
Nature Medicine

nature medicine

https://doi.org/10.1038/s41591-023-02332-5Article

A deep learning algorithm to predict risk of 
pancreatic cancer from disease trajectories
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Pancreatic cancer is an aggressive disease that typically presents late with 
poor outcomes, indicating a pronounced need for early detection. In this 
study, we applied artificial intelligence methods to clinical data from  
6 million patients (24,000 pancreatic cancer cases) in Denmark (Danish 
National Patient Registry (DNPR)) and from 3 million patients (3,900 cases) 
in the United States (US Veterans Affairs (US-VA)). We trained machine 
learning models on the sequence of disease codes in clinical histories and 
tested prediction of cancer occurrence within incremental time windows 
(CancerRiskNet). For cancer occurrence within 36 months, the performance 
of the best DNPR model has area under the receiver operating characteristic 
(AUROC) curve = 0.88 and decreases to AUROC (3m) = 0.83 when disease 
events within 3 months before cancer diagnosis are excluded from training, 
with an estimated relative risk of 59 for 1,000 highest-risk patients older 
than age 50 years. Cross-application of the Danish model to US-VA data had 
lower performance (AUROC = 0.71), and retraining was needed to improve 
performance (AUROC = 0.78, AUROC (3m) = 0.76). These results improve the 
ability to design realistic surveillance programs for patients at elevated risk, 
potentially benefiting lifespan and quality of life by early detection of this 
aggressive cancer.

Pancreatic cancer is a leading cause of cancer-related deaths world-
wide, with increasing incidence1. Early diagnosis of pancreatic cancer 
is a key challenge, as the disease is typically detected at a late stage. 
Approximately 80% of patients with pancreatic cancer are diagnosed 

with locally advanced or distant metastatic disease, when long-term 
survival is extremely uncommon (2–9% of patients at 5 years)2. How-
ever, patients who present with early-stage disease can be cured by a 
combination of surgery, chemotherapy and radiotherapy. Thus, a better 
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interpretation of what the trained models have learned, we analyzed 
which diagnoses in a patient’s history of diagnosis codes are flagged 
by the method as most informative of cancer risk; and we propose a 
practical scenario for surveillance programs, taking into consideration 
the availability of real-world data, the estimated accuracy of prediction 
on such data, the scope of a surveillance program, the likely cost and 
success rate of surveillance methods and the overall potential benefit 
of early treatment (Supplementary Notes).

Results
Datasets
We used disease trajectories from the DNPR, with demographic infor-
mation from the Central Person Registry (CPR)36. DNPR covers approxi-
mately 8.6 million patients with 229 million hospital diagnoses, with, 
on average, 26.7 diagnosis codes per patient. For training, we used 
trajectories of International Classification of Diseases (ICD) diagnos-
tic codes, down to the three-character category in the ICD hierarchy, 
with explicit timestamps for each hospital contact from January 1977 
to April 2018, for a total of 6.2 million patients after standard filter-
ing (Methods), including 23,985 pancreatic cancer cases (Fig. 2a,b,d,  
Table 1, Extended Data Figs. 1 and 2 and Supplementary Table 1).

For validation in another healthcare system, we similarly used 
longitudinal clinical records from 1999 to 2020 from the US-VA CDW 
(data warehouse), which integrates both EHRs and cancer registry 
data nationwide (Fig. 2a,c,e). For training, we used trajectories from a 
selected dataset (Methods) with a total of 3.0 million patients, including 
3,864 pancreatic cancer cases (Table 1 and Extended Data Fig. 3). On 
average, the health records in the US-VA dataset have shorter (median 
12 years in US-VA versus 23 years in DNPR) but substantially denser 
disease histories (median 188 records per patient in US-VA versus 22 
records per patient in DNPR). These differences likely reflect the dif-
ferences in population (entire population in Denmark versus military 
veterans in the US-VA) and in healthcare system practices, such as 
referral, documentation and billing.

