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Purpose: Angiogenesis is considered as a major progenitor in the progression of obesity. The current manuscript
enumerates the extrinsic role of angiogenesis in obesity.
Result: High caloric diet and lack of physical exercise are the most common causes of obesity and related me-
tabolic conditions. A grossly elevated levels of fat in adipose tissue escalate certain complications which further
worsen the state of obesity. Enlargement of white adipose tissue (WAT), deposition of fat mass, proliferation of
endothelial cells, production of inflammatory cytokines induces the formation of denovo capillaries from parent
microvasculature. Also, several intracellular signaling pathways precipitate obesity. Though, angiostatic mole-
cules (endostatin, angiostatin and TNP-470) have been designed to combat obesity and associated complications.
Conclusion: Adipose tissue trigger growth of blood capillaries, and in turn adipose tissue endothelial cells pro-
mote pre-adipocyte proliferation. Modulation of angiogenesis and treatment with angiostatic substances may
have the potential to impair the progression of obesity.

1. Introduction

Obesity is a systemic inflammatory condition that threatens the
public health domain globally. The most common causes of obesity are
high fat diet, lack of sleep, western lifestyle, a neurological and endo-
crine disorder. In 2016 approximately 650 million were obese. In
United States nearly 70 % of the population is obese. [1]. Obesity
promotes the development of coronary heart disease, liver cirrhosis,
hypertension, stroke, dyslipidemia, metabolic syndrome, arthritis, in-
sulin resistance and cancer like gastrointestinal cancer, liver cancer that
are responsible for vascular dysfunctioning.

Adipose tissue is an endocrine organ surrounded by a dense network
of blood capillaries, regulates the production of hormones, angiogenic
factors and cytokines [2,3]. It encompasses a mixture of varying adi-
pocytes with a stromal vascular cell covering, housing mesenchymal
stem cells, endothelial cells, fibroblasts. The adipokines transmit signals
from adipose tissue to the brain and other parts of the body by upre-
gulating the level of some adipokines [4,5]. A functional link between
endothelial cells and adipocytes is regulated by paracrine signaling
pathway Expansion of adipose tissues is accelerated by hypoxia, hy-
perplasia, inflammation, structural remodeling of blood capillaries,
infiltration of macrophage, through angiogenesis [6–8]. Formation of
de novo vasculature from the parent one and activation and relocation
of endothelial cells induces angiogenesis [9–11]. Angiogenesis is a

multistep process, participates in the healing process, organ restoration,
growth of the female reproductive system and fetal development during
pregnancy. The event of angiogenesis is counterbalance by proangio-
genic molecules including, monocyte, tumor necrosis factor alpha
(TNF-α), interleukin-6, endothelial and anti- angiogenic molecules such
as endostatin, [12], Kallistatin [13]. However, if the proangiogenic
molecules are overexpressed, it promotes angiogenesis by dysregulating
endothelial function [14,15], if antiangiogenic molecules predominate
over the angiogenic regulators, angiogenesis is repressed. Angiogenesis
sustained inflammation by supplying nutrients and oxygen to in-
flammatory cells and induces Crohn disease and ocular disorders. In a
study conducted on animal model such as rabbit and chick chor-
ioallantic membrane (CAM), [16–18] it has been observed that adipose
tissue regulates angiogenesis by secreting various angiogenic mod-
ulators [19]. However, the process of angiogenesis is balanced by tar-
geting its angiogenic factors.

2. Pathogenesis of obesity

There are several pathological mechanisms that contributes to the
progression and management of obesity. Obesity occurs due to lack of
physical exercise, genetic predisposition, high caloric intake, and
mental disorders [20,21]. Apart from this, the monogenic form of
obesity occurs due to deficiency of leptin and mutation of melanocortin
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4 receptors that are secreted in the hypothalamus and regulates energy
homeostasis [22]. Obesity is a major reason for certain inherited syn-
drome such as Prader will syndrome, corex syndrome and MOMO
syndrome. There are various endogenous substances, act on numerous
intracellular signaling pathway, and promotes appetite, metabolism,
energy storage, and expenditure.

