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PROPENSITY SCORE WEIGHTING FOR CAUSAL INFERENCE
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Causal or unconfounded descriptive comparisons between multiple
groups are common in observational studies. Motivated from a racial dispar-
ity study in health services research, we propose a unified propensity score
weighting framework, the balancing weights, for estimating causal effects
with multiple treatments. These weights incorporate the generalized propen-
sity scores to balance the weighted covariate distribution of each treatment
group, all weighted toward a common prespecified target population. The
class of balancing weights include several existing approaches such as the in-
verse probability weights and trimming weights as special cases. Within this
framework, we propose a set of target estimands based on linear contrasts. We
further develop the generalized overlap weights, constructed as the product
of the inverse probability weights and the harmonic mean of the generalized
propensity scores. The generalized overlap weighting scheme corresponds to
the target population with the most overlap in covariates across the multi-
ple treatments. These weights are bounded and thus bypass the problem of
extreme propensities. We show that the generalized overlap weights mini-
mize the total asymptotic variance of the moment weighting estimators for
the pairwise contrasts within the class of balancing weights. We consider two
balance check criteria and propose a new sandwich variance estimator for es-
timating the causal effects with generalized overlap weights. We apply these
methods to study the racial disparities in medical expenditure between sev-
eral racial groups using the 2009 Medical Expenditure Panel Survey (MEPS)
data. Simulations were carried out to compare with existing methods.

1. Introduction. Propensity score weighting is a common method for balanc-
ing covariates and estimating treatment effects in causal inference (Rosenbaum
and Rubin (1983)). It is also applicable to unconfounded noncausal comparisons
such as racial disparities studies (e.g., Cook et al. (2009), McGuire et al. (2006)).
There is a vast literature on propensity score weighting with binary treatments;
see, for example, a recent review by Ding and Li (2018). This paper focuses on
propensity score weighting strategies for multiple group comparisons, which have
become increasingly common in practice. For example, in comparative effective-
ness research, the interest often lies in comparing the effectiveness of several med-
ical treatments; in health service research, the interest often lies in examining the
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disparities in health care utilization between more than two races or ethnicities
(Zaslavsky and Ayanian (2005)).

For multiple group comparisons, Imbens (2000) extended the classic results
of Rosenbaum and Rubin (1983) and developed the generalized propensity score
method; the key insight is that the scalar generalized propensity score of each treat-
ment level can be exploited to separately estimate the average potential outcomes
in that group. With the generalized propensity score device, matching and subclas-
sification strategies have been discussed extensively; see, for instance, Lechner
(2002), Rassen et al. (2013), Yang et al. (2016), Zanutto, Lu and Hornik (2005),
Lopez and Gutman (2017). With the weighting strategy, the existing methods for
multiple-group comparisons have largely focused on the pairwise average treat-
ment effect (ATE), based on the inverse probability weighting (IPW) (Feng et al.
(2012), McCaffrey et al. (2013)). However, observational studies often rely on con-
venience samples, which does not necessarily represent a population of scientific
meaning. In such cases, the automatic focus on ATE may be questionable because
it is not clear what target population the causal conclusion is applicable to. Mean-
while, multiple treatments exacerbate the overlap issues as different treatments
may be applicable only to certain subpopulations, and the ATE may correspond
to an infeasible intervention. Regardless of the number of treatment levels, ex-
treme propensity scores close to zero or one will likely result in bias and excessive
variance of the IPW estimators (Li, Thomas and Li (2019)). Crump et al. (2009)
proposed an optimal trimming procedure that focuses on regions with good overlap
and thus improves the efficiency of the IPW estimator for binary treatments; Yang
et al. (2016) extended the trimming rule to more than two treatments. Though easy
to implement, propensity trimming often leads to an ambiguous target population
and may discard a large number of units.

In this article, we propose a unified propensity score weighting framework for
causal inference with multiple treatments. Specifically, we generalize the balanc-
ing weights framework for binary treatments (Li, Morgan and Zaslavsky (2018))
to balance the distribution of covariates from multiple treatment groups accord-
ing to a prespecified target population. Within this framework, we propose a set
of target estimands based on linear contrasts. We further develop the generalized
overlap weights, constructed as the product of the inverse probability weights and
the harmonic mean of the generalized propensity scores. The generalized overlap
weights focus on the subpopulation with substantial probabilities to be assigned to
all treatments. This target population aligns with the spirit of randomized clinical
trials by emphasizing patients at clinical equipoise, and is thus of natural relevance
to medical and policy studies. Under mild conditions, we show that the generalized
overlap weights minimize the total asymptotic variance of the moment estimators
for the pairwise contrasts within the class of balancing weights. These new weights
are strictly bounded between zero and one, and thus automatically bypass the issue
of extreme propensity scores.
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Our methodological innovation is motivated by an application to racial dispar-
ities in medical expenditure. Identifying and tracking racial disparities in health
care utilization represents a crucial step in developing health care policy and allo-
cating health services resources. The Unequal Treatment report from the Institute
of Medicine (IOM) defined health care disparity as the difference in treatment
provided to social groups that is not justified by health status or treatment prefer-
ence of the patient (IOM (2003)). Therefore, adjusting for the health status vari-
ables across different racial groups is necessary for producing interpretable dispar-
ity estimates concordant with the IOM definition. In this sense, these descriptive
comparisons share the same nature with causal comparisons with respect to con-
founding control, and indeed propensity score methods have been widely used in
health care disparity studies (Cook, McGuire and Zaslavsky (2012)). One particu-
lar challenge is that the IOM definition of disparity includes racial differences in
utilization mediated through factors other than health status and preference, such
as many social factors (McGuire et al. (2006)). Accordingly, a number of meth-
ods have been developed to account for the socioeconomic status variables in the
propensity score analysis of racial disparities in health services (e.g., McGuire
et al. (2006), Cook et al. (2009)). In this paper, we combine one such method—
the rank-and-replace adjustment—with the proposed generalized overlap weights
to track racial disparities in medical expenditure between Whites, Blacks, Hispan-
ics and Asians. This is in contrast to most existing racial disparity studies, which
conducted separate comparisons of each White-minority pair (Cook et al. (2010)).

The remainder of this article is organized as follows. Section 2 introduces the
general framework of balancing weights. In Section 3, we propose the generalized
overlap weights for pairwise comparisons with multiple treatments, discuss bal-
ance check criteria and variance estimation. In Section 4, we reanalyze the Medical
Expenditure Panel Survey data and study the racial disparities in medical expen-
diture between several racial groups. Section 5 carries out simulations to examine
the operating characteristics of the proposed method and compare with existing
methods. Section 6 concludes.

2. Balancing weights for multiple treatments.

2.1. Basic setup. We consider a sample of n units, each belonging to one of
J ≥ 3 groups for which covariate-balanced comparisons are of interest. Let Zi ∈
Z = {1, . . . , J } denote the treatment group membership, and Dij = 1{Zi = j} the
indicator of receiving treatment level j . For each unit, we observe an outcome Yi

and a set of p pretreatment covariates Xi = (Xi1, . . . ,Xip)′. For J ≥ 3 treatments,
Imbens (2000) defined the generalized propensity score, as follows.

