synapses, which are the main excit-
atory synapses in the brain and is linked to sleep (Vogt et al., 2024). 
Therefore, our mediation analysis provided further support for the im-
mune system-mediated pathway between PFAS and sleep health.

Both CTD and Tox21 suggest that PFAS may be linked to poor sleep 
health through their influence on metabolic function. Specifically, our 
analysis identifies the involvement of PPAR pathways, particularly 
PPAR γ signaling pathways, as potential mechanisms of PFAS toxicity. 
PPAR γ, for instance, is mostly expressed in adipose tissue and plays a 
role in lipid metabolism, insulin sensitization, and glucose metabolism 
(Ahmadian et al., 2013). Notably, PFOA exhibited toxicity in PPAR γ 
pathways indirectly through PPAR delta pathways based on Tox21 
screening. Insulin resistance is a major disease phenotype in type 2 
diabetes mellitus (T2DM) (Olefsky and Saltiel, 2000), and emerging 
evidence suggests that sleep disorders are highly prevalent among in-
dividuals with T2DM (Khalil et al., 2020). Our mediation analysis pro-
vided support for this hypothesis by showing that HSD11B1 mediates 
the association between PFOA and sleep duration. HSD11B1 can control 
local glucocorticoid levels by catalyzing the intracellular reduction of 
inactive cortisone to active cortisol, a ligand activating glucocorticoid 
receptor, and is thus important for glucose metabolism, T2DM, and 
obesity (Chapman et al., 2013; do Nascimento et al., 2015). The exact 
roles of PPAR γ and HSD11B1 in the association between PFAS and sleep 

deserve further mechanistic studies.
Both CTD and Tox21 did not indicate direct neurotoxicity of PFAS. In 

CTD, PFDA and PFOA did not show an inferred association with sleep 
disorders through genes such as CHRNA4 and SLC6A3, which are pri-
marily related to neuronal function or neurotransmitters (Díaz-Otero 
et al., 2008; Dyck et al., 2005; Greenwood et al., 2012). Similarly, Tox21 
indicated that PFAS did not exhibit neurotoxicity through assays tar-
geting acetylcholine esterase (AChE) receptors, which are crucial for 
various brain functions, including memory, attention, and learning (Li 
et al., 2022). However, direct toxicity (i.e., acting as an agonist or 
antagonist for neurotransmitter receptors) may not be necessary for 
PFAS to impact brain health. In addition, Tox21 also did not test any 
other neurotransmitter receptors including hypothetical targets such as 
dopamine and glutamate receptors.

Since PFAS may cross BBB (Cao and Ng, 2021), PFAS can induce 
oxidative stress, which is supported by CTD pathway enrichment anal-
ysis, in the brain or induce neuroinflammation which can damage 
neurons leading to neurological outcomes like poor sleep health. Our 
mediation analysis showed that CTSB proteins mediated some of the 
total effects between PFOS and sleep disturbance. CTSB is a lysosomal 
protease and experiment evidence suggests that CTSB can increase 
oxidative stress, neuroinflammation, and neuronal apoptosis and is 
related to multiple neurological disorders (Ni et al., 2022; Pǐslar and 
Kos, 2014). Inhibition of CTSB expression may be a new candidate for 
drug discovery to mitigate the impact of PFAS on sleep.

Our study had several strengths. First, our novel framework provided 
plausible biological mechanisms that would justify the associations be-
tween PFAS and sleep. Our study was the first study include omics 
biomarkers and computational toxicology approaches to understand the 
mechanisms of PFAS-associated sleep problems. In addition, our medi-
ation was informed by computational toxicology analysis which limited 
the possibility of chance findings/false positive results. Our PFAS data 
were measured in two time point as well as sleep durations which 

Fig. 5. Screening of potential genetic target shared by PFAS identified in the epidemiological study and sleep-wake disorder in the comparative toxicogenomics 
database (CTD).
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allowed for two cross-sectional analyses and longitudinal analysis of 
PFAS on sleep. Our study had well characterized covariates that mini-
mized the risk of confounding as well as residual confounding due to 
misclassified confounders. Selection bias was less like since participant 
characteristics were fairly similar between those who were lost and 
those who remained in the cohort. Lastly, our study filled the gap on 
PFAS and sleep research by focusing on young adults while previous 
studies focused on infants, children, pregnant women and mid-life 
adults as shown in Supplemental Table 25.