2.1. Leptin

Leptin is a substance produced in the peripheral region. Leptin helps
in controlling appetite and satiety in the hypothalamus region of CNS.
Adipocytes secretes type 1 cytokine leptin in response to the amount of
energy present in the body. Appetite and satiety are regulated by signals
present in the hypothalamus [23]. The signals begin from the hy-
pothalamus (arcuate nucleus) that has an output to the lateral hy-
pothalamus (LH) and ventromedial hypothalamus (VMH). The arcuate
nucleus comprises of two neurons [24].The first neuron is neuropeptide
y (NPY) and agouti related protein that provide input to LH and dys-
regulate the function of VMH. The other is pro-opiomelanocorticotropin
and cocaine (POM/CART) which stimulates input to VMH and inhibit
input to LH. Thus, NPY stimulate feeding whereas POM regulate satiety.
Though, inhibition of NPY neuron and activation of POM result in a
deficiency of leptin and development of obesity [25].

2.2. Ghrelin

Ghrelin is a peptide hormone, generated by ghrelinergic cells pre-
sent in the stomach, lung, gonads, pancreatic cell and jejunum. It acts as
a neuropeptide in CNS and induces energy distribution and ex-
penditure. It increases hunger by acting on a hypothalamic brain and
enhance gastric acid secretion and gastrointestinal motility when food
is administered. Ghrelin level is increased before a meal and reduced
after. Data conducted over the years revealed that ghrelin act as a
messenger between homeostasis in body and brain though adiposity
cascades [26–28].

2.3. Nesfatin-1

Nesfatin -1 is a polypeptide encoded in the N terminal region of
protein precursor, Nucliobindin2 (NUCB2) [29]. Nesfatin is produced in
the hypothalamus region as well as in pancreatic cells and it takes part
in the stimulation of appetite and storage of lipids. Nesfatin-1 is present
in the paraventricular nucleus, arcuate nucleus, and nucleus of tractus
solitaries. Increased level of Nesfatin-1 in the hypothalamus, prevent
appetite and weight gain. Nesfatin-1 diminishes hunger by inactivating
NPY and stimulating POM in the hypothalamic center in CNS. It also
regulates insulin secretion from pancreatic cells It has been reported
that intraerebroventricular injection of nesfatin-1 in patients stimulates
insulin secretion and gastric emptying [30].

3. Adipose tissue

Adipose tissue consists of adipocytes, macrophages, and fibroblasts.
As such, it induces sustained inflammation, regulates homeostasis and
secrete free fatty acids during caloric restriction. During obesity, fat
stores in adipose tissue of liver, kidney heart, lungs. In addition, excess
visceral accumulation contribute to the progression of various compli-
cations including hypertension, dyslipidemia which attributed to a
stronger predictor of morbidity and mortality [31]. The two types of
adipose tissues is brown adipose tissue (BAT) and white adipose tissue
(WAT). BAT transform nutrient into energy. Brown fat cells exhibit
homeostasis and mitochondrial genetic program which dissipate energy
by stimulating biogenesis of mitochondria [32].

White adipose tissue (WAT) stores triglycerides. WAT is also func-
tioned as an endocrine organ, express a unique paracrine and autocrine
activity by regulating the production of molecules [33]. Adipocytes
stimulate the secretion of molecules, regulate body weight and induce
chronic inflammation (IL-6) (Fig. 1).

It exhibit a unique property to remold or expand in any dimension.
This effect is mediated by elevating the number of adipocyte cells
(hypertrophy) or by employing new adipose cells (hyperplasia). In

Fig. 1. Several effects regulated by Adipose Tissue.
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obese state, enlargement of adipose tissue is regulated by various fac-
tors such as sustain inflammation, the release of inflammatory cyto-
kines, over production of extracellular matrix, infiltration of immune
cells and neovascularization. Although, infiltration of macrophages
(immune cells) expedite chronic inflammation and insulin resistance.
However, deposition of macrophages inhibits the release of in-
flammatory cells, resulting in weight loss [34].

Macrophages are categorized into two types namely M1 and M2
macrophages. Lumeng et al. studied a model in which he proposed that
conversion of M2 anti-inflammatory macrophages into inflammatory
M1 macrophages promotes the progression of obesity and its related
complications [35]. Macrophages are activated by T cytotoxic cells
present in adipocytes, which elevate insulin sensitivity and inflamma-
tion. Macrophages induce the progression of obesity and its associated
metabolic syndrome by eliminating apoptotic cells and inhibit the re-
lease of toxic substances. Therefore, obese subjects are classified as the
fully dysregulated metabolic system and moderate dysregulated meta-
bolic system [36].

