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Perspective 

 

Unlocking Insights: Navigating COVID-19 Challenges and Emulating Fu-

ture Pandemic Resilience Strategies with Strengthening Natural Immunity 

Abstract: 

The original COVID-19 vaccines, developed against SARS-CoV-2, initially mitigated hospi-

talizations. Bivalent vaccine boosters were used widely during 2022-23, but the outbreaks 

persisted. Despite this, hospitalizations, mortality, and outbreaks involving dominant mutants 

like Alpha and Delta increased during winters when the population's vitamin D levels were at 

their lowest. Notably, 75% of human immune cell/system functions, including post-vaccina-

tion adaptive immunity, rely on adequate circulatory vitamin D levels. Consequently, hypo-

vitaminosis compromises innate and adaptive immune responses, heightening susceptibility 

to infections and complications. COVID-19 vaccines primarily target SARS-CoV-2 Spike 

proteins, thus offering limited protection through antibodies. mRNA vaccines, such as those 

for COVID-19, fail to generate secretory/mucosal immunity-like IgG responses, rendering 

them ineffective in halting viral spread. Additionally, mutations in the SARS-CoV-2 binding 

domain reduce immune recognition by vaccine-derived antibodies, leading to immune eva-

sion by mutant viruses like Omicron variants. Meanwhile, the repeated administration of bi-

valent boosters intended to enhance efficacy resulted in the immunoparesis of recipients. As 

a result, relying solely on vaccines for outbreak prevention became less effective. Dominant 

variants exhibit increased affinity to angiotensin-converting enzyme receptor-2, enhancing 

infectivity but reducing virulence. Meanwhile, spike protein-related viral mutations do not 

impact the potency of widely available, repurposed early therapies, like vitamin D and iver-

mectin. With the re-emergence of COVID-19 and impending coronaviral pandemics, regula-

tors and health organizations should proactively consider approval and strategic use of cost-

effective adjunct therapies mentioned above to counter the loss of vaccine efficacy against 

emerging variants and novel coronaviruses and eliminate serious adverse effects. Timely im-

plementation of these strategies could reduce morbidity, mortality, and healthcare costs and 

provide a rational approach to address future epidemics and pandemics. This perspective crit-

ically reviews relevant literature, providing insights, justifications, and viewpoints into how 

the scientific community and health authorities can leverage this knowledge cost-effectively. 
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Lay Abstract: 

The original COVID-19 vaccines effectively reduced hospitalizations but faced major chal-

lenges during winter outbreaks, leading to increased mortality, particularly in individuals with 

low vitamin D levels. Adequate vitamin D is critical for most human immune functions, in-

cluding post-vaccination adaptive immunity. Hypovitaminosis compromises immunity and 
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heightens susceptibility to infections. COVID-19 mRNA vaccines predominantly target 

SARS-CoV-2 Spike proteins, providing limited antibody protection. Moreover, it provides no 

mucosal immunity, causing a failure to prevent the spread of the virus. In addition, mutations 

in the SARS-CoV-2, like Omicron, reduce vaccine recognition by antibodies (i.e., immune 

evasion). Besides, repeated bivalent vaccine boosters weaken the immune system.  

 Consequently, exclusive reliance on vaccines for outbreak prevention became inef-

fective. In contrast, Spike protein mutations do not impact the efficacy of repurposed (already 

approved generic) early therapies like vitamin D and ivermectin. Regulators and health or-

ganizations should consider cost-effective adjunct therapies to address emerging variants and 

enhance vaccine efficacy in the future. Timely implementation has the potential to reduce 

morbidity, mortality, and healthcare costs, providing a rational, cost-effective approach with 

no adverse effects for future pandemics. 

 

1.0  Introduction: 

 The rapid development of messenger RNA (mRNA)-technology-based COVID-19 

vaccines within six months in 2020 marked a significant technological milestone during the 

COVID pandemic.1 ten-billion-dollar grant from United States taxpayers facilitated its devel-

opments. Traditionally, vaccines aim to halt disease transmission. However, mRNA-based 

COVID-19 vaccines, while effective in reducing hospitalizations, did not prevent the spread 

of SARS-CoV-2.2,3 Breakthrough infections in fully vaccinated individuals result in peak viral 

loads comparable to those in unvaccinated individuals, allowing both groups to continue 

transmitting SARS-CoV-2 to their contacts.2 The Omicron variants, characterized by multiple 

mutations in the receptor binding domain, exhibit significant immunological differences from 

the original SARS-CoV-2 4. These variants demonstrate reduced lethality but with increased 

infectivity (high Ro),5 and immune evasion against vaccine-derived antibodies. 

 Despite the three years of the declared pandemic,6 the potential for coronaviruses to 

mutate and evade immunity has been well-known for years.7 Global health authorities, how-

ever, primarily advocated reliance on vaccines to control pandemic outbreaks without offering 

broader strategies or recommending alternative adjunct therapies for SARS-CoV-2 control 

and eradication.6,8 The focus has been primarily on patented COVID-19 vaccines, antiviral 

agents, and monoclonal antibodies authorized under Emergency Use Authorization (EUA).9  

 In the USA and other countries, patented agents for COVID-19 received swift authori-

zation from the Food and Drug Administration (FDA). Notably, one critical legal requirement 

for EUA approval and maintenance is the absence of alternative agents for disease prevention 

or treatment.9 The approvals of COVID-19 vaccines and antiviral agents under EUA were 

expedited and released to the market without undergoing rigorous efficacy and longer-term 

adverse effect testing.9,10 Despite the prompt approval of the patented COVID-19 vaccines, 

anti-viral agents, and monoclonal antibodies by regulators, a global urgency to identify and 

approve a genuinely compelling, cost-effective agent against SARS-CoV-2 failed to materi-

alize.11-13 

  The paper delves into aspects concerning COVID-19 outbreaks in industrialized 

countries and explores alternate options, specifically the potential use of vitamin D for future 

pandemic control. The author underscores concern (unlike traditional vaccines) regarding the 
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predominant reliance on vaccines, pointing out their limitations in preventing infection and 

transmission. The potential use of globally available cost-effective repurposed agents, such as 

vitamin D and ivermectin, is evaluated. The manuscript also emphasizes the significance of 

recognizing natural immunity and advocates for considering alternative therapeutic ap-

proaches for the future.  

 A thorough search was conducted across various research databases using keywords 

related to COVID-19 vaccines, mRNA vaccines, complications, immune evasion, vaccine ef-

ficacy, alternative therapies, vitamin D, and ivermectin. Combining keywords narrowed the 

number of relevant manuscripts to a manageable quantity. The search encompassed databases 

such as PubMed, Medline, Web of Science, and EMBASE, focusing on clinical studies, ran-

domized controlled clinical trials (RCTs), prospective clinical studies, as well as original and 

review articles, following a methodology similar to that employed for systematic or narrative 

reviews.14 References were selected based on their relevance to the topic and incorporated 

into the manuscript after reviewing them. 

1.1 Fundamentals of COVID vaccines 

 The mRNA and adenovirus vector-based COVID vaccines were designed based on 

the viral Spike protein sequences. mRNA-based immunizations utilize single-stranded mRNA 

to encode the desired antigen. The objective was to prompt the recipient's immune system to 

produce viral Spike proteins of SARS-CoV-2, comprising 1273 amino acids, to develop anti-

bodies against the virus.15 In different vaccines, the modified Spike protein structures or se-

lected portions of the viral sequences are not identical. As a result, the antigen expression and 

antibodies generated from mRNA and genetic adenovirus-vector vaccines differ.15 

 COVID-19 vaccines were developed using different platforms, including live atten-

uated viruses, inactivated vaccines, and non-replicating viral vectors—RNA and DNA. 

mRNA vaccines were created using DNA templates encoding the Spike protein. These mRNA 

particles are encapsulated in a lipoprotein-based carrier to safeguard them from degradation 

and facilitate rapid cell entry.16 mRNA molecules enter cells and undergo translation upon 

injection via the intramuscular route.17 Once inside host cells, mRNA generates peptides with 

Spike protein sequences recognized by the body as foreign antigens, activating humoral re-

sponses and prompting B-cells to transform into memory cells. Viral antigens are presented 

on antigen-presenting cells, triggering immune responses. Upon secondary exposure to a 

Spike protein antigen, memory B cells activate protective mechanisms, including heightened 

synthesis of neutralizing antibodies.18 

 The S1 subunit of the SARS-CoV-2 spike protein contains the receptor binding do-

main (RBD) along with the N-terminal domain, which is responsible for binding it to the 

angiotensin-converting enzyme-2 (ACE-2). The S2 subunit houses the fusion and transmem-

brane proteins, enabling viral attachment to the host cell.19 After the virus enters host cells, it 

undergoes uncoating and initiates the transcription and translation of mRNA, leading to viral 

assembly. The resulting exocytosis of viral particles from host cells into the bloodstream al-

lows them to infect other cells. 

 Unlike vaccines developed through traditional approaches, the mRNA vaccines (i.e., 

Pfizer and Moderna) and adenovirus vector-based COVID-19 vaccine (J&J) did not 
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incorporate core viral elements or the complete inactivated virus.20,21 Immunity induced 

through traditional methods uses core components, which tend to have a broader spectrum 

and longer-lasting immune protection.22,23 In contrast, the immunity triggered by the mRNA 

COVID-19 vaccine is more focused, targeting a part of the Spike protein sequence. Conse-

quently, mRNA vaccines do not produce antibodies against co-components, like nucleocap-

sids and co-proteins.24,25 

 Random mutations occur, affecting the binding domains of the SARS-CoV-2 genome, 

which may modify the affinity to the membrane-bound ACE-2 receptor. Such mutations can 

modify the virulence and the potential for immune evasion.24 However, dominant variants 

increase infectiousness as indicated by higher Ro values (replication rate) while exhibiting 

reduced lethality and developing an increased ability to evade immune detection.26 The viru-

lence of the newer strains of SARS-CoV-2 strain is comparable to influenza,27 resulting in a 

decreased need for hospitalization. Additionally, over the past years, the widespread availa-

bility of free Rapid Antigen (RAT) kits (intended for screening tools and not to make diagno-

sis) has led to a sizable portion of COVID-19 testing being conducted at home or health-

related stores. Consequently, positive SARS-CoV-2 data might not have been consistently 

captured in general reporting or hospital statistics, potentially causing authorities to overlook 

or ignore outbreaks. 