DEFINITION 1 (Generalized propensity scores). The generalized propensity
score is the conditional probability of being assigned to each group given the co-
variates

ej (X) = Pr(Z = j |X), j ∈ Z.
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By definition, the sum-to-unity restriction
∑J

j=1 ej (X) = 1 holds for all X in
support X, and hence each unit’s propensity can be uniquely characterized by J −
1 scalar scores. Under the Stable Unit Treatment Value Assumption (SUTVA),
each unit has a potential outcome Yi(j) mapped to each treatment level j ∈ Z,
among which, only the one corresponding to the received treatment, Yi = Yi(Zi),
is observed. To proceed, we make the following two standard assumptions.

ASSUMPTION 1 (Weak unconfoundedness). The assignment is weakly uncon-
founded if

Y(j) ⊥ 1{Z = j}|X ∀j ∈ Z.

ASSUMPTION 2 (Overlap). For all X ∈ X and all group j , the probability of
being assignment to any treatment group is bounded away from zero:

ej (X) > 0 ∀X ∈ X, j ∈ Z.

Assumption 1 imposes unconfoundedness separately for each level of the treat-
ment, and is sufficient for identification of the population-level estimand (Imbens
(2000)). This assumption implies that the potential outcome Y(j) is independent of
the assignment indicator 1{Z = j}, conditional on the scalar generalized propen-
sity score ej (X). In other words, adjusting for the scalar score is sufficient to re-
move the bias in estimating the average value of Y(j) over the target population.
Assumption 2 restricts the study population to the covariate space where each unit
has nonzero probability to receive any treatment.

To elaborate, we define the conditional expected potential outcomes in group j

as mj(X) = E[Y(j)|X]. Under Assumption 1, we have mj(X) = E[Y |Z = j,X],
which is estimable from the observed data. As previously mentioned, the propen-
sity score methods are also applicable to unconfounded descriptive (noncausal)
comparisons where the group membership is a nonmanipulable state, such as dif-
ferent races and different years. In these cases, a common objective is to compare
the expected observed outcomes, mj(X) = E[Y |Z = j,X]; for example, when
J = 2, Li, Zaslavsky and Landrum (2013) defined the contrast between m1(X) and
m2(X) averaged over a population as the average controlled difference (ACD). For
simplicity, henceforth we use the nomenclature of causal inference to generically
refer to both causal and unconfounded descriptive settings, but emphasize that the
methods developed here are applicable to both.

2.2. Balancing weights. Assume the marginal density of the covariates, f (X),
exists, with respect to a base measure μ. In causal studies, the interest is on the
average effects of units in a target population, whose density (up to a normaliz-
ing constant) we represent by g(X) = f (X)h(X), with h(X) being a prespecified
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function of covariates, which we refer to as a tilting function. We first define the
expectation of the potential outcomes over the target population g(X):

(2.1) mh
j ≡

∫
X

mj(X)f (X)h(X)μ(dX)∫
X

f (X)h(X)μ(dX)
.

Then we characterize a class of additive estimands as a linear combination of the
above expectations, with coefficients a = (a1, . . . , aJ )′:

(2.2) τh(a) ≡
J∑

j=1

ajm
h
j .

The causal estimand τh(a) generalizes the definition of weighted average treat-
ment effect (WATE) in binary treatments (Hirano, Imbens and Ridder (2003))
where J = 2 and a = (1,−1). As will be seen in due course, τh(a) includes sev-
eral existing causal estimands as special cases.

We next define the class of balancing weights. Let fj (X) = f (X|Z = j) be the
density of X in the j th group over its support Xj , we have fj (X) ∝ f (X)ej (X).
Given any prespecified function h, we can weight the group-specific density fj (X)

to the target population using the following weights, proportional up to a normal-
izing constant:

(2.3) wj(X) ∝ f (X)h(X)

f (X)ej (X)
= h(X)

ej (X)
∀j ∈ Z.

It is straightforward to show that the class of weights defined in (2.3) balance the
weighted distributions of the covariates across J comparison groups:

(2.4) fj (X)wj (X) = f (X)h(X) ∀j ∈ Z.

To apply the above framework, a key is to specify the coefficients a and the
tilting function h, with the former defining the causal contrast and the latter repre-
senting the target population. We focus on the case of multiple nominal treatments,
where the scientific interest usually lies in pairwise comparisons. More specifi-
cally, the choice of a is contained in the finite set S = {λj,j ′ = λj − λj ′ : j < j ′},
where λj is the J × 1 unit vector with one at the j th position and zero everywhere
else. In principle, the tilting function h can take any form, each leading to a unique
type of balancing weights; statistical, scientific and policy considerations all play
into the specification of h. We illustrate specifications of a and h (up to a normal-
izing constant) by connecting the general definition (2.2) with existing estimands
in the causal inference literature.

When h(X) = 1, the target population f (X) is the combined population from
all groups and the weights become the standard inverse probability weights,
{1/ej (X), j ∈ Z}; the target estimand is the pairwise ATE as in Feng et al. (2012).
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TABLE 1
Examples of balancing weights and target populations for making pairwise comparisons with

different tilting functions

Target Population Tilting Function h(X) Weights {wj (X), j ∈ Z}
Combined 1 {1/ej (X), j ∈ Z}
j ′th Treated ej ′(X) {ej ′ (X)/ej (X), j ∈ Z}
j ′th Treated (restricted) ej ′ (X)

∏J
j=1 Ej (X) {ej ′(X)

∏J
j=1 Ej (X)/ej (X), j ∈ Z}

Trimming 1{X ∈C} {1{X ∈C}/ej (X), j ∈ Z}
Generalized Matching min1≤k≤J {ek(X)} {min1≤k≤J {ek(X)}/ej (X), j ∈ Z}
j ′th Variance-Weighted ej ′(X){1 − ej ′(X)} {ej ′ (X){1 − ej ′(X)}/ej (X), j ∈ Z}
Generalized Overlap (

∑J
k=1 1/ek(X))−1 {(∑J

k=1 1/ek(X))−1/ej (X), j ∈ Z}

When h(X) = ej ′(X), the target population is the subpopulation receiving treat-
ment Z = j ′, and the weights, {ej ′(X)/ej (X), j ∈ Z}, are designed to estimate the
average treatment effect for the treated (ATT). Define

ej = max
1≤l≤J

{
min
X∈Xl

{
ej (X)

}}
, ēj = min

1≤l≤J

{
max
X∈Xl

{
ej (X)

}}
,

and an eligibility function Ej(X) = 1{ej ≤ ej (X) ≤ ēj } for all j ∈ Z. When

h(X) = ej ′(X)
∏J

j=1 Ej(X), the target population is the subpopulation receiving
treatment Z = j ′ but remaining eligible for all other treatments (Lopez and Gut-
man (2017)). Similar eligibility functions were used earlier by van der Laan and
Petersen (2007) and Moore et al. (2012) to develop improved causal models with
time-varying treatments. Further, define a threshold α as the largest value such that

(2.5) α ≤ 2E[∑J
j=1 1/ej (X)|∑J

j=1 1/ej (X) ≤ α]
Pr(

∑J
j=1 1/ej (X) ≤ α)

.