3.1. Mechanisms of angiogenesis

The denovo development of microvasculature during the progres-
sion of neonatal occurs through the event of vasculogenesis, in which
angioblasts form into primary blood vessel. And further vessels growth
occurs during organ and tissues development through the event of an-
giogenesis, in which new blood capillaries develop from parent vessel.
From the evidence, it has been clear that angiogenesis [37–40] reg-
ulates the development of organs and tissue and perform varied func-
tions. Insights into the mechanism of angiogenesis are taken from ex-
perimental models i.e developing zebrafish embryo and the mouse
retina. Angiogenesis regulates the proliferation of endothelial cells,
relocation to extra cellular matrix, the formation of a lumen and
maintains the circulation of the body. The proliferation of endothelial
cells is regulated by the VEGF family of growth factors. These growth
factors and their receptors are known as master regulators of en-
dothelial cell formation. VEGF-A, act via VEGFR2 function as a mito-
genic and chemoattractant signal for endothelial cells. In response to
VEGF-A endothelial cells multiply, and acquire a phenotype accom-
panied by the development of branches. The action of VEGFs and their
receptors are regulated by the Notch signaling pathway, which man-
ifests the responsiveness of endothelial cells to VEGF. The activation of
Notch signaling by Delta-like 4 (Dll4) in the tip cell dysregulates the
action of VEGF signaling in the adjacent cell, resulting in the acquisition
of a stalk-cell phenotype. The continuous interaction between VEGF,
Notch and, Dll4 leads to the event of angiogenesis.

4. Angiogenesis in adipose tissue

Angiogenesis regulates various pathological processes and partici-
pate in wound healing, cancer and inflammatory conditions.

The event of angiogenesis is regulated by

(i) Activation and proliferation of endothelial cells by angiogenic
stimuli.

(ii) The incursion of endothelial cells into the stroma of adipose tissue
by cleavage of basement membrane components.

(iii) Formation of the lumen by endothelial cells.
(iv) Finally, blood capillaries are arranged in adipocytes through the

formation of endothelial cells and basement membrane [41–43].

The dense network of blood capillaries is necessary to inhibit the
prevalence of hypoxia. Hypoxia is a chronic condition and is defined as
the amount of blood flow to WAT and supply of oxygen to fat cells when
hypertrophied adipocyte is larger.

Although, tissue hypoxia is manifested by various cellular and
molecular mechanism namely (i) infiltration of macrophages by

phagocytic stimuli, (ii) deficit in oxygen supply [44,45]. Hypoxia is
triggered by Hypoxia inducible factor-1 (HIF-1) and it is comprised of
HIF-1 α and HIF1-β. [46] Hypoxia promotes angiogenesis by regulating
the production of VEGF, platelet derived growth factors (PDGF) and
various inflammatory mediators (IL-6, TNF-α) in endothelial cells (ECs)
[47]. Hypoxia inhibits angiogenic response and induces EC death. En-
dothelial cells hasten its response when oxygen deficiency occurs. Acute
hypoxia releases inflammatory cytokines by adhering to leukocytes on
endothelium cell lining resulting in inflammation. Also, sustainable
hypoxia regulates the expression of certain cytokines such as Nuclear
factor Kappa B by activating HIF-1, by promoting endothelial cell death
and apoptosis. Accumulating pieces of evidence hypothesis that during
hypoxia, deposition of extracellular matrix in WAT results in fibrosis
and mild inflammation [48]. Angiogenesis is a physiological process,
regulates several body functions. The physiological event of angiogen-
esis is stimulated by the enlargement of adipose tissue under the effect
of VEGF [49]. However, in pathological conditions, the EC continues to
proliferate and significantly result in tumor progression. The capillaries
are surrounded by endothelial cell layer and comprised of pericytic cells
and basement membrane components. The process of angiogenesis is
regulated as angiogenic factors (VEGF, TNF- α and β) released from
tumor cells to the EC receptors. When EC activates and migrates the cell
releases various digestive enzymes viz. protease and heparanese and
degrade extracellular matrix (ECM). Degradation of ECM stimulates the
growth of new vasculature. The new microvessels are likely to be ma-
ture by reconstructing basement membrane components and en-
dothelial lining.

5. VEGF intracellular signaling

The vascular endothelial derived growth factor is an angiogenic
agent that plays an intrinsic role in the angiogenic events [50]. VEGF is
divided into six members (VEGF-A – VEGF-F) [51]. Few hormones such
as estrogen and thyroid stimulating hormone (TSH), also stimulates
signaling of VEGF in other cells [52] (Fig. 2).