1.2 Basic mechanisms involved with gene-directed vaccines 

 The fundamental mechanism underlying mRNA vaccine technology involves deliv-

ering nucleic acid molecules that encode the target antigen, specifically the coding region of 

the Spike sequences of SARS-CoV-2. These strategically designed sequences utilize host cells 

to produce foreign mRNA, expressing and amplifying the intended antigen—producing spike 

protein sequences through ribosomes.28 This intricate process entails synthesizing antigen se-

quences into corresponding proteins, with some degrading into smaller antigenic peptides by 

proteasomes.25 However, the reported critical adverse effects and the dispersion of Spike pro-

tein-related mRNA, as suggested by mRNA scatter, indicate that the distribution of this ma-

terial is not limited to immune cells.29,30 

 Once in circulation, antigens interact with immune cells that recognize antigens, such 

as Toll-like receptor-4, which is distributed extensively in the body. In contrast to traditional 

protein-based vaccines, mRNA (or DNA) conveys the message to host cells to generate and 

express Spike proteins on their membrane. The soluble form of these proteins is then shed 

into circulation to alert the immune system.5 Consequently, a broad range of cells in the body 

is exposed to the Spike protein, leading to the reported adverse effects.24 

 The antigenic peptides are presented to CD8+ cytotoxic T cells via the major histo-

compatibility complex (MHC) class I molecular pathway as endogenous antigens, activating 

cell-mediated immune responses.25 Additionally, these antigenic peptides, derived from toxic 

Spike proteins generated by mRNA, are released into the extracellular environment, including 

the circulation.31 They are taken up by antigen-presenting cells (APCs) and presented to CD4+ 

T cells through MHC class II molecules as exogenous antigens. This initiates cellular immune 

responses through cytokines, activating B cells to produce antibodies and triggering humoral 

immune responses.32 
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1.3 The development of COVID-19 vaccines and new antiviral agents 

 Novel COVID vaccines against the SARS-CoV-2 virus were developed swiftly, cir-

cumventing standard regulatory and safety requirements through EUA.31 Launching them in 

late 2020 was considered a significant achievement.33 The development of this innovative 

technology for SARS-CoV-2 vaccines was financially supported by the United States tax-

payer grant to Big Pharma, benefitting multiple major pharmaceutical companies capable of 

large-scale vaccine manufacturing.34 Additional financial subsidies were extended in 2021 to 

develop antiviral agents. In addition, pharmaceutical companies received special exemptions 

and fast-track approvals (under the EUA Act) from the FDA to develop, test, and approve 

these vaccines.9 

 The fallacy emerged when vaccine companies and leading health authorities asserted 

that these vaccines prevented SARS-CoV-2 transmission and propagation while withholding 

primary data. The primary reason most governments purchased expensive COVID-19 vac-

cines and people believed this later became a falsehood. This contributed to a broader public 

distrust and misconceptions about vaccination and directions by health organizations like the 

WHO.35 Large health agencies propagated vaccines as the sole solution to the pandemic, 

prompting many governments to coerce and mandate them.36 Despite knowing about previous 

coronaviral infections, vaccine companies failed to design COVID-19 vaccines properly. In-

stead, they expedited their production by taking shortcuts in vaccine development and test-

ing.31 This further added to the public distrust. The failure to address and mitigate adverse 

outcomes proactively and disclose critical information that these vaccines do not prevent in-

fections further eroded their credibility and trust, which later affected their uptake.25,37 

 The EUA and the favorable pharmaceutical agreements with the FDA allowed Big 

Pharma to bypass standard safety checks in COVID-19 vaccine trials, which would have oth-

erwise taken several years.38 Conversely, regulators and leading health authorities chose not 

to authorize using already approved, generic, cost-effective, repurposed agents.39 Instead, they 

penalized physicians who used them. Relaxing of regulations includes otherwise mandatory 

toxicity studies (such as precluding genotoxicity studies), relaxation of standards of conduct-

ing and gathering data, the number of RCTs to confirm their efficacy, and the need for rigor-

ous short-term and long-term adverse effect testing and reporting.31  

 Based on the EUA, regulators also lowered the threshold for experimental and un-

tested methods in generating mRNA vaccines and human testing, later expanding and repli-

cating them to new antiviral agents and monoclonal antibodies.40 It became evident that if 

regulators were to approve any other agent for preventing or treating SARS-CoV-2, the tem-

porary EUA approval of vaccines and antiviral agents would revoked automatically—a criti-

cal reason for the non-approval of any generic agents for the prevention or treatment of SARS-

CoV-2. 

1.4 Regulatory categorization of COVID-19 vaccines  

 According to the definitions provided by the European Union (Section IV), New Zea-

land, and other regulatory bodies, Pfizer-BioNTech and Moderna's mRNA vaccines were cat-

egorized as gene therapies.41 Additionally, AstraZeneca and J&J's adenoviral (nucleic acid) 

vector (injections) were identified as modified gene therapies.41 These vaccines were designed 
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to synthesize large quantities of viral Spike proteins in vivo in the recipients, subsequently 

stimulating memory and plasma cells and leading to the generation of antibodies.42 Therefore, 

it is unsurprising that the adverse effects on vulnerable people following the SARS-CoV-2 

virus and COVID-19 vaccines are similar. 

1.5 Glimpse of virus and vaccine-related adverse effects 

 With billions of dollars in grant funding and impunity against adverse effects, Big 

Pharma was incentivized by the FDA to bring the mRNA vaccine to market quickly.35 Besides, 

based on agreements and urgency, regulators increased tolerance of big pharma companies 

taking shortcuts and maintained the secrecy of the approval process.31 In conjunction with the 

FDA, Big Pharma refused to share methodology, process, vaccine-related primary RCT data, 

and adverse effects, using the pretense of patent protection. The vacuum of data availability 

to independent scientists from pharma and the FDA was striking and unprecedented.43 Addi-

tionally, the subsequent acceptance of bivalent COVID-19 vaccines was without RCT (data), 

as well as the vaccination of children and young adults.44 Vaccine companies provided neither 

safety data related to these groups nor supporting tangible benefits vs. potential harm.45-47  

  COVID-19 vaccines have been associated with broader and serious adverse ef-

fects,45,48 primarily affecting the cardiovascular and pulmonary systems.49-51 Similar adverse 

complications have been reported following SARS-CoV-2 infection.48,52,53 They also linked 

to sudden death syndrome,54 a multisystem inflammatory syndrome in adults 55 and children,56 

as well as adverse outcomes in pregnancy,57 myocarditis,56,58 pericarditis,46 clotting abnor-

malities (hemagglutinin),59 and various other adverse effects in cardiological, hematologi-

cal,60 dermatological,61,62 ocular,63 and neurological systems.53,64  

 Inference: The unexpected and broad range of spike protein-mediated adverse effects 

began to be reported after the approval of COVID-19 vaccines 52. These severe adverse effects 

from COVID-19 vaccines affirmed insufficient testing or withholding of adverse reaction data 

and insufficient follow-up duration before their broader clinical use was approved.65 Data 

confirmed systemic adverse effects (e.g., pulmonary, cardiovascular, and neural effects) stem 

from disseminating toxic Spike Proteins throughout the body. A phenomenon was observed 

following SARS-CoV-2 infection and after COVID-19 vaccines. 52,53,65 

1.6 The progress of vaccines and their efficacy  

 With a broader uptake, WHO and government sponsorships, vaccines showed prom-

ise in early 2021 by decreasing the severity of SARS-CoV-2 infection, resulting in fewer hos-

pitalizations. However, no reduction in deaths has been demonstrated.33 However, towards 

the end of 2021, vaccine efficacy declined. In response, mRNA companies such as Pfizer and 

Moderna developed a hybrid solution—creating bivalent vaccines designed to cover the anti-

genic sites of emerging Omicron variants.66,67 Despite assurances from vaccine pharmaceuti-

cal companies and leading health authorities regarding high efficacy and safety and the em-

phasis on vaccine reliance, opting to rely solely on vaccines to overcome the pandemic ap-

pears to have been a mistake.68 Such has also led to vaccine hesitancy.68 

 The diminishing efficacy of vaccines, especially bivalent boosters, coupled with the 

lack of an alternative plan or effective armamentarium, failed to control COVID-19 with 
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increasing virus outbreaks in 2022, noticeable in industrialized countries with high vaccine 

uptake.69 Despite optimistic expectations, outbreaks persisted regardless of the vaccination 

status in the community.70 This article critically examines the advantages and disadvantages 

of COVID-19 vaccines and the potential alternative adjunct therapies based on publicly avail-

able information. The data suggested that despite widespread vaccination efforts, the inci-

dence of infections and hospitalizations from SARS-CoV-2 experienced a resurgence and 

continued, particularly during the winter of 2022 and 2023.35,53,71 

 There is a cyclic decline in the serum 25(OH)D concentration population during win-

ter.72 This is attributed to a lack of sunlight (i.e., exposure to UVB rays) and inadequate dietary 

intake and supplementation.73,74 Hypovitaminosis D weakens the immune system,5 increasing 

the vulnerability to respiratory viruses: flu viruses, SARS-CoV-2, etc. These viruses spread 

primarily through airborne mechanisms.75,76 This phenomenon explains the seasonal escala-

tions of respiratory viral illnesses like flu, respiratory syncytial virus, and SARS-CoV-2 dur-

ing winter  (Figure 1).77 people were infected predominantly in indoor gatherings (inhalation 

of air with high viral density), and dry air facilitated the spreading of the virus. This behavior 

change following prolonged curfews and lockdowns had made hypovitaminosis D worse.77,78 

The failure to effectively control SARS-CoV-2 in 2020/21 and mismanaged pandemic guid-

ance resulted in COVID-19 becoming endemic by early 2023.79  

< Figure 1 > 

 

Figure 1: Winter-associated low serum 25(OH)D levels in the population increase suscepti-

bility to respiratory viral infections, including those caused by SARS-CoV-2 (modified from 

Wimalawansa, SJ, 2022).77 

2.0 SARS-CoV-2 mutations, vaccine uptake, and viral transmissions  

 The efficacy of COVID-19 vaccines resulted in fewer hospitalizations from SARS-

CoV-2 in early 2021 and faded by 2022, primarily due to emerging viral mutations and their 
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escape from neutralizing antibodies.33 Since both mRNA and adenoviral vector COVID-19 

vaccines failed to generate mucosal immunity.2,80,81 This was particularly notable as SARS-

CoV-2 viruses and their variants predominantly spread via airborne transmission.2,82 As a re-

sult, there were no significant differences in infectivity rates between vaccinated and unvac-

cinated individuals.81 Furthermore, new variants like Delta and Omicron continually acquired 

new Spike protein mutations,83 rendering them more contagious than the original SARS-CoV-

2,2,84 but less lethal,85 aiding the spread of the virus.  