ML model architecture
The ML model for predicting cancer risk from disease trajectories con-
sists of (1) input data for each event in a trajectory (diagnosis code and 
timestamps); (2) embedding of the event features onto real number 
vectors; (3) encoding the trajectories in a lower-dimensional latent 
space; and (4) predicting time-dependent cancer risk (Methods). The 
longitudinal nature of the disease trajectories allows us to construct time 
sequence models using sequential neural networks, such as gated recur-
rent unit (GRU) models37 and the Transformer model38. As computational 
control, we also tested a bag-of-words (that is, bag-of-disease-codes) 
approach that ignores the time and order of disease events. Each of the 
models learns to estimate the risk of cancer within distinct prediction 
intervals ending 3, 6, 12, 36 or 60 months after the end of a trajectory (the 
time of risk assessment) rather than just binary (yes or no) prediction 
of risk that cancer will occur at any time after assessment.

To avoid overfitting and to test generalizability of model predic-
tions, we partitioned patient records randomly into 80%/10%/10% 
training/development/test sets. We conducted training only on the 
training set and used the development set to examine the performance 
for different hyperparameter settings, which guides model selection. 
The performance of the selected models was evaluated on the fully 
withheld test set of trajectories and reported as an estimate of perfor-
mance in prospective patients. To test the influence of close-to-cancer 
diagnosis codes on the prediction of cancer occurrence, in training 
we also removed from input diagnoses in the last 3, 6 and 12 months 
before cancer diagnosis.

Evaluation of model performance
We evaluated the prediction performance of the different mod-
els trained in the DNPR using the area under the receiver operating 

understanding of the risk factors for pancreatic cancer and detection at 
early stages has great potential to improve patient survival and reduce 
overall mortality.

The incidence of pancreatic cancer is substantially lower com-
pared to other cancer types, such as lung, breast and colorectal cancer. 
Although it is true that age is a major risk factor, purely age-based 
population-wide screening for pancreatic cancer is impractical due 
to potentially costly clinical tests for a large number of patients with 
false-positive predictions. Moreover, few high-penetrance risk fac-
tors are known for pancreatic cancer, impeding early diagnosis of 
this disease. Risk of pancreatic cancer has been assessed for many 
years based on family history, behavioral and clinical risk factors and, 
more recently, circulating biomarkers and genetic predisposition3–8. 
Currently, some patients with high risk due to family history or rare 
inherited pathogenic variants or cystic lesions of the pancreas undergo 
serial pancreas-directed imaging to detect early pancreatic cancers. 
However, these patients account only for a small fraction of those who 
develop pancreatic cancer, and data on family history or genetic risk 
factors are often not available in the general population.

To address the challenge of early detection of pancreatic cancer 
in the general population9,10, we aimed to predict the risk of pancreatic 
cancer from real-world longitudinal clinical records of large numbers 
of patients and, among these, identify a moderate number of high-risk 
patients with the intent to facilitate the design of affordable surveil-
lance programs for early detection. We can, thus, cast a wider net than 
the established successful surveillance programs in limited popula-
tions for which family history and/or germline genetic risk variants 
are available11,12.

The development of realistic risk prediction models requires a 
choice of appropriate machine learning (ML) methods, in particular 
deep learning techniques that work on large and noisy sequential 
datasets13,14. We build on earlier work in the field of risk assessment 
based on clinical data and disease trajectories using artificial intelli-
gence (AI) methods15,16. AI methods have been applied to a number of 
clinical decision support problems17, such as choosing optimal time 
intervals for actions in intensive care units18, assessing cancer risk19–22 
and predicting the risk of potentially acute disease progression, such 
as in kidney injury23, and the likelihood of a next diagnosis based on 
past electronic health record (EHR) sequences, in analogy to natural 
language processing24,25.

For risk assessment of pancreatic cancer, recently ML predictive 
models using patient records have been built using health interview 
survey data26, general practitioners’ health records controlled against 
patients with other cancer types27, real-world hospital system data28,29 
and an EHR database provided by TriNetX, LLC30,31. Although demon-
strating the information value of health records for cancer risk, these 
previous studies used only the occurrence of disease codes, not the 
time sequence of disease states in a patient trajectory. Previous studies 
used the Danish health registries to generate population-wide disease 
trajectories but in a descriptive manner32,33.

In this study, we exploited the power of recently developed ML 
technology by using information encoded in the time sequence of 
clinical events. This investigation was first carried out using the Danish 
National Patient Registry (DNPR), which contains data for 8.6 million 
patients from 1977 to 2018 (refs. 34,35), and subsequently for a smaller 
number of patients from the United States Veterans Affairs (US-VA) Cor-
porate Data Warehouse (CDW). To optimize the extraction of predictive 
information from these records, we tested a diverse set of ML methods.