VEGF promotes the activity of ECs by binding to transmembrane
receptor tyrosine kinase (RTKS, located in endothelial cell lining.
During the event of angiogenesis VEGF-R1 and VEGF-R2 sited on EC are
activated while VEGF-R promotes intracellular signaling. However,
VEGF-R1 acts as a negative regulator of angiogenesis. Therefore, VEGF-
A binds to VEGF-R2 site to activate numerous angiogenic signaling

Fig. 2. VEGF Intracelluar Signalling Pathway.
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pathway, which leads to cellular proliferation, mitogenesis and over-
production of growth factors. VEGF-C bind to VEGF-R3, promotes mi-
togenesis in lymphatic cells.

6. Notch signaling pathways

Notch is a heterodimeric compound, consist of notch extracellular
domain (NECD) and notch intracellular domain (NICD [53]. The notch
cell signaling elicit tumor angiogenesis and generates inactive tumors.
Notch delta like 4 (DLL4) stimulates cell signaling pathway through
endocytosis in stromal cells to increase vascular functions [54]. Al-
though inhibition of DLL4 may induces proliferation in ECs, elicit an-
giogenic events [55]. Beside this, tumor cells diffuse poorly, decreases
oxygen concentration in cell and tumor progression is inhibited. It has
been stated that DLLL4 present in ECs activates Notch 3 receptor, by
transforming tumor progression from inactive to active state [56].
Consequently such an outcome reflects Notch signaling pathway as a
therapeutic molecule for the designing of denovo angiostatic com-
pound.

6.1. Role of hypoxia in adipose tissue angiogenesis

Adipose tissue in experimental animals becomes hypoxic when fed
with high fat diet (HFD). Hypoxia has been identified by using chemical
indicators of hypoxia and direct monitoring of tissue oxygen tension by
microelectrodes [57–59]. The expression and secretion of pro-angio-
genic factors by cultured adipocytes are regulated under low oxygen
[60,61]. Also, it has been evidenced that enlargement of adipose tissue
after administration of HFD is not accompanied by elevated blood flow
[62]. Overexpression of active form of HIF-1α in adipose tissue failed to
promote pro-angiogenic responses as it levels increased in local in-
flammation [63]. Inhibition of HIF-1α and HIF-1β in adipose tissue
decrease lipid accumulation, and prevent HFD-induced obesity and
insulin resistance [64,65]. Nevertheless, HIF-1α promotes growth and
maintenance of brown adipose tissue, as the expression of HIF-1α im-
pairs thermogenesis and energy expenditure [66]

6.2. Functional link between adipocytes and endothelial cells

Endothelial cells regulate homeostasis and provide a barrier be-
tween the capillaries wall and blood lumen. Also, endothelium induces
the release of certain cytokines in response to metabolic stress, hypoxia
and oxidative stress and maintain vascular tone coagulation, and fi-
brinolysis [67]. The interaction between the endothelial cell and release
of inflammatory cytokines in adipose tissue results in development of
cardiovascular disease in obese subjects [68]. Dysfunctioning of en-
dothelial cells is a multifactorial process in obesity. Obesity is char-
acterized by the production of reactive oxygen species (ROS) due to the
dysregulation of mitochondria function. When the amount is low it
functions as an intracellular secondary messenger and if the amount is
high it results in cellular toxicity. The major enzymes responsible for
ROS generation are cyclooxygenase (COX), lipoxygenase (LOX),
NADPH oxidase and leptin, resulting in decrease nitric oxide (NO)
production. The NO generation is diminished due to peroxynitrite for-
mation (ONOO) [69]. Accumulation of ROS and production of in-
flammatory adipokines NFκB signaling induces apoptosis and in-
flammation by stimulating the countenance of growth factors and
adhesion molecule. Inflammatory mediators are activated by NFκB
signaling and regulates the expansion of ECs by increasing the expres-
sion of intracellular cell adhesion molecule-1 (ICAM-1). Thus resulting
in the relocation of leukocytes, induces the progression of arthro-
sclerosis.