2.1 Viral mutations, immune evasion, and lack of effect on viral transmission 

 Evolving dominant mutated virus increased the affinity of ACE-2-RBD of the virus, 

enhancing the infectivity.86 Some viruses become dominant, others develop immune evasion 

capabilities,6,7 rendering them resistant to vaccines,10 and antiviral agents.87 New Omicron 

variants have higher R0 values (the average number of people getting infected from a per-

son),26 indicating increased infectiousness,88 but generally, they became less lethal than the 

original SARS-CoV-2 and the Delta variant.26,76 The loss of vaccine effectiveness due to mu-

tagenesis and the resultant immune evasion and disordered and/or conflicted policies have 

contributed to the persistence of SARS-CoV-2 outbreaks in 2021 and 2022, becoming en-

demic. The following sections discuss these aspects and propose cost-effective measures to 

overcome outbreaks.  

2.2 Viral loads and SARS-CoV-2 transmission 

 As previously discussed, several studies have highlighted the absence of a significant 

difference in SARS-CoV-2 nasal viral loads between vaccinated and unvaccinated individu-

als.2,64,89 This includes the presence of the virus in the nasopharynx, even in asymptomatic 

cases.2,80,81 Consequently, fully vaccinated and unvaccinated individuals contribute equally to 

the spread of the disease.89 While some variations in reporting exist due to technological dif-

ferences, the consensus is that, unlike traditional vaccines, COVID-19 vaccines do not prevent 

disease transmission—from human to human. As a result, mandates for vaccinations have 

been deemed irrelevant 90 and unjustified.91  

 The above points are supported by studies conducted in Israel, showing COVID-19 

breakthrough transmission from fully vaccinated healthcare workers to patients.91,92 various 

studies have consistently demonstrated no significant difference in the peak viral titers in the 

upper airways and the culturable viruses between vaccinated and unvaccinated individu-

als.2,80,81,92 This evidence challenges the justification for policies mandating compulsory vac-

cination and the dismissal of unvaccinated healthcare workers,90 frontline workers, and mili-

tary personnel.2,80 

2.3 Disparity to access vaccines—Industrial nations vs. developing countries  

 Global distribution of COVID-19 vaccines faced a significant disparity. Wealthier 

nations secured preferential status through multi-billion-dollar pre-marketing contracts and 

pre-payments by mRNA vaccine companies—Pfizer and Moderna- with and payments to 

mRNA vaccine companies. This resulted in receiving the vaccine supplies first.93 In contrast, 

the rollout of vaccines to developing countries faced delays of several months.94 Many of 

these countries struggled to secure a smaller percentage of vaccines needed.  
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 Lack of funds prevented them from purchasing expensive COVID-19 vaccines or 

antiviral agents in sufficient quantities, even for their vulnerable populations. In addition, un-

der public pressure, some of these nations had to compete and spend more than the market 

price to acquire COVID-19 vaccines.95 This was escalated because of the lack of raw material 

supply from the West to manufacture vaccines in countries like India.96 This disparity under-

scores the challenges in ensuring equitable access to vaccines worldwide.95  

 The focus of big pharma on enhancing upfront profits created major challenges for 

developing nations, as they lacked the capacity for large pre-payments in (USD) foreign cur-

rencies, making it difficult for them to secure delivery contracts.95 This neglects over four 

billion people in developing nations without having adequate access to vaccines.96 This may 

also contribute to the failure of the development of herd immunity and SARS-CoV-2 infection 

becoming endemic.93 and allow vaccine pharma to raise prices for further vaccines. Conse-

quently, areas like Africa and certain Asian countries were left behind with very low vaccina-

tion rates.94 Ironically, these regions that failed to secure mRNA-based COVID-19 vaccines 

experienced the lowest mortality from SARS-CoV-2.97 The health emergency declared by the 

World Health Organization (WHO) was managed haphazardly, leading to non-transparent 

industry practices and creating loopholes that allowed politicians,90 especially in developing 

countries, to exploit the market for personal gains. 

 Inference: The mistaken premise that the COVID-19 vaccine would stop propagat-

ing SARS-CoV-2 infection drove developing countries to spend precious funds earmarked for 

essential needs like food and medicine to prioritize vaccine purchases. This stretched their 

limited foreign reserves, compromising the purchase of essential goods and oil, leading to 

increased food insecurity.94 The diversion of resources towards vaccine procurement, often at 

exorbitant prices, was influenced by commissions and additional profits for those involved.93 

This financial strain compromised essential services in emerging economies and developing 

countries, highlighting the detrimental impact of poor policy and public health decisions af-

fecting the well-being of their populations.96,98   

 Developing countries, such as Burundi, Haiti, Chad, Ethiopia, Cameroon, Tanzania, 

Mali, etc., with lower vaccination rates (ranging from 0.5 to 5% of the population), experi-

enced notably lower hospitalization and death rates from SARS-CoV-2.93,96 Whereas, coun-

tries like Sri Lanka, faced challenges after paying double the market rate to obtain COVID-

19 vaccines. Poor fiscal policies and decision-making led to the dwindling of their foreign 

reserves and devaluation of currencies. The resulting exchange crisis was exacerbated by un-

wise decisions, such as banning fertilizer and pesticide importation, significantly reducing 

crop output and leading to severe food shortages.95 This crisis, marked by severe shortages of 

essential goods like food, medicine, and fuel, ultimately led to Sri Lanka declaring bankruptcy 

in 2022.99,100  

2.4 Securing COVID-19 vaccines and government mandates to increase uptake 

 Despite efforts in industrialized countries to boost vaccination uptakes through coer-

cive measures like imposing mandates and passports and restrictions for unvaccinated people, 

viral outbreaks persisted, as in most industrialized countries, including the USA.90,101 Inherent 

limitations of COVID-19 vaccines, the inability to stimulate mucosal immunity,51 played a 
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significant role in the viral spread and the failure to achieve herd immunity and eventually 

eliminate SARS-CoV-2.2,80,81 

 Relying solely on vaccines at any cost, many administrations enforced vaccine man-

dates and extended curfews based on the misconception that using vaccination alone will pre-

vent the transmission of SARS-CoV-2.90 This approach neglected cost-effective generics, re-

purposed drugs, and essential traditional public health disease prevention measures. Addition-

ally, governments using their agencies and health authorities utilized Big Tech and mass me-

dia to discredit and discourage the use of already approved and widely available repurposed 

agents, including vitamin D and ivermectin.102,103   

 Inference: The lack of transparency, information censorship, and restricting access 

to scientific publishing prevented healthcare workers and the public from being adequately 

informed about the benefits and drawbacks of vaccines and alternative therapies,101 along with 

their efficacy and adverse effects.104,105 The focus was shifted toward a new vaccination round, 

using bivalent boosters designed for new mutants. However, these booster vaccines were ap-

proved without conducting RCTs.106 Despite these efforts by prominent health organizations 

and Western governments, public skepticism increased with a parallel reduction of vaccine 

uptake in 2022.70 

2.5 Generation of bivalent vaccines and regulatory framework 

 In early 2022, vaccine companies acknowledged the fading efficacy of the original 

COVID-19 vaccine, prompting the development of hybrid bivalent vaccines. These were mar-

keted as an innovative solution against the Omicron variants.1,106 For 100 vaccines, pharma 

emphasized the similarity in the manufacturing process to bypass the need for new RCTs. 

With little transparency and a lack of credible safety data, including genotoxicity and medium- 

to longer-term adverse effects, these were promptly approved by the FDA and other regula-

tory authorities.2,45,122,12391,101 Regulatory approval for mRNA-based booster/bivalent vac-

cines, monoclonal antibodies, and antiviral agents was swiftly granted under the Public Health 

Emergency of International Concern 21 declared by WHO.107,108 This hasty expedited approval 

process facilitated rapid market penetration influenced by governmental measures like booster 

vaccine mandates.  

 Inference: The untransparent collaboration between Big Pharma and regulators, such 

as the FDA, led to a critical error by overlooking efficacy and safety testing for bivalent vac-

cines.66 Approval for commercialization without adequate testing, safety data, and RCT data 

was a significant regulatory oversight akin to coercing parents to vaccinate children. Subse-

quent data revealed that bivalent vaccine boosters had only about a third of the efficacy of the 

original COVID-19 vaccines, but others disagree.109 The new Omicron variants had a sub-

stantial capability for immune evasion against bivalent booster vaccines.106 These events have 

contributed to ongoing outbreaks and the pandemic transitioning to an endemic 

state.66,85,110,111 

2.6 Insufficient futuristic thinking and planning  

 The progress of medicine over the last three decades has been remarkable, offering a 

wide range of choices, advanced diagnostic methods, and innovative interventions;112 most 
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recently, the use of artificial intelligence. However, information technologies have outpaced 

practical applications in the medical field. Despite the potential of machine learning and arti-

ficial intelligence,79,113 their integration into medical decisions and policy-making is still in 

its early stages.79,113 This lag in incorporating these technologies has resulted in shortcomings 

in drug and device safety assessments, interactions, and efficacy evaluation.114,115 Conse-

quently, there have been delays in approving drugs, including cost-effective generic agents, 
79,113 and making timely healthcare policy decisions, presenting a significant obstacle to pro-

gress.79,114  

 For instance, since mid-2020, compelling data from multi-disciplinary studies,  

RCTs,116-118 meta-analyses, and extensive database studies have consistently shown the effec-

tiveness of widely available, unpatented agents and micronutrients in enhancing the immune 

system capabilities.5,119,120 These interventions have demonstrated the potential to prevent 

complications and reduce mortality associated with coronaviruses like SARS-CoV-2 

(https://c19early.org/dmeta).97 However, regulatory bodies and prominent health authorities 

have overlooked this evidence. 

