
Angiogenesis in diabetes and obesity

Rui Cheng & Jian-xing Ma

Published online: 10 February 2015
# Springer Science+Business Media New York 2015

Abstract The prevalence of diabetes mellitus and obesity
continues to increase globally. Diabetic vascular complica-
tions are the main chronic diabetic complications and associ-
ated with mortality and disability. Angiogenesis is a key path-
ological characteristic of diabetic microvascular complica-
tions. However, there are two tissue-specific paradoxical
changes in the angiogenesis in diabetic microvascular compli-
cations: an excessive uncontrolled formation of premature
blood vessels in some tissues, such as the retina, and a defi-
ciency in the formation of small blood vessels in peripheral
tissues, such as the skin. This review will discuss the paradox-
ical phenomena of angiogenesis and its underlying mecha-
nism in obesity, diabetes and diabetic complications.
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1 Introduction

Diabetes mellitus (DM) is a metabolic disease and is charac-
terized by high serum glucose levels with the symptoms of
polyuria, polydipsia and polyphagia. Type 1 diabetes mellitus
(T1DM) and type 2 diabetes mellitus (T2DM) are the main
types of diabetes mellitus. T1DM is caused by the loss of
pancreatic beta cells, which leads to insulin deficiency.
T2DM is characterized by insulin resistance or accompanied
by relative insufficient insulin [1]. With the changes of life-
style and increased obesity, DM case numbers worldwide rose
from 153 (127–182) million in 1980, to 347 (314–382)

million in 2008, and 90 % of the cases were T2DM [2]. It is
conservatively predicted that, as the result of overweight, obe-
sity and increasing life span, approximately 429–552 million
people globally will have diabetes by 2030 [3, 4]. When the
body mass index exceeds 30 kg/m2, people are considered
having obesity [5]. The epidemiology study showed that peo-
ple with obesity have significantly increased risk of diabetes
[6]. Therefore, T2DM has been termed as the complication of
obesity [7].

DM can result in disorders of different organs, which are
defined as diabetic complications. Diabetic ketoacidosis and
coma are lethal acute complications [1]. Diabetic vascular
complications due to chronical exposure to hyperglycemia
are the main chronic diabetic complications and associated
with mortality and disability. Macrovascular abnormalities
and microvascular abnormalities are two main groups of dia-
betic vascular complications. Macrovascular abnormalities,
including myocardial infarction and cerebrovascular disease
are associated with the damage in arteries. Microvascular ab-
normalities affects small blood vessels, and include diabetic
retinopathy (DR), nephropathy and neuropathy [8].

Formation of new blood vessels includes angiogenesis [9],
which refers to the formation of new capillaries from prolifer-
ation of existing endothelial cells, and vasculogenesis [10],
which refers to de novo blood vessel formation from endothe-
lial progenitor cells. Physiological angiogenesis is only trig-
gered in reproduction of endometrium, wound healing and the
placenta morphogenesis during pregnancy in adult. Persistent,
uncontrolled angiogenesis is a key pathological characteristic
of cancer and microvascular complications of diabetes. It is
known that angiogenesis is regulated by a counter balance
between endogenous angiogenic stimulators and angiogenic
inhibitors [9] (Fig. 1). When the angiogenic stimulators pre-
dominate, such as vascular endothelial growth factors
(VEGFs) [11, 12] and erythropoietin (EPO) [13, 14], endothe-
lial cells proliferate and migrate, leading to angiogenesis.
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When angiogenic inhibitors are dominant, such as pigment
epithelium-derived factor (PEDF) [15, 16], kallistatin [17] and
thrombospondin-1 (TSP-1) [18], angiogenesis is suppressed
and eventually arrested. The angiogenic balance is a regulator
of angiogenesis by directly targeting vascular endothelial cells
and is modulated by multiple factors, such as hyperglycemia-
induced oxidative stress, cytokines and inflammatory factors.
There are detailed reviews regarding the mechanisms for an-
giogenesis in diabetic complications [19, 20] and the interaction
between adipose tissues and angiogenesis [21, 22]. However, in
diabetes, there are two tissue-specific paradoxical changes in
small blood vessels in diabetes; one is excessive, uncontrolled
formation of premature blood vessels in some tissues such as
the retina, which is an important pathological feature in prolif-
erative diabetic retinopathy (PDR). The other is the deficiency
in the formation of small blood vessels in peripheral tissues
such as the skin, which contributes to the impaired wound
healing in the skin. Here we review the paradoxical phenomena
of angiogenesis and its underlying mechanism in diabetes, di-
abetic complications and obesity.