The likely action resulting from a personalized positive prediction 
of cancer risk ideally should take into account the probability of the 
disease occurring within a shorter or longer timeframe (Fig. 1). We, 
therefore, designed the AI method not only to predict whether cancer 
is likely to occur but also to provide risk assessment in incremental time 
intervals after the predictive assessment of risk, following earlier work 
on mammography-based breast cancer risk prediction20. To facilitate 
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characteristic (AUROC) and relative risk (RR) curves (Fig. 3). All perfor-
mance metrics are calculated on the basis of applying each trained risk 
assessment model to the test set. The test set is strictly withheld during 

training and hyperparameter search. In the final performance evalua-
tion of different types of ML models on the test sets, the models, which 
explicitly use and encode the time sequence of disease codes—that is, 
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Fig. 1 | Training and prediction of pancreatic cancer risk from disease 
trajectories. a, Learning: The general ML workflow starts with partitioning the 
data into a training set (Train), a development set (Dev) and a test set (Test). 
The trajectories for training input are generated by sampling continuous 
subsequences of diagnoses for each patient’s diagnosis history, each starting 
with the first record but with different endpoints. The training and development 
sets are used for training so as to minimize the prediction error—that is, the 
difference between a risk score function (prediction) and a step function 
(observation), summed over all instances. Prediction: A model’s ability to 
accurately predict is evaluated using the withheld test set. The prediction 
model, depending on the prediction threshold selected from among possible 
operational points, discriminates between patients at higher and lower risk of 
pancreatic cancer. The risk model can guide the development of surveillance 
initiatives. b, The model trained with real-world clinical data has three steps: 

embedding, encoding and prediction. The embedding machine transforms 
categorical disease codes and timestamps of these disease codes into a 
lower-dimensional real number continuous space. The encoding machine 
extracts information from a disease history and summarizes each sequence in 
a characteristic fingerprint in the latent space (vertical vector). The prediction 
machine then uses the fingerprint to generate predictions for cancer occurrence 
within different time intervals after the time of assessment (3, 6, 12, 36 and 
60 months). The model parameters are trained by minimizing the difference 
between the predicted and the observed cancer occurrence. c, Terminology for 
timepoints and intervals. The last event of a disease trajectory coincides with the 
time of assessment. From the time of assessment, cancer risk is assessed within 3, 
6, 12, 36 and 60 months. To test the influence of close-to-cancer diagnosis codes 
on the prediction of cancer occurrence, exclusion intervals are used to remove 
diagnoses in the last 3, 6 and 12 months before cancer diagnosis.
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GRU and Transformer—ranked highest by AUROC (Fig. 3a,b and Supple-
mentary Table 3). For the prediction of cancer incidence within 3 years 
of the assessment date (the date of risk prediction), the Transformer 
model had the best performance (AUROC = 0.879 (0.877–0.880)) fol-
lowed by GRU (AUROC = 0.852 (0.850–0.854)).

To gain a better intuition regarding the impact of applying a model 
in a real case scenario, we also report the RR score of patients with can-
cer in the high-risk group as predicted by the ML model (Figs. 3b,d,f,h 
and 4). The RR score is defined at a given operational decision point 
(Methods). This assesses by what factor a prediction method does 
better than a random model. The RR for the 36-month prediction 
interval is 104.7 for the Transformer model (with time sequences), at 
an operational point defined by the n = 1,000 highest-risk patients out 
of 1 million patients (0.1% at highest risk; notation: N1000).

Earlier work also developed ML methods on real-world clinical 
records to predict pancreatic cancer risk28–31. These previous stud-
ies had encouraging results, but neither used the time sequence of 
disease histories to extract time-sequential longitudinal features. For 
comparison, we implemented analogous approaches, a bag-of-words 
model and a multilayer perceptron (MLP) model. We evaluated the 
non-time-sequential models on the DNPR dataset, and the performance 
for predicting cancer occurrence within 36 months was AUROC = 0.807 
(0.805–0.809) for the bag-of-words model and AUROC = 0.845 

(0.843–0.847) for the MLP model (Fig. 3a). The RR was also much lower 
(2.1 and 26.6, respectively) compared to that of time-sequential models 
(for example, 104.7 for Transformer).