2.7 Inherent conflicts of interests 

 Two examples of conflicts of interest are repurposed agents vitamin D,120-122 and 

ivermectin.123,124 In late 2020, each agent had over forty reasonably sized peer-reviewed pub-

lished clinical studies, including RCTs (https://c19early.org).97 By the end of 2022, there were 

over 140. By mid-2023, there were over 250 peer-reviewed publications for each agent.97 In-

depth details of all these publications are available free on one website—https://c19vita-

mind.com.97 Despite this large amount of clinical trial data, regulators and healthcare agencies 

were unwilling to investigate these agents for their efficacy and safety.113 Furthermore, the 

pharmaceutical industry began designing clinical studies and funding for academia to carry 

out and poorly designed and biased studies and publish them via academic institutes. Some 

trials were designed to fail, and others intended to discredit generic agents.102,125  

 The relevant data supporting the efficacy of early interventions had already been pub-

lished, and outcomes were well-known. Therefore, authors should have known a high proba-

bility of failure of outcomes and, thus, harm to subjects when designing those failed clinical 

studies.126,127 Therefore, ethics committees (IRBs) should not have approved such clinical 

studies. 

 Most RCTs mentioned above utilized inappropriate and/or insufficient doses of eco-

nomic agents like vitamin D and ivermectin.128,129,130,131 In some studies, they were adminis-

tered at the wrong frequency or only as a bolus dose,128,129 in severely ill individuals (e.g., in 

ICUs) or late in the course of COVID-19.129,132,133 Others had defective study s designs.130,131 

It is noteworthy that most of these generic therapies are most effective when administered 

early (as possible) as a preventative measure prior to developing complications. Such an ap-

proach is intended to provide either prophylactic treatment to prevent symptomatic disease or 

on admission before complications develop.134  

 These repurposed agents were approved for other conditions, are widely available 

worldwide without a prescription, and are economical. In addition, they have impressive 

safety profiles (refer to section 4.8).97,135,136 As discussed above, the main reason for not ap-

proving these generic agents was the automatic revocation of vaccines, antivirals, and 
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monoclonal antibodies temporarily approved under EUA (i.e., to protect their status) if these 

agents were approved—to protect the approval of the latter for clinical use.79 

2.8 The failure to approve repurposed early therapies 

 Despite four years into the pandemic, regulators have yet to approve any non-patented 

cost-effective therapies for preventing and treating SARS-CoV-2. This narrow perspective 

has resulted in missed opportunities to establish logic-based COVID-19 adjunctive algorithms 

to manage it better using algorithms with complementary therapies, even though it could have 

pejorative connotations in mainstream medicine.79,113 Such could have saved lives instead of 

relying on most countries' recommended supportive and/or wait-and-see strategy in 2020.134 

By mid-2020, substantial published data encompassing over 390,000 individuals (i.e., big data) 

and information on vulnerable patient groups were available.79 Utilization of these would have 

offered insights into early diagnosis, age-sex-specific risks, and cost-effective early use of 

generic agents.113,116 No steps have been taken to integrate this information into clinical prac-

tice. 

  The evidence-based medicine paradigm established by big pharma for drug approvals 

has led regulators to focus solely on pharmaceutical industry-conducted, large, multi-center 

RCTs as the primary (and the only) evidence for testing medical hypotheses for drug approv-

als, which was extended to nutrients like vitamin D.5,137 This preferential approach negatively 

affects the approval process for unpatented and widely available inexpensive agents, such as 

vitamin D and ivermectin for SARS-CoV-2.97 Due to this misconception, well-conducted ex-

tensive observational and ecological studies, along with smaller but well-designed and statis-

tically powered RCTs conducted by sources outside the pharma sector, such as academia, 

were disregarded by regulators in the context of drug approvals. Contrary to this bias, these 

clinical studies are equally valid for understanding causative factors and assessing effective-

ness, even though they may involve generics and nutrient interventions.5   

 Inference: Authorities neglected to employ innovative logical methods, extensive 

data analyses, big-data analysis, and novel machine-learning paradigms for decision-making 

despite the availability of a large set of data by the end of 2020 79,113. Utilizing these ap-

proaches could have provided evidence of the efficacies of vitamin D and ivermectin in mid-

2020, confirming their clinical relevance, consistency, robust dose responses, and inverse cor-

relations between vitamin D status and COVID-19-related outcomes,73 similar to ivermec-

tin.97 Integrating new information and engineering technologies into large clinical study da-

tasets could have minimized biases and guesswork used by health authorities over the past 

three years. The failure to do so resulted in fruitless policies like lockdowns and weak, am-

biguous clinical recommendations, contributing to increased economic disruptions, healthcare 

costs, hospitalizations, intensive care usage, and deaths, especially in high-risk groups.79,113 

2.9 Misinformation and data suppression  

 Throughout the COVID-19 pandemic, there has been a proliferation of misinformation 

by individuals on social media regarding disease prevention and treatment aspects (57). Nu-

merous challenges in accessing authentic information include preventing the dissemination of 

the beneficial effects of vitamin D and ivermectin via scientific articles and reviews. 
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Pharmaceutical companies and governments supported the process sponsored fact-checking 

organizations.138-140 Besides, a coordinated effort by mainstream media and major social me-

dia platforms was used to undermine the use of generics and repurposed medications for 

COVID-19.141-143 Additionally, there had been attempts to divert regulatory attention from 

considering repurposed agents for COVID-19 by presenting sophisticated but irrelevant sta-

tistics instead of focusing on straightforward, traditional, and cost-effective analyses and as-

sessments.144 

 These repurposed agents' effectiveness has been downplayed, and adverse effects have 

been exaggerated,145—designed to undermine the public trust. Such disinformation is defined 

as knowingly sharing false information to cause harm.146 Even some scientific articles initially 

published were later found to contain unintentional misinformation.138,139,141,147 Medical 

boards and councils have inappropriately taken politically-driven disciplinary actions against 

physicians who prescribed these cost-effective medications with good intentions and the best 

judgment to benefit patients.140,143 The usefulness of generic agents like vitamin D, however, 

were included in a few, as in Front Line COVID-19 Critical Care Alliance (FLCCC) protocols 
148 and World Council of Health treatment guidelines.149 Repurposed agents like ivermectin 

(war on ivermectin)141,142,150 have been addressed in detail elsewhere,150,151,119 and can be ex-

plored further on the website https://c19early.org/, which provides published clinical research 

data of all medications tested against SARS-CoV-2 and real-time meta-analyses.97  

 Inference: Special interest groups and patient advocacy groups have propagated contra-

dictory recommendations to favor their position, worsening the confusion and hindering the 

use of repurposed agents and vitamin D.152 Consequently, big pharma and governments ex-

ploit the mass confusion and the lack of unity among scientists to their advantage for market-

ing patented medications, like and vaccines and anti-viral agents.79 Big Pharma has employed 

similar approaches, utilizing their misinformation playbooks.103 

3.0 Controlling the pandemic with vaccines 

 As previously illustrated, vaccines developed against the original SARS-CoV-2 had 

positive effects in 2021, flattening infectious peaks/outbreaks and distributing admissions to 

hospitals and intensive care facilities (ICUs) that reduced the burden.33,153 This reduced the 

overloading of health personnel and facilities, but this advantage diminished toward the end 

of 2021. This was due to the development of immune evasion by dominant SARS-CoV-2 

mutants and the failure of bivalent vaccines.51 Due to the converging viral mutations occurring 

within the RBDs of Spike proteins and the consequent reduced immune recognition, the ef-

fectiveness of bivalent booster vaccines was reduced to below 40%.83  

3.1 Benefits derived from COVID-19 vaccines 

 Despite the failure to prevent the transmission of SARS-CoV-2,2,80,81 published gov-

ernmental data during 2021 indicated that COVID-19 vaccines had an impact on reducing 

hospitalizations.153 However, by early-2022, the hospitalization rates from Omicron variants 

of SARS-CoV-2 were increasing. There were few differences between fully vaccinated and 

boosted individuals and unvaccinated individuals.79 Notably, the definition of fully vaccinated 
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varies from country to country. In the USA, one dose of Janssen (J&J) viral vector vaccine or 

two doses of mRNA COVID-19 vaccine constituted complete vaccination. 

 Several studies have reported the limited capacity and short duration of protective 

immunity 154,155 derived from mRNA COVID-19 vaccines.153,156-158 As a result, the interval 

between vaccine booster doses was reduced from the intended yearly to six months to main-

tain circulating antibody levels.158 However, the ratio of neutralizing antibodies to other anti-

bodies declined, making the response to infection less effective. This decision, however, ig-

nored the importance of T-cell priming and memory cell functions. Besides the short-lived 

immunity,157 the efficacy of vaccines, including the Omicron-specific bivalent vaccines, is 

significantly less than it was against the original SARS-CoV-2 virus.158 

3.2 Fundamentals of controlling a pandemic and expectations 

 During an epidemic or pandemic, an essential public health concept is to prioritize 

the reduction of the incidence (peaks) of infections, i.e., by reducing the transmissibility (Ro) 

and curtailing viral spread from person to person.26 This is vivid with traditional vaccines. An 

effective vaccine is expected to curtail the transmission of viruses or bacteria. SARS-CoV-2 

transmission is primarily airborne, occurring via droplet spread.  

 Wearing facemasks, observing social distancing, avoiding crowded gatherings, and 

maintaining good personal hygiene are typical public health disease-preventive measures used 

against respiratory viral diseases/epidemics. These measures are designed to minimize expo-

sure to high viral loads and curb the spread of the disease, thereby limiting infections and 

ultimately controlling viral transmission, as in the case of SARS-CoV-2. They aim to flatten 

infectious peaks, alleviate healthcare burdens, and eventually facilitate herd immunity.104,159 

However, despite widespread vaccination efforts, these intended protective characteristics 

have not been fully realized. 

 Inference: As with all previous immunizations, the logical process and expected out-

come were that vaccinated individuals would cease becoming infected by others and would 

not transmit the microbes to unvaccinated persons, such as patients. However, neither of these 

promises materialized with COVID-19 vaccines. Despite the false claims by Big Pharma that 

mRNA vaccines prevent the transmission of SARS-CoV-2, institutions like the Centers for 

Disease Control (CDC) in the USA, the World Health Organization (WHO), and prominent 

governments propagated this pharma-derived falsehood to boost vaccine uptake and sales. 