2 Paradoxical angiogenesis in patients with diabetes

DR is the most common microvascular complication of diabe-
tes. DR has two stages, dependent on the absence or presence
of retinal neovascularization. One is non-proliferative diabetic
retinopathy (NPDR) which lacks abnormal retinal

angiogenesis. Microaneurysms and intraretinal hemorrhages
are the major pathological changes in patients with NPDR.
Based on the severity of microaneurysms and intraretinal hem-
orrhages, NPDR is classified intomildNPDR,moderateNPDR
and severe NPDR [23]. Severe NPDR increases the risk of
PDR from 5 % in mild NPDR to 52 % within 1 year, and to
60 % of high risk PDR in 5 years [24]. PDR is characterized by
pathological retinal angiogenesis accompanied by vitreous
hemorrhage or subhyaloid hemorrhage. PDR is the major cause
of retinal detachment and vision loss in patients with diabetes.
Although laser photocoagulation has side-effects, it remains a
standard major treatment of PDR [23]. However, according to
the mechanism underlying retinal angiogenesis in PDR, anti-
VEGF therapy obtained achieved encouraging effects recently
and may become a major therapy of PDR [25–30].

Impaired wound healing is also referred to as chronic wound
including slow healing of wound and non-healing wound. Di-
abetes is one of the major reasons of impaired wound healing
[31, 32]. The prevalence of foot ulcers due to impaired wound
healing is predicted to be 25 % in diabetic patients [33, 34].
Twelve percent of patients with foot ulcer may eventually need
amputation. However, the ulcer recurrence rate is 50 % in the
contralateral limb within 5 years and the 5-year survival rate is
only 50 % after the lower extremity amputation [34].
Hyperglycemia-induced reactive oxygen species generation is
crucial for impaired wound healing [35, 36]. Re-
epithelialization and angiogenesis are two essential steps in
wound healing. Angiogenesis starts at the 3rd day after
wounding [37–39]. Wound healing is delayed in the presence
of high levels angiogenic inhibitors [40, 41], and promoted by
local administration of VEGF [42, 43]. Multiple growth factors
and cytokines, such as VEGF, fibroblast growth factor (FGF-2)
and platelet-derived growth factor (PDGF), released by
keratinocytes, fibroblasts, endothelial cells, macrophages and
platelets are involved in wound healing and reduced in diabetic
wound [44]. Nitric oxide (NO) is essential for wound healing,
which can trigger the mobilization of bone marrow endothelial
progenitor cells [44, 45] and mediating the induction of VEGF
by growth factors or cytokines in keratinocytes and in wound
repair [46]. However, the detailed mechanism of reduced
growth factors and cytokines in diabetic wound remains un-
clear. Enhanced depositions of basement membrane-like mate-
rials and pericyte detachment are observed in the buttock skin
of the patients with long standing juvenile diabetes [47], sug-
gesting that abnormal structure of the skin and blood vessel
may be associated with the impaired wound healing in DM.

3 The mechanism underlying abnormal angiogenesis
in diabetes

VEGF is a well-studied key angiogenic stimulator, which pro-
motes proliferation and migration of endothelial cells, and