Our study had some limitations. First, in our association study, our 
study’s sample size is limited and therefore, we might not capture the 
association between some PFAS and sleep outcomes. Our results should 
be interpreted with caution and further studies with larger sample sizes 
are needed to confirm our findings. However, Figs. 2 to 4 suggest that 
the overall effect estimates are largely consistent across all PFAS and all 
sleep outcomes, which increased the validity of our statistically signif-
icant findings. Second, since our study population was young adults with 
a history of overweight or obesity, there might be a limit on the 
generalizability of our results. However, it is important to understand 
the effect of chemical pollutants in susceptible populations as the effect 
may be more evident in subpopulations due to effect measure modifi-
cation. Third, our sleep outcomes were self-reported and thus are prone 
to misclassification. It is important to point out that previous studies 
suggest some comparability between subjective and objective measures 

of sleep and self-perceived sleep measurements may also reflect the 
quality of their sleep than subjective measures (Cudney et al., 2022; 
O’Sullivan et al., 2023). Since study participants did not know their level 
of chemical exposure nor did the study itself reveal the hypothesis of the 
association between chemical pollutants and sleep when they reported 
their sleep outcomes, the potential misclassification is likely to be 
non-differential and thus bias our results towards the null. In addition, 
we could have residual confounding due to misclassification of potential 
confounders (i.e., self-reported physical activity) and uncontrolled 
confounding by other socioeconomic status variables such as family 
income. However, we controlled for a similar set of potential con-
founders as previous studies (Guo et al., 2023; Huang et al., 2022). In 
addition, cigarette smoking and alcohol drinking were used as binary 
variables (ever/never) due to small sample size and therefore, misclas-
sification was possible, leading to either under or overestimation of the 
effect. We also did not control for indoor environment both at dor-
m/apartment and/or at parent’s house including shared bedroom, 
workload of school, lighting which are highly correlated with sleep 
behaviors. However, these activities would less likely influence PFAS 
levels in blood, which would not confound the associations. Lastly, we 
did not adjust for co-exposure to other environmental pollutants such as 
noise, PM2.5 which would confound our observed associations. For 
example, air pollution is an important risk factor for shorter sleep 
duration and worse sleep quality (Liu et al., 2020). Higher PFAS levels 

Fig. 6. Toxicity of selected PFAS by cell type labeled with assay target.
*Each point represents individual assay and is labeled with its assay target **Activity level is measured using the point-of-departure method to describe the toxicity of 
the PFAS (value range of log10(M)*(-1))
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may be associated with higher air pollution due to common industrial 
activities. We might overestimate the effect of PFAS on sleep. There is a 
need to assess the co-occurrence pattern between PFAS and other 
environmental factors.

There are also limitations in data mining in toxicological databases. 
As we briefly mentioned, there could be possible publication bias. There 
are large discrepancies in the number of existing publications across the 
selected chemicals. For example, PFOA, with references of 466 studies, 
is the most studied across all selected PFAS compared to PFDA with 
references of 138 studies. The lack of studies could either indicate a lack 
of positive findings or a lack of general interest in studying certain 
chemicals. In addition, only four chemicals are screened for toxicity in 
Tox21 and the cell lines available in Tox21 are mostly liver, kidney, and 
cancer cells, which further limits its ability to infer the neurotoxic effect 
of PFAS, and available assays for testing neurotoxicity are only targeting 
AChE receptors. It is therefore not recommended to make inferences on 
the neurotoxicity of PFAS using Tox21 results. However, combining 
evidence from two toxicological databases as well as epidemiological 
evidence may help with strengthening the results from either an asso-
ciation or computational toxicology approach.

Our mediation analysis is informed by both the association study and 
computational toxicology analysis, which greatly strengthened the hy-
pothesis testing and inferential power. However, the mediation analysis 
also has several limitations. We did not have the same set of proteins 
measured between baseline and follow-up which limits the analysis 
conducted among baseline participants and may explain why we did not 
observe any proteins mediating the association between PFDA and sleep 
duration at baseline. Lastly, our mediation analysis was conducted cross- 
sectionally, and we are not able to tell the exact temporal relationship 
among PFAS, proteins, and sleep outcomes. PFAS may influence sleep 
first and then lead to disrupted protein levels in the study participants. 
Future studies need to consider this temporal relationship between sleep 
and disrupted protein levels.

Sleep is crucial for brain function and thus improving sleep health 
can help to reduce future risks of mood-related disorders, neuro-
developmental problems, and neurodegeneration. Understanding the 
association between PFAS and sleep health may lead to new insight into 
the mechanisms of how PFAS influences neuronal function in the human 
brain. Our study has identified several individual PFAS for their asso-
ciations with poor sleep health and several potential molecular mech-
anisms through computational toxicology analysis confirmed using 
mediation analysis with proteomics data. Future large-scale epidemio-
logical studies and mechanistic studies are needed to confirm our find-
ings. In addition, sleep health of young children might be more 
vulnerable to chemical pollutants like PFAS due to higher dose of PFAS 
per body weight and developing body and defense system (Rappazzo 
et al., 2017) and therefore, future studies should consider studying the 
impact of PFAS in different age groups including younger children.
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