Performance with data exclusion
Disease codes within a very short time before diagnosis of pancreatic 
cancer are most probably directly indicative such that, even without any 
ML, well-trained clinicians would include pancreatic cancer at a high rank 
in their differential diagnosis. Disease codes just before pancreatic cancer 
occurrence may also indirectly cover pancreatic cancer (for example, 
neoplasm of the digestive tract) and, thus, reflect the label one wants to 
infer. To reduce undue influence of these disease codes in training, we 
separately trained the models excluding input diseases diagnoses from 
the last 3, 6 and 12 months before the diagnosis of pancreatic cancer (‘data 
exclusion’). As expected, when training with data exclusion, the perfor-
mance decreased from AUROC = 0.879 to AUROC = 0.843/0.829/0.827 
for 3-/6-/12-month data exclusion for the best models, all for prediction 
of cancer occurrence within 36 months (DNPR dataset; Fig. 3c).

Performance for training on known risk factors
We explored the right level of granularity and completeness of disease 
codes to train on. One can train on a smaller set of disease codes that 
occur in patient disease trajectories. For example, one can use prior 
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Fig. 2 | Characteristics of the Danish and US-VA patient registries.  
a, Distributions for age at pancreatic cancer diagnosis in the two cohorts. b,c, The 
Danish (DK) dataset has a longer median length of disease trajectories but lower 
median number of disease codes per patient compared to the US-VA dataset, so 
the ML process, independently in each dataset, has to cope with very different 
distributions of disease trajectories in terms of length of trajectories and density 

of the number of disease codes. Color level indicates the number of patients in a 
given bin. d,e, Background check on the distribution disease codes in the clinical 
records: prevalence of known risk factors in cancer versus non-cancer patients in 
the DK (d) and US-VA (e) datasets, counting whether a disease code occurred at 
least once in a patient’s history previous to their pancreatic cancer code (cancer) 
or 2 years previous to the end of data (no cancer).
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knowledge and limit the input for training to known risk factors—that 
is, diseases that have been reported to be indicative of the likely occur-
rence of pancreatic cancer11,39. We found that prediction performance 
with the subset of ICD codes for 23 known risk factors reduces predic-
tion accuracy of the Transformer model to AUROC = 0.838 compared 
to AUROC = 0.879 for all diagnosis codes, and, therefore, we used the 
latter (ICD level-3, 2,000 disease codes) throughout the rest of the 
work (Fig. 3e,f and Supplementary Table 4).

Prediction for time intervals
It is of particular clinical interest to consider the risk of cancer over differ-
ent time intervals. The ML models in this work are designed to report risk 
scores for pancreatic cancer occurrence within 3, 6, 12, 36 and 60 months 
of the date of risk assessment. As expected, it is more challenging to pre-
dict cancer occurrence within longer rather than shorter time intervals, 
as the longer time intervals allow for larger time gaps between the end of 
the disease trajectory (time of assessment) and the time of cancer diag-
nosis (Fig. 5a,b). Indeed, prediction performance for the Transformer 
model decreases from an AUROC of 0.908 (0.906–0.911) for cancer 
occurrence within 12 months to an AUROC of 0.879 (0.877–0.880) for 
occurrence within 3 years (without data exclusion) (Fig. 3g,h).

Application in a different healthcare system
To assess the predictive performance of the model in other healthcare 
systems, we applied the best ML model trained on the Danish dataset 

to disease trajectories of patients in the US-VA dataset, without any 
adaptation except for mapping the ICD codes from one system to the 
other. Prediction performance for cancer occurrence within 36 months 
after assessment declined from an AUROC of 0.879 (0.877–0.880) 
and RR = 104.6, for a Denmark-trained Transformer model applied to 
DNPR patient data (test set), to an AUROC of 0.710 (0.708–0.712) and 
RR = 57.4, for the same model applied to US-VA patient data (Fig. 4b). 
The most striking difference in input data between the two systems is 
the shorter and more dense disease history in the US-VA trajectories 
compared to the Danish ones (Fig. 2b,c).

Motivated by the decrease in performance when testing the 
Denmark-derived model on the US-VA dataset, we trained and eval-
uated the model on the US-VA dataset from scratch. For the inde-
pendently trained model, the performance is clearly higher than in 
cross-application, with a test set AUROC of 0.775 (0.772–0.778) and 
RR = 80.4 at the N1000 operational point (0.1% at highest risk) for can-
cer occurring within 36 months (Fig. 4c). The difference in performance 
of the independently trained models in the two healthcare systems may 
be in part due to differences in medical and reporting practices or in 
demographics, including different age and sex distributions.

