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ABSTRACT 

Introduction: Epidemiological studies have revealed that Middle Eastern countries have 

the highest incidence of Vitamin D deficiency with severe complications. However, the 

impact of Vitamin D polymorphisms and the performance of polygenic models have been 

studied primarily in European populations, with little knowledge in the Middle Eastern. A 

nonsense variant in the uncharacterized SDR42E1 gene has been identified recently as a 

potential contributor to Vitamin D deficiency through genomic research. 

Methods: I conducted the first genome-wide association study to identify genetic 

determinants of Vitamin D levels in Middle Eastern populations using whole-genome and 

whole-exome sequencing approaches in 6,047 and 199 discovery subjects from Qatar and 

Lebanon, respectively. I also functionally and structurally characterized the novel 

SDR42E1 by generating stable CRISPR/Cas9-mediated genome editing in the selected 

HaCat and HCT116 human cell models. 

Results: I discovered a novel variant, rs2298850 (P-value = 1.71 × 10-08, effect size (Beta) 

= -0.1285), in a known locus of the group-specific component gene (GC) in the Qatari 

population. I confirmed the association of Vitamin D to several variants, including 

rs11723621 (P-value = 1.93 × 10-08, Beta = -0.12574) and rs4588 (P-value = 8.06 × 10-08, 

Beta = -0.1188) in the GC. I further identified a novel suggestive variant, rs141064014 on 

chromosome 7 in the MGAM gene (P-value of 4.40 × 10−06) and rs7036592, on 

chromosome 9 in the PHF2 gene (P-value of 8.43 × 10−06). A GWAS meta-analysis 

combining results from the previous European data and Qatari cohort identified novel 

variants in known loci, including rs67609747 and rs1945603 on chromosome 11. Many 

variants were replicated through combining elderly Lebanese data and the largest European 

GWAS from the UK Biobank, including rs2725405 on chromosome 17 in the SLC38A10 
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gene (P-value of 3.73 x 10-08). Finally, a low predictive performance of European ancestry-

derived polygenic scores was observed when applied to the Middle East individuals.  

I determined a cytoplasmic localization of SDR42E1 protein in the cutaneous HaCat and 

intestinal HCT116 cells. Significant gene associations between the SDR42E1 and genes 

involved in Vitamin D pathways were identified, including alkaline phosphatase, placental 

type (ALPP), ATP-binding cassette C1 (ABCC1), solute carrier 7A5 (SLC7A5). Gene 

regulators of cellular senescence and cancer prognosis were found to be significantly 

affected after the knockout and knockout of SDR42E1 in HaCat and HCT116 cells. 

Significant alterations in Vitamin D metabolites, including 24R-24,25-Dihydroxyvitamin 

D, and lipid membrane components, including phosphatidylcholine, were observed in the 

absence of SDR42E1 from the HaCat cells. Cellular viability also decreased significantly 

after the knockout of SDR42E1 in the HCT116 cells.  

Conclusion: These results emphasize the diversity in the genetic architecture and its impact 

on preventive and precision medicine across different populations. My findings offer novel 

perspectives on the physiological mechanisms and genetic factors contributing to the 

variation of Vitamin D levels in Middle Eastern populations. The comprehensive 

understanding of the molecular mechanisms underlying Vitamin D metabolism and 

associated health conditions garnered from my study of the novel SDR42E1, and its variant 

constitutes a foundation for future research and translational applications in clinical 

precision medicine. 
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CHAPTER 1: INTRODUCTION 

1.1 Vitamin D 

Vitamin D is a vital fat-soluble nutrient that plays a crucial role in maintaining bone 

mineralization and overall health (Jiajue et al., 2019). The widespread occurrence of low 

levels of Vitamin D in many regions of the world has garnered significant attention from 

researchers, medical professionals, and public health due to its connections with various 

illnesses. Deficiency in Vitamin D can lead to loss of bone density, which can contribute 

to rickets in children and osteomalacia and osteoporosis in adults (Jiajue et al., 2019).  

For a long period of time, it was thought that the only role of Vitamin D was in maintaining 

healthy bones. Late research suggests that insufficient Vitamin D levels may contribute to 

the development of certain types of cancer, such as colon, breast and prostate cancer (K. 