Fig. 1 The disturbed angiogenic balance in impaired wound healing in
diabetes and diabetic retinopathy. Diabetic retinopathy is the result of
over-production of angiogenic stimulators and reduced angiogenic inhib-
itors in the retina; impaired wound healing in diabetes is the consequence
of elevated systemic levels of angiogenic inhibitor and reduced angiogen-
ic stimulator levels. VEGF vascular endothelial growth factors, EPO
erythropoietin, WNT the wingless-type MMTV integration site, PEDF
pigment epithelium-derived factor, TSP-1 thrombospondin-1
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increases permeability of blood vessels via binding with the
VEGF receptors, and then activating extracellular signal-
r egu l a t ed k ina se s 1 and 2 (ERK1 /2 ) , S r c and
phosphatidylinositoI-3-kinase/protein kinase B (Pl3K/Akt)
pathways [48]. VEGF also promotes wound healing in diabet-
ic animal models through mobilizing and recruiting bone
marrow-derived cells [42]. Anti-VEGF therapies have shown
impressive beneficial effects on PDR, which suggests a central
role of VEGF in DR [23, 26–30]. Vitreous levels of VEGF are
dramatically increased in patients with DR [49–61], which is
generated and secreted mainly by retinal Müller cells [62–64].
Changes of the circulating VEGF levels in DM are controver-
sial . Some groups reported that serum VEGF levels are sig-
nificantly increased in both T1DM and T2DM patients, com-
pared with the control group, and positively correlated with
the severity of diabetic complications [49, 65]. The data
showed that, in patients with severe diabetic complications,
serum VEGF levels are higher than in diabetic patients with-
out complications. Furthermore, serum VEGF levels are sig-
nificantly decreased with an intense control of the blood glu-
cose. However, it was reported that there was no significant
change in serum VEGF levels between diabetic group and
control group [66]. Future well-designed studies with large
case numbers are required to confirm the changes of serum
VEGF levels in DM. In diabetic mice, VEGFmRNA levels in
non-wounded skin are elevated compared to non-diabetic
mice, which are significantly decreased to an undetectable
level at the 5th day after wounding following a transient in-
crease. However, the 5th day after wounding is the peak of
VEGF levels in wound healing in non-diabetic control ani-
mals [67]. Diminished protein levels of VEGF and other
growth factors were also observed in the wound healing of
streptozotocin-induced T1DM mice [68]. Topical VEGF ad-
ministration promotes the wound healing in diabetic animals
[42, 43], indicating that the decreased VEGF levels contribute
to the impaired wound healing in diabetes. The mechanism
responsible for the decreased VEGF expression in the skin
diabetic models is not known.

PEDF is a secreted glycoprotein and amember of the serine
proteinase inhibitor (serpin) superfamily, which was originally
isolated from culture medium of retinal pigment epithelial
cells [69]. PEDF has multiple functions including induction
of neuronal differentiation [70], neurotrophy [71], anti-cancer
[72], enhancing renewal of stem cells [73, 74], anti-
inflammation [75, 76], and anti-angiogenesis [16]. PEDF is
also identified to regulate lipid metabolism and insulin resis-
tance through increasing serum levels of free fatty acid [77].
PEDF is a potent angiogenesis inhibitor which directly targets
endothelial cells by inducing apoptosis of endothelial cells
and regulating the angiogenic balance by down-regulating
VEGF and blocking the binding of VEGF with the VEGF
receptors. As an important component of the angiogenic bal-
ance, vitreous levels of PEDF in patients with PDR are

significantly decreased compared with those of NPDR group
or non-diabetic control group [61, 78, 79]. In an ischemia-
induced retinal angiogenesis model, the retina develops more
sever retinal angiogenesis in PEDF knockout mice, and ame-
liorated angiogenesis in PEDF transgenic mice over-
expressing PEDF [80], indicating the potential therapeutic ef-
fect of PEDF in PDR. Interestingly, circulating levels of PEDF
demonstrate opposite changes. Several groups including us
have reported that serum PEDF levels are significantly in-
creased in patients with T1DM [81, 82] and T2DM [83, 84].
The elevated PEDF levels are positively associated with body
mass index, lipid levels and vascular dysfunction [83]. The
elevated serum levels of PEDF are also found in patients with
obesity [85] and metabolic syndrome [86] and in T2DM ani-
mal models [40, 87]. We have demonstrated that blocking
PEDF activity by a neutralizing antibody or knockout of
PEDF significantly improved the skin wound healing in
T2DM animal models through promoting angiogenesis in
the wound [40]. PEDF was shown to down-regulate VEGF
expression through inhibiting the nuclear translocation of
HIF-1α and mitogen activated protein kinase phosphorylation
[88]. Therefore, the elevated serum PEDF levels in DM may
contribute to the down-regulation of VEGF in the skin, lead-
ing to delayed wound healing. However, the mechanism re-
sponsible for the decreased PEDF levels in the retina and
elevated PEDF levels in the circulation is presently unknown.