Not until late 2022 did the manufacturers of mRNA COVID vaccines, Pfizer and Moderna, 

acknowledge that their vaccines do not prevent the spread of the disease or reinfection.2  

3.3 Original COVID-19 vaccines reduced hospitalization but failed to stop SARS-

CoV-2 transmission  

 The COVID-19 outbreaks in 2020 and early 2021 primarily impacted specific vul-

nerable groups, especially older individuals with co-morbidities, immune-compromised or 

suppressed individuals, institutionalized persons, and ethnic minorities with darker skin living 

in temperate countries.160 A common denominator among these susceptible groups was hav-

ing a high prevalence of vitamin D deficiency.120,161,162 Given that approximately 75% of im-

mune system activities rely on sufficient vitamin D,73 COVID-19 became a pandemic among 
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those with severe vitamin D deficiency.77 Despite the availability of this critical data, major 

healthcare agencies overlooked it 79 and took no action to advise the population on strength-

ening their immune systems to combat the SARS-CoV-2 virus.79 Consequently, severe hypo-

vitaminosis D persisted and worsened due to prolonged curfews and lockdowns in many coun-

tries.77,78 This contributed to millions developing severe complications requiring hospitaliza-

tion and thousands succumbing to SARS-CoV-2.120   

 Mass-scale COVID-19 vaccination commenced in late 2020, driven by WHO-en-

forced strategies adopted by most governments. The USA initially initiated vaccine mandates, 

which Europe and other nations subsequently replicated without thorough scientific scrutiny. 

They failed to conduct comprehensive independent investigations and adherence to published 

scientific data. Following governmental mandates, industrialized countries achieved success-

ful vaccination coverage ranging from 60 to 80% of their adult populations. 

 Despite the mass-scale vaccination efforts, since early 2022, SARS-CoV-2 outbreaks 

and local epidemics have been resurgent, occurring irrespective of vaccination status. These 

instances have been observed in communities with fully vaccinated, boosted, and unvac-

cinated individuals. Despite widespread media promotion of vaccination, these local epidem-

ics have shown similar spread patterns among vaccinated and non-vaccinated individuals, ir-

respective of factors such as access to healthcare, availability, or per capita spending.2,3,80,81  

3.4 Original SARS-CoV-2 vs. Omicron variants—the status and outbreaks 

 The Omicron variant of SARS-CoV-2 exhibited a rapid spread, surpassing the infec-

tivity of the Delta variant with a doubling of infections every three days. Despite its swifter 

transmission, Omicron presented as milder, parallel to flu or influenza, and displayed different 

symptomatology than the original SARS-CoV-2. Irrespective of the vaccination status, this 

milder nature resulted in healthy individuals typically not requiring hospitalization. However, 

individuals with uncontrolled coexisting co-morbidities and those with severe vitamin D de-

ficiency [serum 25(OH)D concentration less than 12 ng/mL] were still at an elevated risk of 

developing complications and death.160 Unlike earlier SARS-CoV-2 variants like Alpha and 

Delta, the two preceding lineages of Omicron (BQ and XBB) that dominated outbreaks in 

2022/2023 exhibited increased resistance to mRNA-derived neutralizing antibodies. This re-

sistance (immune evasion) was more noticeable with bivalent booster-generated antibod-

ies.82,85  

 New Omicron variants displayed a notable shift in affecting younger age groups com-

pared to the Alpha and Delta variants. This change was attributed to the acquired immune 

resistance of Omicron variants, driven by modified Spike proteins, leading to significant de-

viations in their immune characteristics from the original SARS-CoV-2. This altered immune 

profile contributed to immune evasion against mRNA and adenovirus vector-based COVID-

19 vaccines 163,164 and antiviral agents.87 Consequently, vaccine-derived immunity proved less 

effective in preventing infections caused by new mutants, even with the administration of 

booster doses. 165-167 immunoparesis resulting from repeated booster doses contributed to re-

infections in individuals previously exposed to SARS-CoV-2,2,153 particularly impacting older 

adults.66,158  

 Figure 2 illustrates the antigenic drift from the original SARS-CoV-2 and the Omi-

cron variant to XBB and XBB.1. This suggests that these subvariants behave antigenically 
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distinct or, perhaps, as a new virus compared to SARS-CoV-2.82 This observation may eluci-

date why the bivalent vaccine and monoclonal antibodies fail to recognize new subvariants, 

contributing to the reduced effectiveness of current COVID-19 vaccines and an increased 

occurrence of breakthrough infections and reinfections.168,169  

< Figure 2 > 

 

Figure 2: Compared to pseudo-typed D614G and Omicron subvariants BAs, neutralization 

of Omicron subvariants BQ.1, BQ.1.1, XBB, and XBB.1c, by sera from five different co-

horts—the limit of detection of one hundred (indicated in a dotted line). Values above the 

bold symbols represent geometric mean, ID50 values (details of the experiment are in the 

original manuscript) (from Wang et al., Lancet, 2023).82  

 Inference: Repetitive administration of COVID-19 booster doses further weakened 

the immune system, resulting in diminished responses against pathogenic microbes. This im-

mune suppression, akin to vaccine-acquired immune deficiency syndrome,30 is also called 

immune paresis, a concern that health authorities should have addressed early.  

3.5 Omicron variants and post-COVID syndrome 

 Mutations represent natural biological phenomena that heighten environmental pres-

sures for viral survival. Increased utilization of COVID-19 vaccines, especially among im-

munocompromised individuals and those with vitamin D deficiency, along with administering 

bivalent mRNA vaccine booster doses, offer limited immunity. This may have contributed to 

the rate of developing SARS-CoV-2 viral mutations.84 The dominant variants, such as Delta 

and Omicron, have higher infectivity than the original SARS-CoV-2 as primarily derived 

from the mutations in the RBD region, which increased the affinity to the membrane-bound 

ACE-2 receptors on epithelial cells. However, the resistance to COVID-19 vaccines may also 
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have contributed to it.156,170 Additionally, convergent evolution has led to diverse combina-

tions of mutations in the virus's RBD.83  

 Although the dominant mutants of SARS-CoV-2 exhibit a higher rate of spread (R0) 

in the community than the original SARS-CoV-2 virus,84 the mortality remained low. Never-

theless, the occurrence of the post-COVID syndrome (long-COVID) is similar,153 or even 

higher than those associated with the original virus.171 Due to the uprising and fatigue of the 

public due to enforced restrictions, most countries relaxed public health measures, such as 

wearing facemasks and restrictions on crowded gatherings, way before the WHO’s declara-

tion that the pandemic was over. However, some governments continued to propagate expen-

sive COVID-19 vaccines. The Omicron variant outbreaks and endemic spread were fueled by 

increased local transmission and global travel, dominated by variants like B.1 and XBB mu-

tants, which significantly evade immune recognition by vaccine-derived antibodies.154,163  

 Inference: Globally, few or no new SARS-CoV-2 mutants originate from countries 

or communities with minimal vaccine uptake.70 Most mutants occur in immune-deficient or 

fully vaccinated individuals.82 Moreover, more boosters correlate with an increased likelihood 

of mutations and reinfection.172,173 Conversely, repeated vaccine boosters weaken the immune 

system, making individuals more vulnerable to SARS-CoV-2 mutants,67 reinfections.172,173 It 

also increased the risks for re-infections with mutant viruses and other dormant and commen-

sal organisms, such as Mycobacterium tuberculosis and herpes zoster.174  

3.6 Parallels with Influenza vaccines 

 Each year, the characteristics of influenza viruses change. Consequently, vaccines are 

developed based on predictions of the predominant species in the upcoming winter season. 

However, these predictions are often inaccurate, resulting in flu vaccines being 'generic' and 

not specific to the correct species dominating during the following year. As a result, the effi-

cacy of flu vaccines in preventing symptomatic disease, hospitalization, and deaths remains 

low.12 This low efficacy has led to distrust in the product, and more adults are now reluctant 

to take flu vaccines.70 A similar trend began to emerge in 2022 with SARS-CoV-2.175 Initially, 

the uptake of bivalent vaccines was high, but as emerging data became available, their popu-

lation uptake rapidly decreased despite offering incentives.110,158,175-177   

 Recent scientific reports indicate that booster vaccines are relatively ineffective and 

may not be a solution to control the pandemic (Figure 2).110,158,175-177 Safety concerns regard-

ing serious adverse effects related to COVID-19 vaccines are also growing.21,104,106,111,178 The 

mishandling of COVID-19 by public health authorities has further contributed to the loss of 

public trust. With increased infectivity from new variants and the diminishing efficacy of 

bivalent vaccines coupled with immune evasion by mutant SARS-CoV-2 viruses, controlling 

outbreaks has become challenging, resulting in a transition from a pandemic to an endemic. 

Figure 3 illustrates the effectiveness of mono and bivalent COVID-19 vaccines and their sus-

ceptibility to immune escape. 

< Figure 3 >  
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Figure 3: Absolute effectiveness of vaccines [95% Confidence Intervals (CI) presented in 

parenthesis, in Y-axis] against symptomatic SARS-CoV-2 infection for a single bivalent 

mRNA COVID-19 booster dose given after 2, 3, or 4 doses of monovalent vaccine (no data 

presented for single dose recipients) compared with no booster dose. Data presented by age 

group (X-axis) vs. number of monovalent COVID-19 vaccine doses received. The average 

effectiveness of 24% is presented as a broken horizontal line. The figure was drawn using the 

data from the CDC’s increasing community access to the testing program, USA (Sept.–Nov. 

2022, table 3).179   

 Inference: Research, including data from the CDC (Figure 3), demonstrates a decline 

in vaccine effectiveness against severe COVID-19, particularly after the second booster.110,179 

As the efficacy of COVID-19 vaccines approaches levels comparable to placebos,179 health 

authorities should have explored complementary options to prevent hospitalizations from 

Omicron variants using other means. 

4.0 Development of Mutants and Rationale for Reduced Effectiveness of 

COVID-19 Booster Vaccines 

4.1 Widespread vaccination is associated with increased SARS-CoV mutants 

 Variants such as Alpha, Beta, Delta, and Omicron exhibit mutations, deletions, and 

alterations in the sequence of the NTD antigenic supersite, a larger glycan-free region in the 

spike protein within the viral membrane.156 Deletions in variants B.1.1.523 were identified in 

early 2021, while B.1.617.2 includes the E484K mutation in most variants.82,180,181 The E484K 

mutation is situated within the membrane RBD region, enhancing affinity to ACE-2 receptors 

and modifying immune detection. 