Estimated performance of a realistic surveillance program
A realistic surveillance program has to use an operational point (deci-
sion threshold) taking into consideration cost and benefit in real-world 
clinical practice. Although we have no empirical data on cost and ben-
efit in this study, we can evaluate predictive performance, which is a 
key factor in assessing benefit. An example (Fig. 4d), for a potentially 
realistic choice of model and decision threshold, is a surveillance pro-
gram at an operational point of n = 1,000 (0.1%) highest-risk patients 
out of 1 million patients—that is, at a risk fraction of 0.1% of all patients 
assessed. At this point, the best models trained with 3 months of data 
exclusion evaluated for the 12-month prediction interval for patients 
older than age 50 years obtain a relative risk of RR = 58.7 for DNPR (GRU 
model) and of RR = 33.1 for US-VA (Transformer model). Correspond-
ing models using all the data (no exclusion) have higher values of RR. 
Considerations for the design of a surveillance program are further 
discussed below.

Predictive features
Although the principal criterion for the potential impact of predic-
tion–surveillance programs is robust predictive performance, it is 
of interest to interpret the features of any predictive method: which 
diagnoses are most informative of cancer risk? Computational meth-
ods can infer the contribution of a particular input variable to the 
prediction by an ML engine—for example, the integrated gradient 
(IG) algorithm40 (Fig. 5c,d, Extended Data Fig. 4 and Supplementary 
Table 5). The IG contribution was calculated separately for differ-
ent times between assessment and cancer diagnosis, in particular at 
0–6 months, 6–12 months, 12–24 months and 24–36 months after 
assessment, for all patients who developed cancer. As expected, 
there is a tendency for codes, which, in normal clinical practice, are 
known to indicate the potential presence of pancreatic cancer, to have 
a higher contribution to prediction for trajectories that end closer to 

Table 1 | Characteristics of the Danish and US-VA datasets

General cohort information Danish dataset US-VA dataset

Dataset timeline 1977–2018 1999–2020

Total n patients 8,110,706 2,962,383

Male (%) 4,030,504 (49.7%) 2,538,762 (85.7%)

Female (%) 4,080,202 (50.3%) 423,621 (14.3%)

Median n disease codes per patient 22 188

Median length of trajectory in years 23.0 12.0

PC cohort information

Total n patients 23,985 3,869

Male (%) 11,880 (49.5%) 3,741 (96.7%)

Female (%) 12,105 (50.5%) 128 (3.3%)

Median n disease codes per patient 18 121

Median length of trajectory in years 17.0 8.0

Median age at PC diagnosis 70.0 68.0

n disease codes 0–3 months pre-PC 95,358 125,305

n disease codes 3–6 months pre-PC 27,131 56,198

n disease codes 6–12 months 
pre-PC

38,109 97,911

n disease codes >12 months pre-PC 480,830 1,188,199

PC, pancreatic cancer.

Fig. 3 | Performance of the ML model on clinical record trajectories in 
predicting pancreatic cancer occurrence in the Danish dataset. For each 
model and prediction evaluation, performance is better for larger AUROC 
(a,c,e,g) and for higher RR (Relative risk) for the n (horizontal axis) highest-risk 
patients (b,d,f,h). a,b, Choice of algorithm: The Transformer algorithm is best 
with AUROC = 0.879 (no data exclusion, 36-month prediction interval).  
c,d, Choice of input data: Prediction performance declines with exclusion 
interval, in training, of k = 3, 6 and 12 months of data between the end of a disease 
trajectory and cancer occurrence (best model for each exclusion interval, for 
36-month prediction interval). e,f, Choice of input data: Prediction is better 
for all 2,000 ICD level-3 disease codes used throughout in training (Methods) 