Amrein et al., 2020). Low levels of Vitamin D have also been linked to an increased risk 

of diabetes, cardiovascular disease, autoimmune diseases, such as multiple sclerosis and 

rheumatoid arthritis, and infections, such as tuberculosis (K. Amrein et al., 2020). Further 

investigations are required to gain a more comprehensive understanding of the impact of 

Vitamin D at the molecular level on health and illnesses beyond its traditional role in 

regulating calcium levels.  

Recent technological advancements, specifically the use of next-generation 

deoxyribonucleic acid (DNA) sequencing in functional genomics (Hypponen, 

Vimaleswaran, & Zhou, 2022), allow for high-scale studies that aim to address questions 

related to DNA-protein interactions with more precision and detail than ever before. In this 

chapter, I will examine the existing research on the sources of Vitamin D, its metabolism, 

functions, and deficiency. I will focus on work that provides insight into the genomic 

associations with Vitamin D. 
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1.1.1 History and Evolutionary Perspective of Vitamin D 

The research on childhood illness rickets resulted in identifying the precursor secosteriod 

hormone known as Vitamin D. Rickets is a pediatric orthopedic disorder characterized by 

stunted growth, skeletal deformities, bony protuberances on the rib cage (sometimes 

referred to as a "rachitic rosary"), and either bowed or knock-kneed legs due to decreased 

skeletal mineralization (M. F. Holick, 2004). The disease was first described by the English 

physician Francis Glisson in 1650 (Rajakumar, Greenspan, Thomas, & Holick, 2007). 

Rickets became a widespread rampant disease among European children during the 

Industrial Revolution (M. F. Holick, 2004; Palm, 1890). In the early 19th century, healthcare 

providers began successfully preventing and treating children from rickets with liver oil 

from fish, and later by exposing them to sunlight or lamps emitting mercury vapor (Eliot, 

1925; Huldschinsky, 1919). However, the specific cause of rickets, a deficiency of Vitamin 

D, was discovered in the early 20th century (Rajakumar et al., 2007).  

The detection was made by a number of different clinicians, including Edward Mellanby, 

who showed in 1919 that rickets could be caused by a lack of Vitamin D (Mellanby, 1919), 

and later on, the discovery of the active form of Vitamin D was made by Adolf Windaus in 

1922 (Wolf, 2004). The discovery that Vitamin D can be synthesized through exposure to 

sunlight led to significant improvements in the management of rickets. The implementation 

of fortification programs with Vitamin D  was the first successful strategy in decreasing the 

prevalence of rickets, with the United States saw a nearly complete eradication of the 

disease by the 1960s. Currently, it is mandatory to fortify margarine and infant formula 

with Vitamin D in the United Kingdom (Rajakumar et al., 2007). 

From an evolutionary perspective, it is believed that the ability to synthesize Vitamin D 

from sunlight has been an essential adaptation for many species. Some studies suggest that 

organisms older than 500 million years old, such as phytoplankton (Emiliania huxleyi) and 
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diatoms (Skeletonema menxelii), have the ability to synthesize Vitamin D from ergosterol 

or Vitamin D2 (Michael F Holick, Pang, & Schreibman, 1989). However, the exact way 

Vitamin D evolved and functions in non-vertebrates still need to be fully understood. 

Conversely, Vitamin D is crucial in regulating the intracellular and extracellular calcium 

and phosphorous levels in vertebrates, which helps develop skeletal and other metabolic 

functions properly (Cutie, Payumo, Lunn, & Huang, 2020).  

It is hypothesized that Vitamin D and its precursors in humans and animals of the ancient 

time have had a role in the mechanism of protection against ultraviolet (UV) radiation upon 

exposure to sunlight (Ames, Grant, & Willett, 2021; Michael F Holick et al., 1989). 

However, this adaptation decreases the capacity of Vitamin D synthesis from sunlight.  

Noteworthy, Vitamin D deficiency is more common in individuals living in regions with 

less sunlight exposure, such as in high latitudes, darker skin pigmentation, elderly, and 

overweight or obese people (Ames et al., 2021). This phenomenon is believed to be an 

evolutionary adaptation to these individuals.  