 The E484K mutation was also found in B.1.351 and P.1 variants, reducing vaccine 

efficacy by elevating vaccine resistance. This mutation also diminishes the effectiveness of 

monoclonal antibodies and convalescent plasma therapy, making them ineffective.181 
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Although these new variants evade immunity without increasing virulence, emergent variants 

like BQ.1.1 and XBB1.5 and future variants might lead to increased virulence.87,164,182 Con-

sequently, the potential impact of future mutations should be a significant concern.85  

4.2 Viral infections and vaccinations consume vitamin D 

 The escalation of infection-induced vitamin D deficiency hinders the entry of D3 and 

25(OH)D into target cells, preventing the intracellular production of 1,25(OH)2D in immune 

cells.74,127 This, in turn, disrupts the intracellular autocrine and paracrine signaling functions 

of calcitriol and activation of VDR (CTR) molecules.73,77 Maintaining a consistent D3 and 

25(OH)D supply can overcome this challenge and support a robust immune system. Studies 

have indicated that vaccinating individuals previously infected and recovered does not confer 

additional benefits against SARS-CoV-2 or its variants.183 Furthermore, there is no discernible 

advantage to administering more than one booster shot to individuals fully vaccinated or re-

covered from SARS-CoV-2 infection.167  

 The robust immune responses triggered by SARS-CoV-2 infections and following 

vaccinations increased vitamin D/25(OH)D utilization. Without continuous vitamin D sup-

plementation during an infection, there is a risk of developing or existing vitamin D defi-

ciency. The administration of more vaccines, particularly booster doses, correlates with a 

higher rate of depletion of vitamin D stores in the body and an accelerated reduction in serum 

25(OH)D concentrations.73,184  

 Additionally, zinc and magnesium, which are crucial cofactors for vitamin D's effects 

on VDR/CTR and other immune functions, are also depleted during this process.185 The in-

creased consumption of vitamin D exacerbates insufficiencies in zinc and magnesium.74 De-

ficiencies in these components result in a dysfunctional innate immune system,5 and immune 

paresis,30 contributing to delay in recovery, the spread of microbes, and increased complica-

tions and deaths. Several datasets indicate a positive association between the number of 

COVID-19 booster doses administered in the population or individuals and increased infec-

tion rates (Figure 4).163,166,167,170,186 

< Figure 4 > 
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Figure 4: A Simon-Makuch plot illustrates data from healthcare workers at Cleveland Clinic 

(n=51,011) USA—comparisons of the risk of acquiring COVID-19, with and without 

COVID-19 vaccines and booster doses. Data were analyzed using Cox proportional hazards 

regression, point estimates, and 95% confidence intervals. The risk of COVID-19 infection 

linearly increases with the number of COVID-19 booster doses (adapted from Shrestha, NK 

et al. with permission; pending peer review.67  

 The gradual decline in the efficacy of COVID-19 vaccines and bivalent boosters is 

attributed to many factors. These include mutations that lead to immune evasion by viruses, 

repeated booster doses causing immune exhaustion and depletion of immune cells, and the 

increasing deficiency of vitamin D and cofactors, resulting in immune paresis, etc., analog to 

vaccine-acquired immune deficiency syndrome.30 The weakening of the immune system is 

particularly evident, as depicted in Figure 4, after administering the second booster dose of 

COVID-19 vaccines.  

 Inference: Deficiencies in vitamin D and cofactors substantially compromise innate 

and post-immunization immune responses,167 rendering individuals more susceptible to 

SARS-CoV-2 reinfections,172,173 infections from mutant viruses,67 and other commensal or-

ganisms.174 Collectively, these factors contribute to heightened morbidity and mortality. 

4.3 Development of immune evasions by Omicron variants 

 Several recent studies have documented the diminishing effectiveness of COVID-19 

vaccines.2,3,67,172,173 An RCT conducted at Cleveland Clinic in the USA involved 51,011 

healthcare workers who received bivalent COVID-19 vaccines.67 13 weeks follow-up data 

revealed an increased risk of contracting Omicron variants with the number of vaccine booster 

doses received.67,167 The data suggests that the higher the vaccine booster doses, the higher 

the risk of contracting Omicron disease, as illustrated in Figure 4. 
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 Additional booster doses decrease immune capabilities and heighten vulnerability to 

SARS-CoV-2,67 reinfections,91,172,173 and other infections,174 partially attributed to immune 

paresis.165 The effectiveness of current bivalent COVID vaccines in shielding against infec-

tion in the BA.4/BA.5 lineages of the Omicron variant is reported to be approximately 30%, 

akin to a placebo.67,167 Strikingly, each successive booster dose correlates with a step-wise 

escalation in susceptibility to SARS-CoV-2 infection, as depicted in Figure 4. 

4.4 Actions that may help to reduce poor outcomes in future pandemics 

 Taking preventive measures such as micronutrient sufficiency could naturally 

strengthen the immune system against microbes and prevent vaccine-associated immunopare-

sis and the incidence of post-COVID syndrome among both vaccinated and unvaccinated in-

dividuals.165-167 Given the ongoing viral mutations, exploring alternative strategies beyond 

vaccines alone is imperative. Early therapies incorporating unpatented, repurposed, and 

widely available agents like vitamin D, ivermectin, and melatonin should be considered.97  

 The https://c19early.org/ website provides information on over forty generic agents 

investigated and reported in peer-reviewed literature.97 The first scientific publication recom-

mending an effective remedy against SARS-CoV-2—vitamin D—was released in February 

2020.187 The failure to diversify the therapeutic options, influenced by conflicts of interest, 

pharmaceutical bias, and administrative pressures to maintain the Emergency Use Authoriza-

tion (EUA) status of patented vaccines and antiviral drugs, resulted in chaos. Replicating such 

a flawed approach could have disastrous consequences in future pandemics and should be 

avoided. 

 Molecular biological techniques offer a practical approach to combating viruses with 

rapid mutation, aiming to understand and detect them at an early stage. However, it is crucial 

to identify the complete viral antigenic profile and employ a broader antigenic exposure strat-

egy to induce immunity and antibodies against a broader antigenic spectrum, sensitizing 

memory cells. The production of such therapies must rapidly address viruses that mutate 

within a year. Despite the advantages of mRNA technology deployment, the serious adverse 

effects of Spike protein toxicity and the rapid loss of efficacy raise concerns, making it ques-

tionable to use similar choices and technology in the future. As the current mRNA technology 

is still evolving, introducing insufficiently tested products directly into humans via vaccine 

injections 188 or orally 189 without establishing proper safety profiles was deemed premature 

and likely to have serious negative consequences. 

4.5  Reported serious adverse events with mRNA vaccines 

 In the Moderna randomized controlled trial (RCT), serious adverse effects (SAEs) 

occurred at a rate of 15.1 per 10,000 participants, compared to 6.4 per 10,000 participants in 

the placebo group—a 2.4-fold higher risk of SAEs than the reduction observed in COVID-19 

hospitalization.190 Similarly, in the Pfizer RCT, the excess risk of SAEs was 10.1 per 10,000 

participants, relative to 2.3 per 10,000 in the placebo group 10 —a 4.4-fold higher incidence of 

SAEs compared to the risk reduction for COVID-19 hospitalization.10,191 

 Combined mRNA vaccine data was associated with an excess risk of SAEs of 12.5 

per 10,000 vaccinated (95 % CI 2.1 to 22.9)—a risk ratio of 1.43 (95 % CI 1.07 to 1.92). The 

Pfizer RCT had a 36 % higher risk of SAEs in the vaccine group with a risk difference of 18.0 
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per 10,000 vaccinated (95 % CI 1.2 to 34.9)—a risk ratio 1.36 (95 % CI 1.02 to 1.83), a similar 

trend.10 The SAEs and risk ratios in these RCTs are significantly higher in the mRNA-vac-

cinated groups than in the placebo groups,190,191 but the regulators overlooked these data. In-

dependent scientists' lack of access to primary data further hindered impartial analysis.  

4.6 Booster doses: SARS-CoV-2 spread, duration of protection, and impact on mor-

tality 

 Data confirmed that vaccinated and unvaccinated could harbor, shed the virus, and 

infect others equally.2,80,81,163 The primary series of COVID-19 vaccines partially protects 

from complications, thus reducing hospitalizations, but only for a few months.33,155,192 Neither 

antiviral agents nor monoclonal antibody therapies activate the immune system or provide 

longer-term benefits. These treatments typically cost $500 to $2,000 per patient. Nevertheless, 

they exhibit lower effectiveness than generic agents, such as vitamin D and ivermectin, which 

treatment costs around two dollars per person.12 Calcifediol is more effective than vitamin D, 

which costs about ten dollars per patient. Many published clinical studies in combating SARS-

CoV-2 infection. Clinical studies using generic agents against SARS-CoV-2 infection real-

time meta-analyses and summarized data available on c19early.org/dmeta.html support these 

concepts.97  

 Given the failure of vaccines to prevent the transmission of SARS-CoV-2,91,92 48,49,59 
2,3,67,172,173 relying on vaccination and mandating status (proof of vaccination) cards or digital 

identities and segregating people lacks scientific merit. Even in countries like the USA, the 

UK, Israel, etc., where over 75% of adults and adolescents are vaccinated, achieving herd 

immunity or halting viral spread failed.159,193 The persistence of outbreaks was attributed, in 

part, to transmission within communities and introduction from outside.  

 The challenges are compounded by the evasion of vaccine-induced immunity by 

dominant new variants like the XBB series, along with a reduction in the ability of antibodies 

to neutralize viruses to under 40%.154,163 With emerging new variants developing resistance 

to vaccines and antiviral agents,87 the reliance on vaccinations alone would fail to prevent 

COVID-19 outbreaks, establish herd immunity, or eliminate SARS-CoV-2 and its mutant vi-

ruses. 

 In certain Western countries, the proportion of hospitalization attributed to Omicron 

remains lower among the vaccinated. However, after the introduction of bivalent vaccines, 

this ratio changed; the reasons for this were discussed above.194 to the high vaccination rates 

in industrialized countries, the absolute numbers of infections and re-infections, as well as 

hospitalization, became higher among the fully vaccinated than the unvaccinated.195 Making 

firm conclusions requires appropriately adjusting for confounding factors and denominators. 