When h(X) = 1{X ∈ C} with C = {X ∈ X|∑J
j=1 1/ej (X) ≤ α}, the target popu-

lation is characterized by the subpopulation C, and the inverse probability weights
are formulated after applying the optimal trimming rule (Yang et al. (2016)).
When h(X) = min1≤k≤J {ek(X)}, one arrives at the generalized matching weights
(Yoshida et al. (2017))—an extension of the matching weights of Li and Greene
(2013) to multiple treatments. Such an approach represents a weighting analogue
to exact matching and the causal comparisons are made for the matched popula-
tion. When h(X) = V(1{Z = j ′}|X) = ej ′(X){1 − ej ′(X)}, the target estimand
becomes the j ′th variance-weighted average treatment effect studied by Robins
et al. (2008), who also proposed efficient and flexible estimators based on higher-
order influence functions. Finally, one could choose indicator functions for h that
directly involves covariates of a subpopulation of interest, such as a specific gender
or a range of age. Table 1 summarizes the above special cases.
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When the treatment levels are ordered categories, target estimands may differ
from the pairwise comparisons and require different choice of a. For instance, one
may be interested in the quadratic contrasts between unit increases in the treatment
level, namely (mh

j+1 − mh
j ) − (mh

j − mh
j−1). In other cases, one may estimate the

weighted average of unit increase in the treatment level,
∑J−1

j=1 πj (m
h
j+1 − mh

j ),

or the accumulative effect of the maximum treatment, mh
J − mh

1 . For the disparity
study in Section 4, the multiple racial groups are unordered categories. For this
reason, we mainly focus on multiple nominal groups, but note that the general
framework of balancing weights remains applicable to multiple ordinal groups.

2.3. Large-sample properties of moment estimators. For any prespecified vec-
tor a and tilting function h, we could first use the plug-in sample moment estimator
to obtain the expectation of the potential outcomes among the target population

(2.6) m̂h
j =

∑n
i=1 DijYiwj (Xi )∑n
i=1 Dijwj (Xi )

,

and then estimate τh(a) by a linear combination, τ̂ h(a) = ∑J
j=1 aj m̂

h
j , where the

sum is over a sample drawn from density f (X). Below we establish three large-
sample results of τ̂ h(a); the proofs are given in Section B of the Supplementary
Material (Li and Li (2019a)).

PROPOSITION 1. Given any h and a, τ̂ h(a) is a consistent estimator of τh(a).

Denote the collection of treatment assignment Z = {Z1, . . . ,Zn} and covariate
design points X = {X1, . . . ,Xn}. The next two results concern the variance of the
sample estimator, which is decomposed as

V
[
τ̂ h(a)

] = EZ,XV
[
τ̂ h(a)|Z,X

] +VZ,XE
[
τ̂ h(a)|Z,X

]
.

The first term is the variation due to residual variance in τ̂ h(a) conditional on
the design points. The second term arises from the dependence of the expectation
of the plug-in estimator on the sample, and estimating it involves the outcome
model (associations between Y(j) and X). As individual variation is typically
much larger than conditional mean variation, the benefit of further optimizing the
weights by a preliminary look at the outcomes, which mixes the design and anal-
ysis, would usually not justify the risk of biasing model specification to attain
desired results (Imbens (2004)). Hence, we focus on the first term.

PROPOSITION 2. Given a, suppose the family of residual variances
{V[τ̂ h(a)|Z,X], n ≥ 1} is uniformly integrable. Then the expectation of the con-
ditional variance converges

n ·EZ,XV
[
τ̂ h(a)|Z,X

] → Q(a, h)
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≡
∫
X

(
J∑

j=1

a2
j vj (X)/ej (X)

)
h2(X)f (X)μ(dX)/C2

h,

where vj (X) =V[Y(j)|X] and Ch ≡ ∫
X

h(X)f (X)μ(dX) is a constant.

When the residual variance of the potential outcome is homoscedastic across all
groups such that vj (X) = v, then the limit Q(a, h) can further simplify and the
following result holds.

PROPOSITION 3. Under homoscedasticity, the function

h̃(X) ∝ 1∑J
j=1 a2

j /ej (X)

gives the smallest asymptotic variance for the moment estimator τ̂ h(a) among all
h’s, and minh Q(a, h) = v/C

h̃
.

A more general result of Proposition 3 can be obtained under heteroscedasticity.
In that case, the optimal tilting function,

h̃(X) ∝ 1∑J
j=1 a2

j vj (X)/ej (X)
,

explicitly depends on the residual variances of the potential outcomes. Although
estimates of vj (X) can be obtained by outcome regression modeling in the analysis
stage, it is rarely the case that accurate prior information is available in the design
stage. Therefore, such a tilting function is difficult to specify for design purposes
and may find limited use without peeking at the outcomes. For such considerations,
we motivate the generalized overlap weights in Section 3 under homoscedasticity.
These asymptotic results generalize those for binary treatments in Li, Morgan and
Zaslavsky (2018); they also extend the asymptotic results on propensity score trim-
ming in Crump et al. (2009) and Yang et al. (2016), who have similarly assumed
homoscedasticity but restricted the class of tilting functions to indicator functions.

3. Generalized overlap weighting for pairwise comparisons.

3.1. The generalized overlap weights. For nominal treatments, scientific in-
terest often lies in comparing outcomes between each pair of treatment groups in a
common target population. In this case, as a ∈ S, we propose to choose the tilting
function h that minimizes the total asymptotic variance of the sample estimators
for all pairwise comparisons; in other words, the objective function is∑

j<j ′
Q(λj,j ′, h) ∝ Q(1J , h),
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FIG. 1. Ternary plot of optimal h (up to a proportionality constant) as a function of the gen-
eralized propensity score vector with J = 3 treatments. Each point in the triangular plane repre-
sents a unit with certain values of the generalized propensity scores. The value of each generalized
propensity score is proportional to the orthogonal distance from that point to each edge. It is evi-
dent that the new weighting scheme emphasizes the centroid region with good overlap, for example,
units with e(X) ≈ (1/3,1/3,1/3), and smoothly down-weights the edges, for example, units with
e(X) ≈ (0,1/2,1/2).

where 1J is the J × 1 vector of ones. According to Proposition 3, the function
h(X) = (

∑J
j=1 1/ej (X))−1—the harmonic mean of the generalized propensity

scores—minimizes Q(1J , h) among all choices of h. Based on this optimal tilt-
ing function h, we define the generalized overlap weights for j = 1, . . . , J :

wj(X) ∝ 1/ej (X)∑J
k=1 1/ek(X)

.

For binary treatments (J = 2), the generalized overlap weights reduce to the over-
lap weights in Li, Morgan and Zaslavsky (2018), namely the propensity of as-
signment to the other group: w1(X) ∝ 1 − e1(X) = e2(X), w2(X) ∝ 1 − e2(X) =
e1(X).

The maximum of the harmonic mean function h is attained when ej (X) = 1/J

for all j , that is, when the units have the same propensity to each of the treat-
ments. Heuristically, the tilting function h gives the most relative weight to the
covariate regions in which none of the propensities are close to zero. While it is
generally difficult to visualize the optimal h in higher dimensions, we could do
so with J = 3 treatments. Figure 1 provides a ternary plot of h when J = 3. It is
clear that the optimal tilting function gives the most relative weight to the covari-
ate regions in which none of the propensities are close to zero, and down-weights
the region where there is lack of overlap in at least one dimension. Therefore,
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we can interpret the corresponding target population to be the subpopulation with
the most overlap in covariates among all groups, and term the target estimand as
the pairwise average treatment effect among the overlap population (ATO). As
the overlap population tilts f (X) most heavily toward equipoise, it is naturally
of policy and clinical relevance. Especially for clinical practice, this target popu-
lation aligns with the spirit of randomized studies and emphasizes patients with
clinical equipoise, whose treatment decisions remain unclear and thus for whom
comparative information is most needed. Analogously, in descriptive studies for
racial disparities, the overlap population represents individuals with most similar-
ity in observed health-related characteristics, based on whom subsequent policy
interventions on health care utilization become most meaningful.