Kallistatin is another secreted member of the serpin super-
family and is expressed in most human tissues [89, 90]. It has
displayed potent anti-angiogenic activities [17, 91–93].
Ischemia-induced retinal neovascularization is significantly
ameliorated in mice over-expressing kallistatin compared with
that in wild-type mice [91]. Over-expression of kallistatin sig-
nificantly ameliorates retinal vascular leakage, leukostasis,
and over-expression of VEGF in a T1DM model [91], which
demonstrates anti-angiogenic and anti-inflammatory effects of
kallistatin in DR. Our previous studies have reported that
kallistatin levels are decreased in the retina of a T1DM model
and in the vitreous from patients with PDR [94]. However,
serum kallistatin levels were recently found to be increased in
diabetic patients with complications [95]. There is no differ-
ence in the serum kallistatin levels between non-diabetic con-
trols and diabetic patients without complications, indicating
that elevated systemic levels of kallistatin are associated with
diabetic complications [95]. To establish the role of elevated
circulating kallistatin levels in peripheral angiogenesis defi-
ciency, murine skin wound healing assay was used. As expect-
ed, kallistatin over-expression alone delays wound closure
and reduces angiogenesis in the wound area, compared with
wild-type mice. Consistently, the expression and secretion of
VEGF are significantly inhibited in kallistatin transgenic mice
[41]. Meanwhile, over-expression of kallistatin leads to
changes in skin structure and histology, characterized by thin-
ner panniculus adiposus layer, lower microvascular density
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and decreased density of hair follicles, similar to the skin
changes in diabetic patients [41]. It is likely that the delayed
skin wound healing and skin histology changes in mice over-
expressing kallistatin may be through inhibition of the Wnt
signaling pathway [41].

Hyperglycemia-upregulated expression of VEGF is medi-
ated by a number of signaling pathways or proteins. VEGF
levels are regulated at three levels: the transcriptional level,
translational level [96] and posttranslational level [97, 98].
Here, wemainly discuss the regulation of VEGF transcription.
The 5′-flanking region of the VEGF gene contains a number
of transcription factor-binding sites for specific protein-1/3
(Sp1/3), signal transducer and activator of transcription-3
(Stat3), hypoxia-inducible factor-1 (HIF-1), activator
protein-1 (AP-l), activator protein-2 (AP-2), early growth re-
sponse protein 1 (Egr-1), T-cell factor (TCF) and others
[99–103] (Fig. 2). Although, only the mouse VEGF promoter
contains a consensus NF-κB-binding site [104], NF-κB is
essential for up-regulating the expression and secretion of
VEGF in human cells especially in cytokines-induced VEGF
generation, possibly by binding to consensus NF-κB-binding
sites or regulating activities of AP-1 or p53 [105–109]. NF-κB
is a crucial intracellular inflammatory regulator and plays key
roles in both impaired wound healing and retinopathy in dia-
betes [110–112]. HIF-1 is a well-studied transcription factor in
driving VEGF expression under hypoxia. The role of HIF-1 in
angiogenesis regulation is well reviewed recently and will not
be discussed here [48, 113]. Another signaling pathway regu-
lating VEGF under hyperglycemia is the canonical Wnt path-
way which contributes to the development of retinal neovas-
cularization. Wnts are secreted glycoproteins rich of cysteine.
Wnts regulate gene expression and participate in regulating
metabolism, development, carcinogenesis and inflammation
by binding to a receptor complex comprised of frizzled (Fz)
receptors and low-density lipoprotein receptor-related protein
5 and 6 (LRP5/6) [114]. Wnt binding with Fz-LRP5/6 leads to
the stabilization of β-catenin, a down-stream effector of the
canonical Wnt pathway. β-catenin is translocated into the nu-
cleus and regulates the transcription of target genes such as
VEGF [115, 116]. The canonic Wnt pathway is aberrantly
activated in DR as shown by increased protein levels in both
total and nuclear levels of β-catenin and phosphorylated

LRP5/6, compared with those in non-diabetic group [117,
118]. Inhibition of the Wnt pathway by a specific inhibitor
or a neutralization antibody against LRP6 dramatically ame-
liorates retinal neovascularization in DR animal models, sug-
gesting that the over-activation of the canonic Wnt pathway
plays a crucial role in DR [118, 119]. The canonic Wnt path-
way is essential for maintaining the morphogenesis of hair
follicles, and regulating wound healing through inducing the
differentiation of epithelial cells and promoting the skin stem
cell migration [120–122]. Our recent study has shown that
suppressed Wnt signaling in wounded skin is responsible, at
least in part, for the deficient wound healing in a diabetes
model. Several endogenous anti-angiogenic factors such as
endostatin [123], PEDF [80] and kallistatin [91] have been
shown to function as inhibitors of Wnt signaling. Over-
expression of kallistatin alone is sufficient to inhibit Wnt sig-
naling and wound healing. The delayed wound healing can be
reversed by topical administration of lithium chloride, a
down-stream activator ofWnt signaling [41]. Similarly, PEDF
deficiency results in more prominent activation of the canonic
Wnt pathway in ischemic retina [80]. These observations sug-
gest that Wnt signaling plays a key regulatory role in angio-
genesis in diabetes. Modulation of Wnt signaling likely rep-
resents a unifying mechanism for the anti-angiogenic activi-
ties of some endogenous angiogenic inhibitors.