For instance, a higher proportion of the vaccinated population comprises older people with 

co-morbidities. Cautionary measures are warranted unless the observed trend is consistent 

among younger individuals. Figure 5 illustrates broader effects using an acute increase in 

reported sudden deaths in Germany in 2021 and provides comparative data on vaccine uptakes 

and deaths from 2021-22 globally, in Sri Lanka and Israel.  

< Figure 5 >  
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Figure 5: A) illustrates the change in reported deaths in Germany between 2021 and 2022. 

Figures C through D depict the parallel relationship between the daily administration of 

COVID-19 booster vaccine doses and reported deaths. Figure B presents global data, show-

casing the daily number of vaccine booster doses administered per 100 people and deaths 

from COVID-19 (sourced from OneWorld in Data, Human Mortality Database, and World 

Mortality Dataset, 2023). Figures C and D also provide specific data for Sri Lanka and Israel, 

respectively. In Figure C, daily vaccination statistics are compared to daily reported deaths 

from COVID-19 in Sri Lanka from January to September 2021 (adapted from E. Dias). In 

Figure D, Israel's data illustrates the number of persons fully vaccinated versus daily deaths 

from COVID-19 from December 2020 to September 2021 (source: https://our-

worldindata.org/), highlighting the observed parallelism. 

 

 As highlighted earlier, increased complications and hospitalizations can be attributed 

partly to the immune evasion exhibited by dominant mutant viruses and the immunoparesis 

of hosts resulting from booster doses or repeated SARS-CoV-2 infections.163,166,167,170,186 This 

pattern has been observed previously with other viruses, especially in individuals who are 

vitamin D deficient or immune-compromised.196  

 Inference: Consequently, advocating for multiple booster doses and vaccinating 

younger children lacks rationale and merit. Instead, the primary focus of vaccination should 

have been on vulnerable populations to enhance their adaptive immune system, activate 

memory cells, and prioritize the maintenance of a robust immune system for effective defense 
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against the virus. This becomes particularly evident when considering data demonstrating de-

clining mortality rates during ivermectin treatment campaigns.197 

4.7 Countries with fewer than 15% vaccinated had no new COVID outbreaks 

 Approximately 2.8 billion people within 1400 km of the equator experience sufficient 

sunlight exposure throughout the year. Most individuals in this population maintain their se-

rum 25(OH)D concentrations above 30 ng/mL,74,126 the minimum necessary for certain bio-

logical activities, except those deliberately avoiding sun exposure. However, the average se-

rum population serum 25(OH)D concentration in most countries is about 20 ng/mL, including 

in the USA,198 and most developing countries and emerging economies.  

 The countries mentioned above had insufficient dollars to purchase the required 

COVID-19 vaccines. With this limited access, their COVID-19 vaccine uptake was between 

5 and 15%; the majority only received the first dose. In contrast, over 70% of adults in indus-

trialized nations were fully vaccinated, with a similar percentage having received booster 

doses. Despite these disparities and healthcare inequalities, the tropical countries reported 

fewer or no COVID-19 outbreaks, hospitalizations, and fewer deaths from 2022 onwards.  

 Furthermore, adults in affluent countries received multiple booster vaccine doses, 

around three boosters per person, yet exhibited lesser protection against SARS-CoV-2, evi-

denced by re-infections.199 This significant disconnect is highlighted in Figure 6, which illus-

trates the polarized SARS-CoV-2-related deaths expressed per million population in industri-

alized countries (characterized by higher GDP and per capita health expenditure) with rates 

of high vaccination (Cluster 1) compared to developing countries with low per capita GDP 

and low vaccination rates at the time (Cluster 2). As illustrated in Figure 6, affluent countries 

(Cluster 1) experienced a four-hundred-fold higher death rate from COVID-19 than develop-

ing countries. 

< Figure 6 >  
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Figure 6: The data on deaths from COVID-19, spanning from November 2021 to February 

2023, presented as the rolling seven-day average deaths per million population, clearly illus-

trates a stark 400-fold difference in death rates between the two clusters. Cluster 1 comprises 

industrialized countries with over 70% of the population fully vaccinated, while Cluster 2 

represents African countries with less than 15% vaccination coverage. Notably, India and Sri 

Lanka achieved higher vaccination percentages in late 2022, and their death rates were already 

low before the initiation of vaccination campaigns. The data is expressed as deaths per million 

population and adapted from Our World COVID data based on the Johns Hopkins University 

database. 

4.8 The cost-effectiveness (NNT) of various agents examined against SARS-CoV-2 

    The website https://c19early.org is a reliable and comprehensive resource featuring over 

a hundred peer-reviewed clinical research articles focused on three prominent treatments for 

SARS-CoV-2: vitamin D and ivermectin.{Group-C19.com, 2022 #17141} This unique site 

independently compiled data from diverse clinical research teams worldwide, providing indi-

vidual research study data and collective analyses over forty-five intervention agents pub-

lished against SARS-CoV-2. This site analyzed individual published clinical studies—305 

with vitamin D and 99 with ivermectin, consisting of several thousand study participants (i.e., 

reliable big data sets consisting of SARS-CoV-related 4,423 clinical studies).{Group-

C19.com, 2022 #17141} These two agents emerged as highly cost-effective options. The es-

timated costs (also imply the number needed to treat; NNT) are reported as $11 for vitamin D 

and $25 for ivermectin (Table 1).  

Table 1: The cost for a life saved (i.e., cost-effectiveness) of several tested agents in SARS-CoV-2* 

 

*The cost of an agent needs to save one life) for SARS-CoV-2 infection. Low-cost but low-

efficacious agents were excluded (https://c19early.org/).{Group-C19.com, 2022 #17141}  

 

High Cost-Effectiveness Low Cost-Effectiveness 

Agent Cost Agent Cost Agent Cost Agent Cost 

Melatonin   

$8 

Aspirin   

$33 

Fluvoxamine      

$411 

Casirivimab   

$203958 

Vitamin D $11 Curcumin   

$59 

Budesonide      

$574 

Paxlovid   

$206705 

Alkalization $11 Famotidine   

$94 

Nitazoxanide      

$680 

Bamlaniv   

$301549 

Zinc $15 Probiotics   

$99 

Azvudine    

$1248 

Sotrovimab   

$325800 

Ivermectin $25 Quercetin $127 Favipiravir $1934 Bebtelovimab  $737601 

HCQ $26 Metformin $133 Tixagev  $74506 Remdesivir $1558440 

Colchicine $26 Nigella Sativa $187 Regdanvimab $139860 Molnupiravir $2400867 
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In addition to the two agents mentioned above (vitamin D and ivermectin), there are other 

generic agents with reported clinical significance: Fluvoxamine (an antidepressant): 20 clini-

cal studies reported a 40 to 80% reduction in hospitalization;200,201 hydroxychloroquine, 27 

clinical studies reporting 80% reduction in hospitalization; Elderberry (from European black 

elder - Sambucus nigra): Demonstrated a 50% improvement;202 Curcumin (oral nano-curcu-

min): Collective efficacy of 26 clinical studies with a significant p-value of 0.0000093;203 

Nigella (Nigella sativa, black cumin seed): 12 clinical studies showing over 50% reduction in 

hospitalization;204 Melatonin 11 clinical studies with a 50% reduction in mortality;205 Quer-

cetin: 11 clinical studies showing over 50% reduction in hospitalization.206 All agents were 

reported to have clinically significant anti-viral effects.  

 In contrast, the anti-viral agent favipiravir, with 67 studies, reported a pooled effect of 

~20% reduction of risks,205 Molnupiravir with ~20% lower risks 207 (8% reduction of post-

COVID syndrome),208 Paxlovid (nirmatrelvir-ritonavir) ~50% reduction of risks 209 (1% im-

provement of post-COVID syndrome/complications,210 and Remdesivir, 62 clinical studies, 

0-10% Improvement 211 and higher mortality.212 The pooled effects and mean outcomes were 

obtained from https://c19early.org/ader.html.97 

4.9 Ivermectin as a cost-effective alternative therapy 

Ivermectin is a broad-spectrum antiparasitic drug with additional antiviral activities.213-

215 While several negative studies on ivermectin were published, many were funded by phar-

maceutical companies and biased. Some were designed to fail, indicating conflicts of interest. 

Over a hundred clinical studies and 50+ RCTs have investigated ivermectin—316 clinical 

trials in 35 countries involving 446,237 subjects with COVID-19. Besides, some RCTs re-

ported a strong association and a significant reduction of mortality with ivermectin use 

(RR, 0.25; 95% CI, 0.09-0.70; p = p.008);214 other analyses support this.216 

4.9.1 Ivermectin positive studies 

Recently published positive clinical studies include seven meta-analyses and a systematic 

review of trials conducted in 2020 (n=382); Ragó et al. reported significant benefits associated 

with ivermectin.217 These include faster viral clearance, an 81% reduction in symptomatic 

disease, 38% fewer hospitalizations, and a 49% decrease in mortality 217. Another meta-anal-

ysis, encompassing 15 clinical trials (n = 2438), indicated that prophylactic use of ivermectin 

resulted in an 86% reduction in COVID-19 infections (95% confidence interval 79%–91%) 

and a 62% decrease in mortality risk compared to placebo confirmed by Trail Sequential anal-

ysis (95% CI 0.19–0.73).218  

Several studies have also affirmed the safety and cost-effectiveness of ivermectin when 

used at doses ranging from 0.2 to 0.4 mg/kg 219,220. Additionally, RCT by Varnaseri et al. 

(n=110) showed ivermectin significantly reduced ICU admissions (32.7% vs. 5.5%; p<0.001), 

hospitalization duration (6 vs. 4 days; p<0.001), and median time to symptom resolution 

(p<0.05) compared to the placebo group, with no serious adverse effects reported 221.  

Recent studies on ivermectin were controversial, but well-designed RCTs provided com-

pelling data. The PRINCIPLE study by Hayward et al. (n=3,963) revealed a 36% reduction 

in COVID-19-specific symptoms (p<0.0001), with ivermectin demonstrating superiority in 

primary recovery outcomes with a probability of superiority >0.999.222 Early administration 
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of ivermectin resulted in faster recovery, complete symptom alleviation, and sustained relief 

(p<0.0001), all at a significantly lower cost than other treatments, such as Molnupiravir, which 

can cost over $700 per patient. 