Besides asymptotic efficiency, the generalized overlap weights have several at-
tractive features. First, the harmonic mean function h is strictly bounded

0 < min
1≤k≤J

{
ek(X)

}
/J ≤ h(X) ≤ min

1≤k≤J

{
ek(X)

}
< 1,

and thus the weighting scheme is robust to extreme weights, in contrast to IPW.
Second, the target population defined by the generalized overlap weights is adap-
tive to the covariate distributions among the J comparison groups. For example,
when the propensity of assignment to treatment j is small compared to others so
that ej (X) ≈ 0, the tilting function

h(X) ∝
J∏

l=1

el(X)/

J∑
k=1

∏
l �=k

el(X) ≈
J∏

l=1

el(X)/
∏
l �=j

el(X) = ej (X),

suggesting that the target population is similar to the j th treatment group and the
associated estimand approximates the ATT. On the other hand, if the treatment
groups are almost balanced in size and covariate distribution so that ej (X) ≈ 1/J

for all j , we have h(X) ∝ 1 and the target estimand approximates the pair-
wise ATE. Arguably this adaptiveness enables the generalized overlap weighting
scheme to define a scientific question that may be best answered nonparametrically
by the available data at hand. Finally, the generalized matching weights (Yoshida
et al. (2017))—defined by h(X) = min1≤j≤J {ej (X)}—share some of the above
advantages, but these weights are not asymptotically efficient and are nonsmooth,
which renders the variance calculation more complex.

3.2. Estimate generalized propensity scores and balance check. In practice,
usually the propensity scores are not known and must be estimated from the data.
For multiple nominal treatments, the generalized propensity scores are frequently
modeled by a multinomial logistic regression,

e1(Xi ) = 1

1 + ∑J
k=2 exp(αk + XT

i βk)
,

(3.1)

ej (Xi ) = exp(αj + XT
i βj )

1 + ∑J
k=2 exp(αk + XT

i βk)
, j = 2, . . . , J,
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where the covariate vector X are allowed to contain higher-order moments, splines
and interactions. Model parameters θ = (α2, . . . , αJ ,βT

2 , . . . ,βT
J )T can be esti-

mated by standard maximum likelihood, from which we obtain the estimated
propensity scores. To assess the fit of the propensity score model, we check the
weighted covariate balance in the target population. We consider two ways for
balance check motivated by the population balancing constraint (2.4). First, con-
straint (2.4) implies the weighted covariate balance between each group and the
target population. Therefore, we inspect, for each treatment level, the weighted
covariate mean deviation from that of the target population. Specifically, we define
X̄j = ∑n

i=1 DijXiwj (Xi )/
∑n

i=1 Dijwj (Xi ) as the weighted mean of covariate
X from the j th group and S2

X,j as the unweighted variance. Further, we define

X̄p = ∑n
i=1 Xih(Xi )/

∑n
i=1 h(Xi ) as the average value of covariate X in the tar-

get population and S2
X = J−1 ∑J

j=1 S2
X,j as the averaged unweighted variance.

The population standardized difference (PSD) is then defined for each covariate
and each treatment level as PSDj = |X̄j − X̄p|/SX . Similar to McCaffrey et al.
(2013), we then use maxj |PSDj | as the balance metric for each covariate X and
inspect the adequacy of the propensity score model. If a covariate is not well bal-
anced in one group, interaction terms of that variable with other variables can be
added to the model, and the new model is re-fit and re-evaluated until balance is
deemed satisfactory. On the other hand, the population balance constraint (2.4)
also implies pairwise balance fj (X)wj (X) = fj ′(X)wj ′(X) for all j �= j ′, and so
we could alternatively assess balance by checking the pairwise absolute standard-
ized differences (ASD), ASDj,j ′ = |X̄j − X̄j ′ |/SX . The balance metric for each
covariate can then be similarly specified as maxj<j ′ |ASDj,j ′ |.

Finally, a special property of the overlap weights with binary treatments is exact
balance, that is, when the propensity scores are estimated from a logistic model,
the standardized difference of all the covariates entering the propensity model is
zero, that is, ASD1,2 = 0 for J = 2 (Li, Morgan and Zaslavsky (2018), Theo-
rem 3). However, this exact balance property is due to the happenstance that the
logistic score equations exploit the covariate-balancing moment conditions, and
does not directly extend to the generalized overlap weights with J ≥ 3 when the
propensity score is estimated by a multinomial logistic model. Therefore, we still
recommend the conventional iterative fitting-checking procedure to improve the
propensity model.

3.3. Variance estimation. The asymptotic variance results in Section 2.3 are
not directly useful for calculating the sample variance of τ̂ h(λj,j ′) in practice
because the vj (X)’s are not known. Moreover, one has to account for the ad-
ditional uncertainty in estimating the propensities in the variance estimation.
Here we derive an empirical sandwich variance estimator (Stefanski and Boos
(2002)) that accounts for the uncertainty in estimating the generalized overlap
weights from the multinomial logistic model (3.1). We provide the following
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theorem to motivate the closed-variance calculation for the pairwise ATO esti-
mates. The proof is given Section C of the Supplementary Material (Li and Li
(2019a)).

THEOREM 1. Under standard regularity conditions, when the generalized
propensity scores are estimated by multinomial logistic regression (3.1), the re-
sulting ATO estimator between groups j and j ′ is asymptotically normal

√
n
{
τ̂ h(λj,j ′) − τh(λj,j ′)

} d→ N
(
0,E{ψij − ψij ′ }2/

[
E

{
h(X)

}]2)
,

where

ψij = Dij

(
Yi − mh

j

)
wj(Xi ) +E

{
Dij

(
Yi − mh

j

) ∂

∂θT
wj (Xi )

}
I−1

θθ Sθ ,i ,

and Sθ ,i , I θθ are the individual score and information matrix of θ , respectively.

Theorem 1 suggests the following consistent variance estimator. Denote θ̂ , Ŝθ ,i ,
Î θθ as the maximum likelihood estimator of θ , the plug-in consistent estimators
for the individual score and information matrix, the variance estimator for the es-
timated ATO is expressed by

(3.2) V̂
[
τ̂ h(λj,j ′)

] =
∑n

i=1(ψ̂ij − ψ̂ij ′)2

[∑n
i=1{

∑J
k=1 1/êk(Xi )}−1]2

,

where

ψ̂ij = Dij

(
Yi − m̂h

j

)
wj(Xi; θ̂)

+
{

1

n

n∑
i=1

Dij

(
Yi − m̂h

j

) ∂

∂θT
wj (Xi; θ̂)

}
Î

−1
θθ Ŝθ ,i .

The true generalized propensity score is generally unknown in applications and
will be substituted by its sample analogue. Hirano, Imbens and Ridder (2003) sug-
gested that a consistent estimator of the propensity score leads to more efficient
estimation of the WATE with binary treatments than the true propensity score.
Our derivation of the variance estimator re-interprets their findings in the context
of multiple treatments. Specifically, with a consistent estimator for the general-
ized propensity score, the influence function for estimating mh

j , ψij/E{h(X)}, can

be viewed as the residual of Dij (Yi − mh
j )wj (Xi )/E{h(X)}—the influence func-

tion for estimating mh
j using the true propensity score—after projecting it onto the

nuisance tangent space of θ . Therefore, the efficiency implications from Hirano,
Imbens and Ridder (2003) carry over to our pairwise comparisons emphasizing the
overlap population.
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4. Application to racial disparities in medical expenditure.