compared to only the subset of 23 known risk factors, using a Transformer, 
all data (Exclusion 0), for the 36-month prediction interval. g,h, Choice of 
prediction task: Prediction of cancer is more difficult for larger prediction 
intervals, the time interval within which cancer is predicted to occur after 
assessment (Transformer model, all data). We reported prediction performance 
for the 36-month prediction interval (orange in g and h) in the above panels 
(a-f), as this is a reasonable choice for design of a surveillance program in clinical 
practice. b,d,f,h, Prediction performance at a particular operational point—for 
example (d), for n = 1,000 highest-risk patients (vertical dotted line) out of 1 
million (1M) patients, the RR is 104.7 for the 36-month prediction interval using 
all data and 47.6 with 3-month data exclusion.
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cancer diagnosis. On the other hand, putative early risk factors have 
a higher IG score for trajectories that end many months before can-
cer diagnosis. Although there is not necessarily a causative relation 
between a single predictive feature and outcome, this approach pro-
vides useful insight on the correlation between specific diagnoses and  
pancreatic cancer.

The top contributing features extracted from the trajectories with 
time to cancer diagnosis in 0–6 months—such as unspecified jaundice, 
diseases of biliary tract, abdominal and pelvic pain, weight loss and 
neoplasms of digestive organs—may be symptoms of, or otherwise 
closely related to, pancreatic cancer (Supplementary Table 5a). It is 
also of interest to identify early risk factors for pancreatic cancer.  
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For trajectories with longer time between assessment and can-
cer diagnosis, other disease codes, such as type 2 diabetes and 
insulin-independent diabetes, make an increasingly large contribu-
tion, consistent with epidemiological studies8,39,41,42 and the observed 
disease distribution in the DNPR and US-VA datasets (Fig. 2, Extended 
Data Fig. 2). Other factors, such as cholelithiasis (gallstones) and 
reflux disease, are perhaps of interest in terms of potential mecha-
nistic hypotheses, such as inflammation of the pancreas before 
cancer as a result of cholelithiasis or a hypothetical link between 
medication by proton pump inhibitors, such as omeprazole in reflux 
disease, and the effect of increased levels of gastrin on the state of  
the pancreas43.

The disease contribution analysis on the US-VA dataset provides 
a partially overlapping set of top features (Supplementary Table 5b). 
The disease contribution analysis showed commonly identified disease 
codes between the two systems, such as unspecified jaundice, other 
disorders of pancreas, other diseases of biliary tract, diabetes mellitus, 
abdominal and pelvic pain, other diseases of the liver and symptoms 
and signs concerning food and fluid intake. Generally, in addition to 
disease codes that reflect specific risk for pancreatic cancer by current 
knowledge, others are apparently unspecific, indicating the impor-
tance of including many variables with limited individual prognostic 
value to obtain good aggregate prognostication (Fig. 5b,d).

Discussion
We present a framework for predicting the risk of a low-incidence but 
very aggressive cancer by applying deep learning to real-world longitu-
dinal datasets of disease trajectories. This study was designed to make 
explicit use of the time sequence of disease events and to assess the 
ability to predict cancer risk for increasing intervals between the end of 
the disease trajectory used for risk prediction and cancer occurrence. 
Our results indicate that using the time sequence in disease histories 
as input to the model, rather than just disease occurrence at any time, 
improves the ability of AI methods to predict pancreatic cancer occur-
rence, especially for the highest-risk group (Fig. 3b).

Based on the prediction accuracy reported here, we designed a 
potentially realistic prediction–surveillance selection process in an 
example real-world population of 1 million patients with available longi-
tudinal EHRs. The analysis indicates that, by using an ML model trained 
on all data to predict the 1,000 highest-risk patients (no data exclusion, 
positive predictive value (PPV) of 0.32; 12-month prediction interval, 
age 50 years or older), about 320 would eventually develop pancreatic 
cancer. Some of these might already have been assigned to closer 
surveillance by their physicians in standard clinical practice based on 
well-established risk factors, such as chronic pancreatitis (Extended 
Data Fig. 5). However, a fraction of these would be newly identified 
as being at high risk—at least about 70 according to a conservative 
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Fig. 4 | Estimated performance of a surveillance program for high-risk 
patients in different health systems and with different operational choices. 
Estimated relative risk (RR) for the top n (horizontal axis) high-risk patients is 
based on evaluating the accuracy of prediction on the withheld test set (a,c,d) 
and on a full external dataset (b). a,c, In designing surveillance programs, one can 
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excluding data from the last 3 months before cancer occurrence (Exclusion 3) 
and between prediction for cancer within 12 months or 36 months of assessment 