Ivermectin has been the subject of 103 peer-reviewed clinical studies, including 50 RCTs; 

142,417 subjects participated and were contributed by 1,193 scientists. Real-time meta-anal-

yses of these studies reported significant efficacy (p<0.00000001) in reducing the risk of in-

fection, hospitalization, and mortality and increased viral clearance. A random pooled analy-

sis of 50 RCTs reported that ivermectin demonstrated 85% effectiveness in reducing the risk 

of COVID-19 and 49% efficacious in reducing mortality in early treatment studies. 

4.9.2 Negative studies using ivermectin 

Nevertheless, there were several negative studies using ivermectin. The TOGETHER 

study by Reis et al. (n=679) reported no significant difference between ivermectin and placebo 

groups in the risk of hospitalization or emergency department visits for COVID-19.223 AC-

TIV-6 study by Naggie et al. used (400 ug/kg for three days) found no significant benefit with 

ivermectin compared to placebo on time to sustained recovery (defined as three consecutive 

days without symptoms) (hazard ratio 1·07, 95%; CI 0·96–1·17.  

Nevertheless, TOGETHER 223 and ACTIV-6 224 RCTs failed to demonstrate significant 

benefits using doses of ivermectin. These studies had major design errors and potential bias, 

raising doubts about the validity of conclusions (https://c19ivm.org/). Similarly, the COVID-

OUT study by Bramante et al. (n=1323) initially reported no effect from ivermectin, metfor-

min, or fluvoxamine.225 However, later analyses suggested a notable reduction in hospitaliza-

tions exceeding 50%.226 

Nevertheless, some evidence on ivermectin in preventing SARS-CoV-2 infection is con-

tradictory.213,214,226-229 In contrast, well-designed trials with no conflicts of interest showed 

substantial benefits.11-13,214,216,230 These conflicting findings underscore the importance of 

careful interpretation and further investigation. Based on local research, ivermectin has been 

approved and used widely in over forty countries to prevent and treat SARS-CoV-2.228  

Some of these negative studies were placebo-controlled RCTs. These have been used in 

a few systematic reviews and meta-analyses that reported equivocal out-

comes,213,215,227,228,231,232 and from large, placebo-controlled outpatient trials conducted in the 

USA (COVID-OUT and ACTIV-6 (two trials, both evaluating a similar dose to this study of 

400 µg/kg for three days,225,226 and ACTIV-6 additionally evaluating 600 µg/kg for six days, 
229 and TOGETHER study, 400 ug/kg for three days.223 However, subjects in these studies 

were heterogeneous, and critical study group characteristics like vaccination status and 

comorbidities (e.g., high BMI) were not comparable and higher in the interventional groups 
225. None of the RCTs mentioned above reported any safety concerns regarding ivermectin.  

The Cochrane Reviews encompass all negative studies, including those with significant 

study design flaws, which dilute potential benefits from investigational agents, such as iver-

mectin. This phenomenon is not unique to ivermectin but has also been observed in previous 

Cochrane reviews evaluating other agents. It underscores an inherent limitation of Cochrane 

reviews. 
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 Inference: Despite a few negative studies, primarily employing improper doses in late-

stage disease, the overall data strongly support positive clinical outcomes when ivermectin is 

used in the early stages of COVID-19 (early therapy) with appropriate doses. Both vitamin D 

and ivermectin are low-cost, readily available generic agents that have been shown to have 

no adverse effects at recommended doses. Therefore, these treatments should be accessible 

for prophylactic use and as adjunct therapies against SARS-CoV-2. 

4.10 Consensus on vitamin D and ivermectin—implications for mRNA vaccines  

 A summary of expert consensus from c19early.org highlights the website as a compre-

hensive resource providing data from all published clinical studies (positive and negative) on 

various therapies combating SARS-CoV-2.97 The site distinguishes itself as a reliable, dy-

namic real-time meta-analysis, offering an evolving overview of collective findings. Addi-

tionally, it presents calculated evidence on the cost-effectiveness of multiple treatments, in-

corporating NNT metrics to save one life. The website elucidates the cost-effectiveness of 

each intervention in terms of US dollar expenditure per life saved, offering valuable insights 

across diverse therapeutic approaches (Table 1). 

 As detailed in previous references, the reported negative studies remain below 10%. 

These negative studies consistently revealed significant shortcomings in their study designs 

and flawed statistical methods used.79 Metanalyses of these treatments demonstrated a high 

level of significance (p<0.0000000001), with an overall true efficacy (not relative efficacies 

as reported with COVID-19 vaccines), approximately 50% in preventing hospitalizations and 

deaths for each agent.97 Sufficient cost-efficacy and safety data supporting these treatments 

were available by late 2020, warranted regulatory approval for clinical use, but never materi-

alized.79  

 In contrast to the documented safety records of mRNA vaccines,51,233 vitamin D and 

ivermectin, mentioned above, exhibited decades of safety and efficacy in managing infections 

during the pre-pandemic,234-236 and post-pandemic era.237-239 Despite their established efficacy 

and safety track record, western health authorities opted for experimental methods with little 

safety data, influenced by lobbying from the pharmaceutical industry. These contributed to 

suppressing evidence that supported early treatments that could have saved lives and reduced 

ICU occupancy and healthcare costs. NIH analyzed vitamin D for COVID-19 and concluded 

there is insufficient evidence to recommend it.240 This 2024 update from the NIH is despite 

316 clinical trials published, including over 50 RCTs. However, it overlooked 86% of the 

published RCTs but included many failed studies, suggesting a significant selection bias. 

 Inference: Regulators did not consider alternative approaches to COVID-19 vaccines 

and antiviral agents for the above reasons. Relaxation of patents related to mRNA vaccine 

technology and allowing raw material availability during the early COVID-19 emergency 

would permit countries like India and China with well-established traditional vaccine tech-

nology and facilities to develop vaccines at a significantly lower cost.  

 Despite taking longer, adopting conventional vaccines would have significantly re-

duced production costs, allowing simultaneous global production at an affordable cost and 

increased availability of COVID-19 vaccines. It provided the opportunity to thoroughly in-

vestigate mRNA technology for its safety and efficacy independent of Pfizer and Moderna 
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companies and test for a broader range of viral antigens before generating and widespread 

deployment. Considering the serious adverse effects,49,50 and the inability of mRNA vaccines 

to prevent infections and the spread,91,92,48,49,59,2,3,67,172,173 funding and focusing only on mRNA 

vaccines may have been an error made in hasty. 

5.0 Conclusions  

 The mRNA and adenoviral vector vaccines were developed only against the Spike 

protein sequences of SARS-CoV-2.18 The bivalent vaccines combined sequences of the orig-

inal viral RBD sequences and Omicron mutants.106,241 In either case, the immune recognition 

regions were limited and targeted only parts of the RBD portions of the Spike protein, omitting 

all of the core proteins. Furthermore, the resultant antibodies had no secretory mucosal im-

munity protection. Continuing mutations of the Spike protein led to new mutants escaping the 

host’s immune recognition (by neutralizing antibodies), creating immune evasion.83 In addi-

tion, booster doses caused immunoparesis (i.e., further weakening of the host’s immune sys-

tem),165-167 thereby increasing the vulnerability to SARS-CoV-2 infections, re-infections,173 

and re-activation of dormant viral and bacterial infections with a secondary flare-up of infec-

tions. 

 Consequently, despite mass vaccination programs covering approximately 5.6 billion 

people globally, predominantly from industrialized (affluent) countries, hospitalizations and 

deaths from SARS-CoV-2 and its mutants continue, though at a lower rate. None of the 

COVID-19 vaccines failed to prevent SARS-CoV-2 infections or dissemination of infection 

in vaccinated people. Due to the changing characteristics and behavior of mutant viruses, such 

as immune evasion, the efficacies of the original mRNA vaccine and the bivalent vaccines 

against the original SARS-CoV-2 virus and Omicron variants are less than 40%. Furthermore, 

COVID-19 vaccines, as well as boosters, were associated with severe adverse effects. 

 Therefore, widening the armamentaria for prevention and treatment became essential, 

especially before the next round of dominant SARS-CoV-2 mutants. Approximately four hun-

dred clinical studies have reported that previously approved repurposed and globally available 

agents, such as vitamin D and ivermectin, available without a prescription, are cost-effective 

adjunct therapeutic options. However, regulators continued to be overlooked despite convinc-

ing clinical studies and RCTs demonstrating their effectiveness for vitamin D and ivermectin. 

Meanwhile, a few conflicted publications sponsored and funded by pharma attempted to dis-

credit the efficacies of unpatented agents (e.g., Together, ACTIV-6, COVID-Out). These are 

illustrated at https://c19ivm.org/meta.html website. 

 An additional advantage of these generic agents is their broader efficacy against path-

ogenic microbes, including bacteria, viruses, and parasites, and their long history of safety. 

Unlike COVID-19 vaccines and patented antiviral agents, the effectiveness of this non-pro-

prietary early therapy remains unaffected by viral mutations. Given the declining efficacy of 

all COVID-19 vaccines and the poor efficacy of antiviral agents as well as significant adverse 

effects, regulators and health agencies must promptly assess these non-patented, widely avail-

able agents. This evaluation should occur before the next round of dominant mutants emerge 

or the next pandemic. Additionally, it should be conducted in conjunction with appropriate 
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public healthcare measures, which may involve considering vaccines targeting the entire virus 

with new, traditional vaccines. 
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Highlights: 

• COVID-19 outbreaks coincided with each winter when population vitamin D 

levels are lowest. 

• In 2021, the COVID-19 vaccine reduced SARS-CoV-2 hospitalizations; 

however, with emerging mutants and immune evasion, the rate of infection 

and hospitalization increased from late 2021. 

• The efficacy of SARS-CoV-2 mRNA and bivalent vaccines against Omicron 

significantly reduced from late 2022 due to new mutants and immune evasion 

causing outbreaks. 

• Vitamin D is a potent anti-inflammatory and anti-oxidant, which helps negate 

the adverse effects of viruses and vaccines. 

• Exploring alternative cost-effective therapies, like vitamin D and ivermectin, 

is essential to prepare for future pandemics.  
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