4.1. The data. Our application is based on the 2009 Medical Expenditure
Panel Survey (MEPS) data. The sample contains health information, socioeco-
nomic status (SES) and total health care expenditure for four racial groups with
adult aged at least 18 years: 9830 non-Hispanic Whites, 1446 Asians, 4020 Blacks,
5150 Hispanics. We are interested in estimating the health care disparity in the
yearly total health care expenditure, after controlling for the differences due to pa-
tient health status, that is, variables reflecting clinical appropriateness and need.
Using the MEPS data, Cook et al. (2010) estimated the racial disparities between
each White-minority pair. One potential limitation of such separate binary com-
parisons is the nontransitivity among the pairwise estimates, as each comparison
may be made for a different target population (see Section A of the Supplementary
Material (Li and Li (2019a)) for a detailed discussion on transitivity). Here we fo-
cus on the simultaneous multiple-group comparisons by defining a common target
population.

The MEPS data is well-suited to study racial disparities since it records a wide
range of patient-level health characteristics. As previously mentioned, the IOM
definition of disparity excludes differences in health status and patient preferences,
but includes differences in socioeconomic status and discrimination. For this rea-
son, we follow McGuire et al. (2006) and distinguish between the set of health
status variables (XH ) and the set of SES variables (XS ), with the former including
body mass index, SF-12 physical and mental component summary, comprehen-
sive measurements of health conditions, age, gender, marital status and the latter
including poverty status, education, health insurance and geographical region. As
there is no gold standard in measuring patient preferences (McGuire et al. (2006)),
we do not interpret any variables as preference measurements, but acknowledge
that the lack of this information represents a limitation in implementing the IOM
definition. From the first column of the two boxplots in Figure 2, we observe sub-
stantial differences in the health status distributions among the four racial groups,
which indicate the necessity of adjustment.

4.2. Balance check and effective sample size. We employ the generalized
propensity scores to balance the health status variables among the four racial
groups. If the generalized propensity scores are well estimated, then the propensity-
score-weighted populations should be balanced with respect to the health status
variables, thus removing the contribution of health status differences to the dis-
parity estimates. This is the general idea behind the application of a health sta-
tus propensity score to estimate White-minority disparity in the health services
literature (Cook, McGuire and Zaslavsky (2012)). We estimate the generalized
propensity scores using a multinomial logistic regression including the main ef-
fects of all health status variables. The distributions of the estimated scores are
presented in Figure 3. There is a moderate lack of overlap especially regarding the
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FIG. 2. Boxplots for the maximum population standardized difference (PSD) and maximum abso-
lute standardized difference (ASD) for all health status covariates corresponding to each adjustment
method. The gray horizontal line indicates adequate balance at 0.1. Crude: unweighted; IPW: in-
verse probability weighting; TIPW: inverse probability weighting combined with optimal trimming;
GMW: generalized matching weighting; GOW: generalized overlap weighting.

Asian group. As such, balancing the health status variables toward the combined
population through IPW inevitably emphasizes the patients atypical for their own
racial groups, producing disparity estimates lacking policy relevance. By contrast,
balancing the health status variables toward the overlap population via the general-
ized overlap weighting (GOW) emphasizes a naturally comparable subpopulation
that are most typical in each respective group, and leads to disparity estimates
of greater policy interest. Based on the estimated propensity scores, we calculate
for each health status variable the values of maxj |PSDj | and maxj<j ′ |ASDj,j ′ |,
which are defined in Section 3.2 to examine balance in the weighted populations.
Due to the lack of overlap, IPW results in severe imbalances in more than a few
health status variables, presenting worse results than no weighting at all. On the
other hand, GOW provides the best balance among the overlap population. Two
other competing methods, optimal trimming (TIPW) and generalized matching
weighting (GMW) also perform adequately in balancing the health status variables
in their respective target populations. The balance results are similar between the
two balance criteria.

To quantify the amount of information in different target populations, we report
the corresponding effective sample size (ESS). Following McCaffrey et al. (2013),
we define the ESS for group j as

ESSh
j = (

∑n
i=1

∑J
j=1 Dijwj (Xi ))

2∑n
i=1

∑J
j=1 Dijw

2
j (Xi )

.
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FIG. 3. Marginal distributions of the estimated health status generalized propensity scores.

As weighting generally increases the variance compared to the unweighted esti-
mates based on the same sample, the ESS serves as a conservative measure to
characterize the variance inflation or precision loss due to weighting. It is evident
from Table 2 that all weighting methods reduce ESS compared to the original sam-

TABLE 2
Effective sample size of each (weighted) group. Crude: unweighted; IPW: inverse probability

weighting; TIPW: inverse probability weighting combined with optimal trimming; GMW:
generalized matching weighting; GOW: generalized overlap weighting

Whites Asians Blacks Hispanics Total

Crude 9830 1446 4020 5150 20,446
IPW 8371 10 2549 2482 13,412
TIPW 6524 695 2183 3071 12,473
GMW 4937 1285 1875 3176 11,273
GOW 6015 1166 2234 3756 13,171
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TABLE 3
Racial disparity estimates in total health care expenditure (in dollars). The point estimates are
obtained as average controlled differences by propensity score weighting. The associated 95%

confidence intervals are obtained by the sandwich variance (IPW, TIPW and GOW) or bootstrap
(GMW)

IPW TIPW GMW GOW

Whites–Asians 2402 1335 1112 1160
(530, 4274) (671, 1999) (648, 1569) (660, 1661)

Whites–Blacks 908 1148 839 886
(505, 1311) (781, 1515) (455, 1239) (518, 1253)

Whites–Hispanics 719 1257 1234 1221
(129, 1309) (804, 1711) (813, 1623) (849, 1593)

Asians–Blacks −1494 −187 −273 −274
(−3385, 397) (−872, 499) (−737, 281) (−813, 264)

Asians–Hispanics −1683 −77 122 61
(−3621, 255) (−812, 657) (−385, 621) (−479, 601)

Blacks–Hispanics −189 109 395 335
(−836, 459) (−375, 594) (−100, 820) (−82, 752)

ple. However, IPW results in a very small ESS for Asians relative to the original
group size, signaling the presence of extreme weights and lack of overlap. By con-
trast, TIPW, GMW and GOW result in more balanced ESS across groups. Among
these alternatives, GOW corresponds to the largest total ESS, matching its theoret-
ical efficiency optimality.

4.3. Analysis 1: Health status propensity score weighting. We calculate the
pairwise racial disparities as the weighted average controlled difference in total
health care expenditure using GOW, and report point estimates and 95% confi-
dence intervals (based on the sandwich variance) in the last column of Table 3.
This weighting scheme emphasizes a naturally comparable subpopulation with
similar health status, namely patients who, based on their health conditions and
clinical need, could easily be either White or from each minority group. In other
words, this subpopulation features patients whose clinical need variables corre-
spond to the intersection of the White and minority samples’ need distributions.
Among this overlap subpopulation where all four racial groups have similar health
status, Whites spent on average $1160, $886 and $1221 more than Asians, Blacks
and Hispanics on health care, with directions and magnitudes comparable to ear-
lier reports from 2003 and 2004 (Cook et al. (2009)). All three 95% confidence
intervals exclude zero, confirming that the disparity estimates are significantly dif-
ferent from the null. On the other hand, disparity estimates among the minority
groups are not significantly different from zero among the overlap population. For
example, the Asians on average spent $61 more on health care than Hispanics after
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adjusting for their differences in health status, with zero included in the associated
confidence interval.