Additionally, studies in molecular biology have shown that the genetic machinery 

necessary for Vitamin D synthesis is highly conserved across many different species, 

indicating its long-standing biological importance (Azarpeykan et al., 2016; Girgis et al., 

2019). Overall, Vitamin D synthesis through sunlight exposure is a critical adaptation that 

has allowed organisms to survive and thrive in various environments throughout 

evolutionary history. 

1.1.2  Sources of Vitamin D 

Vitamin D is produced in the skin when exposed to UVB light from the sun at wavelengths 

of 290 to 315 nanometer (K. Amrein et al., 2020). However, the amount of solar UVB 

radiation that is necessary to produce the appropriate amount of Vitamin D can vary 

depending on factors, such as time of day, season, and latitude. In such cases of limited 
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sunlight, the most effective way is to obtain an adequate level of Vitamin D through dietary 

sources. The Institute of Medicine in the United States suggests a daily intake of 600-800 

International Units (IU) of Vitamin D for adults, while the Endocrine Society recommends 

a higher dose of 1500-2000 IU per day (K. Amrein et al., 2020). 

The primary sources of exogenous Vitamin D are Vitamin D2 (ergocalciferol) and Vitamin 

D3 (cholecalciferol). Vitamin D2 can be found in plant-based sources such as mushrooms, 

fortified bread and cereals, and certain types of fish. Sun-dried mushrooms are an excellent 

plant source, providing around 1600 IU of Vitamin D2 per 3.5 ounces (Duffy et al., 2018).  

Vitamin D3 can be found in animal-based foods, such as egg yolks, fatty fish, and fish oils. 

Among the best natural sources of Vitamin D3 are fatty fish, such as fresh wild salmon, 

which provides 600 to 1000 IU per 3.5 oz serving, and fish oils, such as cod liver oil, which 

provides 400 to 1000 IU per 1 tablespoon (Duffy et al., 2018).  

The two forms are similar but have a slight structural difference. Vitamin D2 has a methyl 

group at carbon 24 and a double bond between carbon 22 and 23, which makes it less 

effective than D3 (Heaney, Recker, Grote, Horst, & Armas, 2011; Shieh et al., 2016). Due 

to this, Vitamin D3 has become more preferred for use in supplements and fortified foods 

to treat and prevent deficiency. However, there is no differentiation observed between 

Vitamin D2 and D3  in the literature, and both forms are referred to simply as "Vitamin D." 

1.1.3 Synthesis and Metabolism of Vitamin D 

1.1.3.1 Cutaneous Synthesis of Vitamin D 

Vitamin D is produced in the skin of humans and animals through a series of chemical 

reactions that involve different proteins (Figure 1). The first step is converting a cholesterol 

derivative, called 7-dehydrocholesterol (7-DHC), abundant in lipid membranes of skin 

cells, through a UVB photoisomerization to pre-Vitamin D3 (Prabhu, Luu, Sharpe, & 

Brown, 2016).  
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Figure 1 Vitamin D Synthesis and Metabolism. 

The pathway starts with the cutaneous synthesis of Vitamin D3 from 7-dehydrocholesterol 

upon solar ultraviolet B (UVB) exposure. 7-dehydrocholesterol can also be synthesized 

from 8-dehydrocholesterol or cholesterol by EBP or DHCR7, respectively. Vitamin D can 

also be absorbed through intestinal food by ABCB1. The conversion to 25-hydroxyVitamin 

D, commonly used for Vitamin D's status analysis, occurs in the liver by CYP27A1, 

CYP2R1, CYP2J2, or CYP3A4 and then activated to 1,25-dihydroxyVitamin D by renal 

CYP27B1 or stored in the body for later use. The active form regulates gene expression 

through the nuclear Vitamin D Receptor (VDR)/ Retinoid-X Receptor (RXR) for overall 

health before being inactivated by several enzymes, e.g., CYP24A1, and excreted. (?) 

Indicates other enzymes involved in Vitamin D metabolism but has not been discovered 

yet. 2D chemical structures obtained from PubChem: https://pubchem.ncbi.nlm.nih.gov. 

Abbreviation: DHCR7, 7-Dehydrocholesterol reductase; ABCB1, ATP-binding cassette 

transporter B1; CYP, Cytochrome P450. For a complete listing of the SNPs associated with 

each gene, please refer to Table 2. Generated with BioRender.com.
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