4 Angiogenesis in adipose tissue of obesity

Adipose tissue is composed of adipocytes, preadipocytes, vas-
cular cells, fibroblasts and immune cells. In healthy adults,
white adipose tissue (WAT) constitutes 20 % (in man) or
25 % (in woman) of body weight. Angiogenesis promotes
adipogenesis through multiple mechanisms, such as
transporting the nutrients, cytokines, and stem cells to adipose
tissues and removing waste generated by the adipocytes (for
the detailed mechanisms, please refer to another review
[124]). Angiogenic inhibitors, such as angiostatin, endostatin,
TNP-470 and thalidomide were identified to reduce body
weight of ob/ob mice, a genetic model of obesity, without
adverse effects, and specifically target capillary endothelial
cells but not preadipocytes [125]. Meanwhile, TNP-470, a

Fig. 2 Signaling pathways in the regulation of VEGF transcription.
Signaling pathways, related transcription factors of VEGF and the
corresponding response elements in the VEGF promoter are
summarized. Sp1 specific protein-1, Stat3 signal transducer and
activator of transcription-3, HIF-1 hypoxia-inducible factor-1, AP-1 acti-
vator protein-1, AP-2 activator protein-2, NF-κB nuclear factor kappa-

light-chain-enhancer of activated B cells, TGF-β transforming growth
factor beta, MAPK Mitogen-activated protein kinases, NO Nitric oxide,
EGF Epidermal growth factor,PDGF Platelet-derived growth factor, IL-6
Interleukin 6, Wnt the wingless-type MMTV integration site, TCF T-cell
factor
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blocking antibody against VEGFR2, and MMP inhibitors sig-
nificantly reduced body weight in the mice with diet-induced
obesity or ob/ob mice [126–130]. The molecular mechanisms
are unknown. These preclinical studies indicated that angio-
genesis could be a therapeutic target of obesity. The safety of
inhibition of angiogenesis in obesity therapy has been well
discussed [131]. However, adipose tissue is classified into
brown adipose tissue (BAT) and WAT. Different from WAT
which functions as a storage of lipid and energy, BAT is es-
sential for regulating temperature of important tissues or or-
gans and non-shivering thermogenesis [132]. Higher capillary
density is found in BAT, compared with that in WAT [124,
133]. Angiogenesis promotes the energy expenditure in BAT,
which results in the fat loss [131]. The function or activity of
BAT is reduced in obesity [134–136]. Scientists expected to
treat obesity through activating BAT, transplanting BAT or
stimulating stem cells to differentiate into brown adipocytes
[137]. Although BAT-related studies in obesity are in the early
stage, the effect of anti-angiogenic agents on BAT activity
cannot be ignored in the treatment of obesity. Further studies
are needed to solve the paradox between BATand WAT in the
anti-angiogenic therapy of obesity.

Many studies have identified that WAT is not only a tissue
in energy storage, but also an important endocrine organ to
produce and secret hormones (such as leptin and estrogen),
cytokines (such as TNFα) and growth factors (such as VEGF
and PDGF) [138]. The inflammation inWATcharacterized by
macrophage filtration contributes to the chronic inflammatory
state of obesity [139]. Further study has identified that the
hypoxia of adipose tissue (ATH) results in adipose inflamma-
tion [140]. The mechanisms of ATH are related to the reduc-
tion of capillary density and blood flow. Reduced capillary
density could be a reason for the decreased blood flow in
obese adipose tissues. Moreover, there are several mecha-
nisms underlying the reduced blood flow of adipose tissues
(please refer to reviews [141, 142]). Here we mainly discuss
the reduced capillary density in WAT in obesity.