Disparity estimates may be sensitive to the target population toward which the
health status variables are balanced, and notably so with IPW. Here, IPW forces
us to balance the health status toward a hypothetical combined population, which
is an unrealistic target for policy intervention since it emphasizes patients atyp-
ical for their own racial group. The disparity estimates are also likely subject to
bias since we found IPW fails to adequately balance the health status variables in
Section 4.2. Besides, the lack of overlap leads to loss of efficiency. For example,
the largest normalized inverse probability weight is 0.32, accounting for almost
one third of the total weights out of 1446 Asians. As a consequence, it is not sur-
prising for IPW to report the Whites–Asians disparity that is more than twice the
magnitude of the GOW estimate. The overlap issue is also apparent when we ap-
ply the optimal trimming (2.5), which excludes about 20% of the sample (2125
Whites, 44 Asians, 1001 Blacks and 603 Hispanics). Unlike IPW, both TIPW and
GMW provide disparity estimates closer to GOW, although with wider confidence
intervals.

4.4. Analysis 2: Health status propensity score weighting with rank-and-
replace adjustment. While the health propensity score weighting in Section 4.3
allows us to balance health status variables without peeking at the outcome dis-
tribution, it does not account for the contribution of SES variables. The IOM
definition requires adjustment for XH but includes justifiable differences in the
distributions of SES variables XS ; the latter reflect differential impact of opera-
tions of health care systems and regulatory climate (IOM (2003)). If variables in
XH are independent of variables in XS , then the analysis in Section 4.3 is IOM-
concordant; if the variables in XH are correlated with variables in XS , health
status propensity score weighting may inadvertently alter the distributions of XS

and only provides an approximation to the IOM-defined disparity (Balsa, Cao and
McGuire (2007)). To address such a concern, we apply the rank-and-replace ad-
justment method (McGuire et al. (2006)) to undo the undesired weighting of XS

by the health status propensity score. Cook et al. (2010) combined binary over-
lap weights with rank-and-replace SES adjustment; here we extend the method to
comparing multiple racial groups.

Following Cook et al. (2009), we perform the rank-and-replace adjustment
based on a model-based SES index to equalize the weighted SES distributions
and the unweighted marginals. We model the health care expenditure as a function
of XH , XS and racial group indicator: g(E[Yi |XH,i,XS,i,Zi]) = γ0 +XT

H,iγ H +
XT

S,iγ S + ∑J
j=1 γ1jDij , where the SES predictive index is denoted by XT

S,iγ S .
We choose g as the log link, and to allow for heteroscedastic variances (Buntin
and Zaslavsky (2004)), apply the Park test to determine the variance power rel-
ative to the mean (Manning and Mullahy (2001), Park (1966)). In other words,
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the model parameters are estimated by a Tweedie generalized linear model with
data-driven specification of the power variance function (Jørgensen (1997)). The
estimated coefficients provide the SES index value for each patient, and we ob-
tain the weighted rank of XT

S,iγ S within each racial group. The rank-and-replace
method then restores the original group-specific SES distributions by replacing
the propensity score weighted SES index values with the equivalently ranked un-
weighted SES index values. With this adjustment, the weighted distribution of the
SES index values in each group is approximately the same as the original distribu-
tion of the index values in that group, and the resulting disparity estimates become
IOM-concordant by recapturing the racial differences in SES.

We obtain the SES-adjusted expected expenditure for each patient through the
generalized linear model, and calculate the weighted average controlled differ-
ences based on the adjusted expenditure. After balancing the health status variables
toward the overlap population, factoring the SES differences into the calculation
increases the Whites–Blacks, Whites–Hispanics disparity by $183 and $199 and
decreases the Whites–Asians disparity by $137, without modifying the direction
and statistical significance. Such changes may be anticipated, for example, be-
tween Whites and Blacks in the following case. Given Whites have overall higher
health status and SES and that XH , XS are likely positively correlated, White pa-
tient with lower health status and lower SES will be weighted more heavily to
balance XH . Assuming that White patients with lower SES have lower health care
utilization, we would expect the slight increase in the Whites–Blacks disparity af-
ter restoring the original SES distributions. On the other hand, the SES adjustment
had a larger effect on disparities among the minority groups, but the results remain
statistically insignificant. Overall, the changes in the GOW estimates from Table 3
and Table 4 suggest that racial differences in health care utilization were slightly
mediated through the SES variables. The interpretations of the disparity estimates
are similar to those in Section 4.3, except that differences due to SES variables
contribute to the disparity measures by the IOM definition.

In contrast to the results obtained by the generalized overlap weights, the SES
adjustment magnifies the undue influence of extreme propensities when IPW is
used to balance XH , since for example, Whites are found to on average spend
$1194 less than Asians among the combined population. With IPW, not only the
hypothetical combined population is of minimal policy relevance, but also the in-
herent bias due to extreme propensities complicates the interpretation of the un-
usual direction in such a point estimate.

5. Simulations. To further shed light on the comparison between different
weighting methods, we conduct simulations in the context of observational stud-
ies with multiple nonrandomized treatments. Our data generating process is sim-
ilar to Yang et al. (2016) except that we consider nonzero pairwise average treat-
ment effect among the considered target populations. We generate covariates Xi1,
X2i and X3i from a multivariate normal distribution with mean vector (2,1,1)
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TABLE 4
Racial disparity estimates in total health care expenditure (in dollars). The point estimates are

obtained as weighted average controlled differences by the combined propensity score and
rank-and-replace method. The associated 95% confidence intervals are obtained by bootstrap

IPW TIPW GMW GOW

Whites–Asians −1194 1133 997 1023
(−5307, 2534) (258, 1877) (486, 1530) (464, 1584)

Whites–Blacks 1610 1610 1013 1069
(1184, 1980) (1248, 1942) (668, 1299) (728, 1357)

Whites–Hispanics 1899 1883 1374 1420
(1381, 2352) (1446, 2232) (1082, 1673) (1128, 1731)

Asians–Blacks 2804 476 16 46
(−965, 6926) (−367, 1323) (−578, 551) (−582, 594)

Asians–Hispanics 3093 749 377 397
(−689, 7149) (−83, 1565) (−184, 902) (−206, 967)

Blacks–Hispanics 289 273 361 351
(−273, 805) (−177, 629) (41, 722) (27, 721)

and covariances of (1,−1,−0.5); X4i ∼ Uniform[−3,3]; X5i ∼ χ2
1 and X6i ∼

Bernoulli(0.5), with the covariate vector XT
i = (X1i ,X2i ,X3i ,X4i ,X5i ,X6i). The

assignment mechanism follows the multinomial logistic model

(Di1, . . . ,DiJ )|Xi ∼ Multinom
(
e1(Xi ), . . . , eJ (Xi )

)
,

where Dij is the treatment indicator defined in Section 2.1 and ej (Xi ) = exp(αj +
XT

i βj )/
∑J

k=1 exp(αk + XT
i βk) is the true generalized propensity score with

α1 = 0, βT
1 = (0,0,0,0,0,0). In the first simulation with J = 3 treatment groups,

βT
2 = κ2 × (1,1,1,−1,−1,1) and βT

3 = κ3 × (1,1,1,1,1,1). We set (κ2, κ3) =
(0.2,0.1) to simulate a scenario with adequate covariate overlap and (κ2, κ3) =
(0.8,0.4) to induce lack of overlap with strong propensity tails, that is, the propen-
sity to receive certain treatment is close to zero for specific design values. We
further choose α2 and α3 so that the overall treatment proportions are fixed at
(0.3,0.4,0.3). The potential outcomes are generated from Yi(j) = (1,XT

i )γ j + εi

with εi ∼ N(0,1), γ T
1 = (−1.5,1,1,1,1,1,1), γ T

2 = (−4,2,3,1,2,2,2) and
γ T

3 = (3,3,1,2,−1,−1,−1). In the second simulation with J = 6 groups, we
similarly specify the parameters to simulate both adequate and lack of overlap.
The detailed specification and visual inspection of the overlap in each simulation
scenario can be found in Section D of the Supplementary Material (Li and Li
(2019a)). The total sample size is fixed at n = 1500 for J = 3 and n = 6000 for
J = 6.