6.3. Dysfunctional adipose tissue in obesity and tumor development

Obesity is defined as the accumulation of fat in different organs of

the body which results in the expansion of adipose tissue and metabolic
dysfunctioning. Alteration in adipose tissue and the progression of
cancer occurs due to altered cytokine and lipid secretion profiles.
Energy equilibrium and fuel homeostasis is required to maintain a strict
balance between energy intake and energy expenditure stimulated by
CNS. There are two distinct types of adipose tissue, white and brown,
with varied locations and functions [70]. The function of white adipose
tissue (WAT) is to maintain energy homeostasis by storing triglycerides
and secreting fatty acids. Also, WAT plays a significant role in immune
and inflammatory regulation, glucose and lipid thermogenesis, by
producing several adipokines [71,72].WAT is a heterogeneous tissue,
comprises a peripheral subcutaneous component (SAT) and visceral
adipose tissue (VAT) [73]. Obesity in abdominal is related to sub-
cutaneous fat with an elevation VAT that is concerned with the devel-
opment of metabolic disorders and tumor progression [74–76]. Brown
adipose tissue (BAT) is present in the axillary region, thymus and in the
dorsal midline region of the thorax and abdomen [77]. BAT plays a vital
role in thermogenesis, through uncoupling protein- (UCP-1) [78,79].
Cancer is characterized by cachexia, a complex syndrome that involved
profound metabolic imbalances [80]. The colorectal tumor-induced
cachexia on BAT in an animal model has been studied [81]. Researchers
had demonstrated the presence of another type of adipose tissue known
as brown-like adipose tissue [82].

BAT is a thermogenic adipose tissue characterizes by bycold-in-
duced signals via the sympathetic nervous system. The restriction in
adipose tissue enlargement results in fat accumulation in other parts of
the body [83]. Expanded fat depots in obesity are less efficient in
storing dietary fatty acids so that obese subjects exhibit an elevation in
plasma free fatty acids (FFA). An analysis of cancer-induced modifica-
tions in the lipid provide clues correlating obesity and cancer. Altera-
tion in lipid metabolism induces cancer progression by an FFA increase,
due to its function as an oncogenic cascade. It has been reported that
increased fatty acid synthase (FASN) activity has been shown in breast
cancer cell lines or cancer precursor lesions in distinct locations. The
inhibition of the FASN activity decreases the cancer cells’ proliferative
activity. Additionally, research demonstrated a correlation between
mutations in the FASN enzyme and cancer incidence [84]. Moreover,
FASN act as an important biomarker of over nutrition induced insulin
resistance.

6.4. Clinical relevance of increased adiposity on the cardio metabolic and
overall comorbities risk

Surplus adiposity errands the assembling of cardiometabolic varia-
tion viz. type 2diabetes (T2D), hypertension, and dyslipidemia, re-
sulting in morbidity [85,86] and decrease life expectancy. The menace
of developing obesity-related disorders is related to the grade of adip-
osity [87] and storage of fat in the visceral section [86]. Obese subjects
might not be at elevated risk for the progression of metabolic syndrome,
and hence their clinical condition is known as metabolically healthy
obesity (MHO) [88]. In comparison, obese individuals suffering from
insulin resistance, high blood pressure, and dyslipidemia are measured
as having metabolically abnormal obesity (MAO) [89]. The privation of
consent measures to define MHO does not allow the precise measure-
ment of the prevalence of the MHO and MAO phenotypes, making the
comparison between distinct investigation tough [90]. Therefore, the
reported occurrence of MHO varies, ranging from 3 % to 57 % of obese
subjects, relying on the techniques used to define this condition
[91–93]. Numerous mechanisms have been studied to define the fewer
harmful metabolic profile of MHO patients. Among them, an inferior
inflammatory outline, complex lipolytic action [94], elevated physical
activity, and decreased liver fat evidenced by lowering liver enzyme
concentrations [95] have been studied. All the above-listed parameters
might distinguish metabolically unhealthy from a metabolically healthy
obese person [96–99].
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7. Role of angiogenesis in obesity

Angiogenesis is an essential element involved in the enlargement of
WAT. Adipose tissue growth occurs through hypertrophy and hyper-
plasia and relied on the plasticity of microvessel in the tissue. The re-
location of adipocytes elevates during obesity. It allows an adequate
supply of nutrients and oxygen to new blood vessels [100,101]. Obe-
sity-related vascular disorders take place when lipid storage exceeds a
normal level due to the accumulation of fat in various organs of the
body.