Reduced capillary density was reported in adipose tissues
of obese humans and obese animal models, compared with
lean subjects or animals [143–149]. In obese subjects, capil-
lary density is decreased in both visceral and subcutaneous
adipose tissues, and there is no difference between those de-
pots [143, 144]. Accompanied with the reduced capillary den-
sity, numbers of larger vessels (with α-smooth muscle actin
expression) and levels of collagen V expression are signifi-
cantly increased in adipose tissues, indicating that extracellu-
lar matrix might be involved in the angiogenesis defect of
adipose tissues [149]. A decreased mRNA level of VEGF
was reported in subcutaneous adipose tissues in overweight/
obese subjects versus lean subjects, which is strongly corre-
lated with capillary density [146]. Adipose-specific ablation
of VEGF contributed to lower adipose vascular density, in-
creased adipose hypoxia and inflammation. Mice with

adipose-specific overexpression of VEGF showed increased
adipose vascular intensity, ameliorated adipose hypoxia and
inflammation, suggesting that reduced angiogenic stimulators
contributes to the deficiency of angiogenesis in obesity and
adipose inflammation [150]. However, most results from the
in vitro studies are not consistent with those from the in vivo
study, such as VEGF. VEGF is upregulated in cultured adipo-
cytes or cultured adipose tissues from obese subjects in 1 %
oxygen [143, 151–153]. One possibility is that the hypoxia in
adipose tissues in vivo corresponds to 3.8 % oxygen, which is
not as low as 1 % oxygen in vitro , and might not be enough to
drive the responses to hypoxia [146]. Adipose tissues also
generate endogenous angiogenic inhibitors [77, 154]. PEDF,
angiostatin, endostatin, and TSP-1 are increased in
overweight/obese subjects or animal models of obesity [40,
84–87, 155]. There is no difference in adipose tissue develop-
ment between TSP-1 deficient mice and control wild-type
mice after high-calorie diet feed [156]. It is presently unclear
whether TSP-1 contributes to the reduced capillary density
and the hypoxia of adipose tissue in obesity. As a potent an-
giogenic inhibitor with multiple functions, elevated PEDF
contributes to the obesity and insulin resistance. Adipocyte-
specific PEDF transgenic mice (PEDF-aP2 mice) showed an
increased adipocyte lipolysis compared with wild-type mice,
confirming the effect of PEDF in regulating lipid metabolism.
However, WAT-derived PEDF overexpression has no effect
on the adipose vascularization, hypoxia and adipose inflam-
mation in normal condition or after high-calorie diet [157].
There is no difference in glucose and insulin tolerance be-
tween PEDF-aP2 mice and control mice [157]. Overexpres-
sion of PEDF in adipocytes cannot increase serum levels of
PEDF [157], indicating that adipocytes-derived PEDF is un-
likely the source of the increased serum PEDF in obesity. This
study raised questions to be addressed:1) WHERE: which
tissue is the source of the increased serum PEDF in obesity?
2) HOW: what is the molecular mechanism for the increased
levels of PEDF in obese adipose tissues? 3) WHEN: when is
the elevated serum PEDF generated and secreted, and do the
increases of PEDF in adipose tissues contribute to the angio-
genic defect in obesity or the development of obesity compli-
cations, such as impaired wound healing in T2DM? The role
of angiogenic inhibitors in angiogenic defect of obesity war-
rants further investigation.

5 Conclusion

Diabetic patients with PDR have a disturbed balance between
angiogenic stimulators and angiogenic inhibitors. These pa-
tients display excess and uncontrolled angiogenesis in the ret-
ina correlating with the increased pro-angiogenic factors:anti-
angiogenic factors ratios in the retina and vitreous. However,
these patients have deficient angiogenesis in the peripheral
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tissues including the skin, which is ascribed, at least in part, to
the elevated levels of angiogenic inhibitors in the circulation
and in the skin. The mechanism responsible for the differential
changes of angiogenic inhibitor levels remains to be studied.
Understanding of this regulation may contribute to the devel-
opment of new treatment strategies for diabetic complications.
Circulation levels of angiogenic inhibitors may also become
biomarkers to predict DR or its progression. Appropriate an-
giogenesis is essential for homeostasis of adipose tissues. An-
giogenic defect contributes to hypoxia of adipose tissues,
which results in adipose inflammation in obesity. Angiogenic
stimulators could promote angiogenesis and ameliorate tissue
hypoxia and inflammation in obese adipose tissue. Angiogen-
esis is required for the growth or expansion ofWAT in obesity,
and thus, might be a therapeutic target for obesity.
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