For each scenario, we simulate 1000 datasets and estimate the pairwise causal
effects using alternative estimators. To quantify the confounding bias in each simu-
lation scenario, we first report the raw difference in means (DIF). For comparison
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among weighting methods, we consider GOW, IPW, TIPW and GMW. We also
examine a recent propensity score matching estimator proposed by Yang et al.
(2016), both without and with the optimal trimming step (GPSM and TGPSM).
GPSM separately exploits each scalar propensity score for estimating the average
potential outcomes and thus resolves the issue of matching on high-dimensional
propensity score vector. Because the target population may differ in different esti-
mators, we assess the accuracy of estimators relative to their corresponding target
estimands. Specifically, the target estimands of DIF, IPW and GPSM are pairwise
ATE for the combined population and are analytically determined from the true po-
tential outcome model, whereas the target estimands for GMW, GOW, TIPW and
TGPSM are defined for subpopulations and evaluated numerically based on Monte
Carlo integration. For each data replicate, we estimate the generalized propen-
sity scores based on the correct multinomial logistic regression model including
all covariates. The proposed sandwich variance (3.2) was used to obtain confi-
dence intervals for GOW. The empirical sandwich variance (see Section C of the
Supplementary Material (Li and Li (2019a)) for details) and the Abadie and Im-
bens (2012) variance were used to obtain interval estimators for IPW and GPSM.
Since the weight function wj(X) for GMW is not everywhere differentiable (with
infinite-many nondifferentiable points) and fails to satisfy the regularity conditions
for deriving a sandwich variance, we use bootstrap for interval estimation. Finally,
whenever trimming is used, the generalized propensity scores are re-estimated
based on the trimmed sample as refitting improves the finite-sample performance
of the resulting estimators (Li, Thomas and Li (2019)); accordingly, variance cal-
culation is carried out based on the trimmed sample.

Table 5 summarizes the absolute bias, root mean squared error (RMSE) and
coverage of each estimator with J = 3 groups. As expected, DIF shows substantial
bias and under-coverage, indirectly characterizing the magnitude of confounding
bias. All other approaches perform reasonably well when there is adequate overlap.
With lack of overlap, IPW and GPSM are sensitive to extreme propensities and
produce biased point estimates. The optimal trimming method excludes 19% to
30% of the total sample, reduces the bias and improves efficiency and coverage
in estimating the subpopulation causal effects. By down-weighting extreme units,
both GMW and GOW provide unbiased point estimates with nominal coverage.
Overall, TIPW, GMW and GOW are associated with the smallest RMSE and are
more efficient than the other methods. Among them, GOW has the smallest RMSE,
matching the theoretical predictions in Section 2.3.

The simulation results with J = 6 groups are presented in Web Figures 5 and
6 in Section D of the Supplementary Material (Li and Li (2019a)). With adequate
overlap, all methods have good control of confounding bias, produce unbiased
estimates and close to nominal coverage. GMW and GOW provide the lowest
RMSE, with the latter demonstrating higher efficiency for estimating most of the
causal contrasts (the ratio of total MSE is 1.18). With lack of overlap, the clear
separation of covariate space makes it challenging to simultaneously remove all
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TABLE 5
Simulation results with J = 3 treatment groups. With adequate overlap, the optimally trimming

excludes at most 2% of the total sample. Under lack of overlap, the optimal trimming rule excludes
19% to 30% of the total sample

Adequate overlap Lack of overlap

Metric Method τ (λ1,2) τ (λ1,3) τ (λ2,3) τ (λ1,2) τ (λ1,3) τ (λ2,3)

|Bias | DIF 0.46 0.60 0.14 0.43 0.64 0.21
IPW 0.02 0.01 0.01 0.19 0.02 0.17
TIPW 0.01 0.002 0.01 0.03 0.01 0.01
GPSM 0.02 0.01 0.01 0.25 0.10 0.15
TGPSM 0.02 0.004 0.01 0.08 0.02 0.05
GMW 0.02 0.01 0.02 0.001 0.01 0.01
GOW 0.01 0.001 0.01 0.01 0.01 0.003

RMSE DIF 0.55 0.65 0.37 0.50 0.68 0.38
IPW 0.20 0.16 0.26 1.04 0.61 1.16
TIPW 0.16 0.16 0.23 0.38 0.28 0.47
GPSM 0.26 0.22 0.31 0.86 0.51 0.90
TGPSM 0.25 0.23 0.31 0.53 0.37 0.60
GMW 0.17 0.18 0.27 0.29 0.24 0.36
GOW 0.15 0.15 0.22 0.28 0.23 0.35

Coverage DIF 0.64 0.36 0.92 0.65 0.23 0.90
IPW 0.92 0.95 0.95 0.79 0.88 0.91
TIPW 0.94 0.94 0.94 0.93 0.90 0.91
GPSM 0.99 0.97 0.97 0.88 0.91 0.91
TGPSM 0.98 0.96 0.98 0.95 0.92 0.95
GMW 0.95 0.96 0.94 0.95 0.95 0.95
GOW 0.94 0.96 0.95 0.95 0.94 0.94

confounding for estimating the 15 pairwise contrasts. By discarding more than
half of the sample, the optimal trimming method improves the bias, efficiency and
coverage properties over IPW and GPSM, both of which are subject to bias and ex-
cessive variance with extreme propensities. GMW and GOW further improve the
efficiency and coverage properties upon trimming by down-weighting the extreme
units. Concordant with the large-sample theory, GOW produces more efficient es-
timates than GMW for 12 out of 15 causal contrasts (the ratio of total MSE is
1.17). In this challenging scenario, the bootstrap CI for GMW has slightly better
finite-sample coverage than the closed-form CI for GOW based on the empirical
sandwich variance, but the closed-form CI estimator for GOW demonstrates the
best coverage among all the considered closed-form CI estimators. However, an-
other substantial gain of GOW over GMW is the computational time: for each
simulation, the bootstrap interval estimates for GMW with 1000 samples require
more than 80 times longer running time than that of the closed-form GOW interval
estimates, which can be very burdensome for large observational datasets.
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6. Discussion. We proposed a unified propensity score weighting framework,
the balancing weights, for causal inference with multiple treatments. Within this
framework, we developed the generalized overlap weights for pairwise compar-
isons to emphasize the target population with the most covariate overlap. We ap-
plied these new weights to study health care disparities and found Whites had
significantly more spendings on health care than the minority groups in 2009, af-
ter adjusting for differential distributions of health status. In contrast, the disparity
estimates are not significantly different from zero between the minorities. This
patten persists regardless of considerations of the SES differences. These results
could potentially help health policy decision makers direct more resources and in-
frastructures for the minority groups to improve their access to medical care as a
means to minimize the White-minority disparities in utilization.