The event of angiogenesis is more susceptible during the expansion
of ECs and is supplemented by the activation of receptors. The forma-
tion of new vessels in adipocytes is regulated by an equilibrium be-
tween the pro-angiogenic and anti-angiogenic agents. The pathogenesis
of neovascularization occurs due overexpression of pro-angiogenic
molecules in WAT. The adipocytes produce certain angiogenic sub-
stances including VEGF, angiopoietin, leptin [102]. The process of
adipogenesis is accompanied by angiogenesis. Angiogenesis is pre-
vented by triggering pro-angiogenic factors result in the regulation of
WAT mass in obesity [103,104]. It has been stated that various an-
giogenic inhibitors angiostatin and endostatin have an anti-angiogenic.
All angiogenic inhibitors perform different modes of action. TNP 470
decreases appetite, fat mass, and expansion of adipose tissue by in-
hibiting methionine aminopeptidase-2 in ECs [105]. Angiostatin and
endostatin dysregulates the function of ECs by reducing the fat mass
[106].

Antibodies restrained the formation of blood capillaries by reducing
the expansion of WAT mass in the obesity-induced model [107]. Ko-
lomin et al. proposed that the progression of obesity is inhibited by
inducing PHB into WAT of dietary-induced obese mice. Therefore, an-
giogenesis is turn out to be the potential target for the management of
obesity.

7.1. Current therapeutic approach in the management of obesity

Treatment of obesity along with caloric restriction includes lifestyle
changes and adequate physical exercises. Also, surgical operations
might provide an alternative operation in the management of obesity
[108,109]. Constraining of angiogenesis process helps in reducing the
progression of obesity. Administration of anti-angiogenic compounds
such as endostatin, angiostatin, TNP-470 and VEGF inhibitors in obese
mouse, results in weight loss. Barnhart et al. proposed that when obese
monkeys are treated with adipotide induce apoptosis of WAT, it leads to
loss of fat mass, a proliferation of ECs and increased EC cell death. A
peptide is designed to inhibit the progression of angiogenesis by causing
apoptosis in WAT, thus improving glucose tolerance [110]. Recently
two anti-obesity drugs have been used in the management of obesity
viz. orlistat (lipase inhibitors) and Lorcaserin (serotonin 2 receptor)
[111]. Various efforts have been made to mitigate the progression of
obesity by increasing lipid mobilization and oxidation. Fewer anti-
diabetic drugs have been approved for the management of weight loss
and for lowering the risk of cardiovascular diseases [112,113], inhibi-
tion of DPP4 enzyme activity by antidiabetic medications stimulates
insulin secretion that lowers blood glucose level [114].

In recent years, vascular targeted nanotherapy has been used in the
management and treatment of high fat diet induced obesity in experi-
mental animals [115–117]. Targeted nanotherapy is done by binding to
targeted peptide nano polymers (NPs) which act as drug carriers. Na-
notherapy targeting at ECs in the WAT for the management of obesity in
animal models has been studied. PHB-targeting ligand (AHP) attached
to a KLA peptide (AHP-KLA), and promotes cell death in the WAT
vasculature in experimental animals [118]. Inhibition of WAT vascu-
lature results in body weight loss. The scientist had discovered that AHP
(PHB ligand) and KLA when binds to NPs, the action of drugs increases
while AHP-KLA interaction decreases its action. The same effect was
seen in animal models by using distinct nanocarriers. Various PHBTa
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ligands were developed viz. oncomirs (miR-361) and FLs (FL3 and 37)
[119,120] which showed similar effects as AHP. PHB has been proved
to be a novel approach to combat obesity and related secondary me-
tabolic disorder (Table 1).

The use of nanocarriers in association with active targets is arising
as a therapeutic approach for the treatment of diseases. The nanosys-
tems increase the drug availability to target organ by enhancing the
drug EPR action [122–124].

8. Conclusion

High caloric intake and inadequate physical activity result in the
storage of fat. Obesity is involved in the development of diabetes
mellitus, stroke, cancer. Enlargement of adipocytes occurs due to
weight gain. During obesity, adipose tissue stimulates the enlargement
of endothelial cells which in turn enhances the formation of denovo
blood capillaries. The event of angiogenesis is inhibited by elevating the
level of serum leptin that counteracts the accumulation of lipids in
adipocytes. In recent years, various antiangiogenic compounds have
been designed i.e. endostatin, angiostatin, and TNP-470 which acts by
modulating the pathogenesis of angiogenesis. Additionally, anti-
angiogenic agents also offer opportunity in the management of obesity
and metabolic disorders. New antiangiogenic molecules are become
available, which can be useful in obesity management. Moreover, this
means of management is an interesting method, enlightening the an-
tiangiogenic molecules interfering with angiogenesis.
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