Following the conceptual framework introduced in McGuire et al. (2006), the
interpretation of the health care disparity estimates in this application remains de-
scriptive. Typically, health care disparity includes justifiable differences due to op-
eration of health care systems and regulatory climate (often measured by SES)
and discrimination (residual inequality) but excludes differences in clinical appro-
priateness and need (measured by health status variables). By this definition, we
aim to quantify how much the average spending differs between racial groups vis-
à-vis a common reference population with the same clinical need. This objective
motivates the propensity score weighting methodology, which is a popular adjust-
ment tool in comparative effectiveness research. Because the disparity estimates
are calculated based on that common reference population, it is critical to con-
ceptualize different populations implied by different weighting schemes. The IPW
creates a combined population from all racial groups where the resulting patients
has need variables corresponding to the union of the White and minority samples’
need distributions. This union population inevitably features patients in other racial
groups and hence may not be representative within each racial group. To improve
upon IPW which targets this unrealistic population, we developed the generalized
overlap weights to target a subpopulation with health status corresponding to the
intersection of the White and minority samples’ health status distributions. As this
overlap subpopulation remains representative for each racial group, it could be
regarded an actionable subset to track health care disparity. To further produce
IOM-concordant disparity estimates, we combined the rank-and-replacement ad-
justment with propensity score weighting to describe the average differences in
health care utilization after adjusting for clinical need but restoring the SES differ-
ences in Section 4.4.

We do not intend to make a causal statement of the racial disparity in health care
utilization, but there may be a tendency to do so based on the parallel discussion
on health disparity or inequality. While one should generally distinguish between
health care disparity and health disparity as the corresponding methodologies dif-
fer (McGuire et al. (2006)), it is possible to borrow the weak causal perspective of
VanderWeele and Robinson (2014a, 2014b) developed around health inequality to



PROPENSITY SCORE WEIGHTING WITH MULTIPLE TREATMENTS 2411

interpret the health care disparity in Section 4. For instance, the estimates in Ta-
ble 3 could be understood as the remaining differences in health care utilization if
we were to, hypothetically, intervene on the differential health status across groups.
Because such an interpretation is not typical in studying health care disparity, we
keep the descriptive interpretation as in Cook et al. (2010), McGuire et al. (2006)
and Li, Zaslavsky and Landrum (2013).

Even though our application responds to challenges in describing patterns for
health care utilization, the proposed propensity score methods are highly relevant
in comparative effectiveness research based on observational data. For example,
the target estimand—the pairwise ATO—describes the causal comparison in the
subpopulation with clinical equipoise, and may be preferred (Li, Thomas and Li
(2019)). With the increasing use of convenience samples in observational studies,
the proposed generalized overlap weights represent a flexible adjustment method
to regain a target population where current practice remains uncertain, rather than
a target population dominated by extreme units for whom treatment decisions are
already clear. Our presentation has focused exclusively on categorical treatments
but the concept of target population remains relevant with a continuous treatment.
In the latter setting, the weighted estimands (2.1) may also be cast as the average
potential outcomes among the combined population under a stochastic intervention
or modified treatment policy (Haneuse and Rotnitzky (2013), Muñoz and van der
Laan (2012)), which could provide an alternative interpretation.

There are several directions for extending the proposed method. First, as with
all propensity score methods, a well-estimated propensity score is crucial to the
analysis. To focus on the main message, this paper adopted a convenient para-
metric model to estimate the generalized propensity scores. A natural extension
is to use flexible machine learning models to estimate the generalized propensity
scores; examples include the Generalized Boosting Model (McCaffrey, Ridgeway
and and Morral (2004), McCaffrey et al. (2013)), ensemble learning methods such
as the Super Learner (Dudoit and van der Laan (2005), Pirracchio, Petersen and
van der Laan (2015)), the debiased machine learning estimator (Chernozhukov
et al. (2018)), as well as Bayesian nonparametric models.

Second, the generalized overlap weights are obtained by setting the linear con-
trast coefficients a to allow for pairwise comparisons, which are of general scien-
tific interest with multiple categorical treatments. When there is no strong a priori
preference for a, one possibility is to choose a based on minimizing a specific loss
function (Hirshberg and Zubizarreta (2017)).

Third, this paper focused on the moment weighting estimators; these estima-
tors are not semiparametric efficient even with a correct propensity score model
(Hirano, Imbens and Ridder (2003)). An important avenue for improvement is
to consider the class of augmented weighting estimators with balancing weights
(Robins, Rotnitzky and Zhao (1994)). One could construct, for each choice of the
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balancing weights, an augmented estimator as

m̂
h,aug
j = m̂h

j −
∑n

i=1(Dij − ej (Xi ))wj (Xi )m̂j (Xi )∑n
i=1 h(Xi )

,

where m̂j (Xi ) = Ê[Y(j)|X] is the outcome regression function. It can be shown

that m̂
h,aug
j is semiparametric efficient for estimating mh

j when both the general-
ized propensity score model and the regression function are correctly specified.
Of note, when the tilting function h(Xi ) = 1, m̂

h,aug
j has an additional doubly-

robustness property such that it is consistent to E[Y(j)] when either the general-
ized propensity score model or the regression function is correctly specified, but
not necessarily both. However, this robustness property does not generally hold
for m̂

h,aug
j when h is a function of the propensity scores, such as the optimal tilt-

ing function considered in Section 3.1. In this case, the consistency necessitates
a correct propensity score model regardless of the outcome model (also see Li
and Li (2019b) for an example with ATT). Nevertheless, outcome regression may
still increase the efficiency of the weighting estimator. For this reason, it would be
valuable in future work to explore the application of the augmented weighting es-
timator to the racial disparity study. For example, in each racial group, we could fit
an additional regression model for the health care expenditure as a function of XH ,
and estimate pairwise disparity by τ̂ h(λj,j ′) = m̂

h,aug
j − m̂

h,aug
j ′ for the analysis in

Section 4.3. It is currently unclear how to combine the rank-and-replace adjust-
ment with the augmented weighting approach for the analysis in Section 4.4, since
the rank-and-replace adjustment already involves an outcome model.

Finally, the balancing weights framework pursues weighting by propensity
scores to achieve balance, with different choices of weights targeting specific pop-
ulations and causal estimands. An alternative strand of recent literature derives
weights that directly balance the covariates, bypassing the estimation of propensity
scores; examples include the entropy balancing (Hainmueller (2012)), the stabi-
lized balancing weights (Zubizarreta (2015)) and the approximate residual balanc-
ing (Athey, Imbens and Wager (2018)). Those weights usually focus on the ATE
or ATT estimand with binary treatments, and do not involve adaptively changing
the target population as our general balancing weights framework. In practice, it is
prudent for the analyst to choose a method according to the scientific question and
settings of specific applications rather than fixating on one single method.
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SUPPLEMENTARY MATERIAL

Supplement to “Propensity score weighting for causal inference with mul-
tiple treatments” (DOI: 10.1214/19-AOAS1282SUPP; .pdf). Supplement A: On
Transitivity. We provide a detailed discussion on transitivity of the target estimands
for pairwise comparisons. Supplement B: Proof of Propositions. We present de-
tailed proofs of Propositions 1 to 3 in Section 2.3. Supplement C: Proof of Theo-
rem 1. We provide the derivation and related discussions of the variance estimator
for the generalized overlap weighting. Supplement D: Additional Simulation Re-
sults. We present additional figures and numerical results for the simulation study
in Section 5.
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