(legend top right in each panel). b, Estimated performance is somewhat lower for 
cross-application of a model trained on Danish (DK) data applied to US-VA patient 
data, illustrating the challenge of deriving globally valid prediction tools without 
independent localized or system-specific training. d, A proposed practical 
choice for a surveillance program with good estimated accuracy of prediction, in 
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estimate based on the prediction accuracy for models in which the 
last 3 months of symptoms before cancer occurrence are excluded 
from input to training (PPV 0.07, 12-month prediction interval, age 
50 years or older). Although the precise clinical impact will depend 
on the quality of EHR data and current clinical practice in a particu-
lar healthcare system, we conclude that this level of additional early 
detection may be considered of value, provided that implementation 
issues, including the cost of a surveillance program, can be successfully 
addressed in a real-world implementation (see also the cost estimate 
in Supplementary Notes).

A single, globally robust model that predicts cancer risk for 
patients in different countries and different healthcare systems remains 
elusive. Cross-application of the Danish model to the US-VA database 
had lower performance in spite of common use of ICD disease codes 

and similar cancer survival (Fig. 4 and Extended Data Fig. 6). Reasons 
for this lack of transferability plausibly include differences in clini-
cal practice, such as frequency of reporting disease codes in clinical 
records, typical thresholds for seeking medical attention, potential 
influence of billing constraints and billing optimization as well as 
entry to and departure from the US-VA health system—all of these in 
contrast to the more uniform and comprehensive nature of the DNPR. 
However, the AI methods used are sufficiently robust to restore a rea-
sonable level of performance in the US-VA system via independent 
training. We conclude that, using current methodology, when there 
are substantial differences in healthcare systems, independent model 
training in different geographical locations is required to achieve 
locally optimal model performance. However, if independent train-
ing is not feasible—for example, in smaller healthcare systems—then 
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Fig. 5 | Predictive capacity and feature contributions of disease trajectories. 
a,c, Distribution of recall (sensitivity) values at the F1 operational point 
(Methods) as a function of time to cancer (time between the end of a disease 
trajectory and cancer diagnosis). As expected, recall levels decrease with longer 
time to cancer, from 8% for cancer occurring about 1 year after assessment to 
a recall of 4% for cancer occurring about 3 years after assessment (DNPR). This 
suggests that the model learns not only from symptoms very close to pancreatic 
cancer but also from longer disease histories, albeit at lower accuracy. a, Danish 

system (DK), for models trained on all data (no data exclusion). c, US-VA system, 
for models trained on all data. b,d, Top 10 features that contribute to the cancer 
prediction in time-to-cancer intervals of 0–6, 6–12, 12–24 and 24–36 months 
for the Danish (DK) (b) and US-VA (d) systems. The features are sorted by the 
contribution score (Supplementary Table 5). We used an integrated gradients 
(IG) method to calculate the contribution score for each input feature for each 
trajectory and then summed over all trajectories with cancer diagnosis within the 
indicated time interval.
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cross-application may be of value, depending on the actual outcome of 
cross-performance tests, which can be performed on smaller datasets 
than those required for training.

To achieve a globally useful set of prediction rules, access to large 
datasets of disease histories aggregated nationally or internationally 
will be extremely valuable, with careful assessment of the accuracy of 
clinical records. An ideal scenario for a multi-institutional collaboration 
would be to employ federated learning across a number of different 
healthcare systems44. Federated learning obviates the need for sharing 
primary data and only requires permission to run logically identical 
computer codes at each location and then share and aggregate results. 
The challenges to achieve federated learning are, however, not only 
technical but also social and organizational, especially in a competitive 
healthcare landscape.

Successful implementation of early diagnosis and treatment of 
pancreatic cancer in clinical practice will likely require three essential 
steps: (1) identification of high-risk patients; (2) detection of early 
cancer or pre-cancerous states by detailed surveillance of high-risk 
patients; and (3) effective treatment after early detection10,45. The 
overall impact in clinical practice depends on the success rates in 
each of these stages. This work addresses only the first stage. With 
a reasonably accurate method for predicting cancer risk, one can 
direct appropriate high-risk patients into surveillance programs. A 
sufficiently enriched pool of high-risk patients would make detailed 
screening tests affordable, as such tests are likely to be prohibitively 
expensive at the population level and enhance the positive yield of 
such early detection tests.

We expect further increases in prediction accuracy with the 
real-world availability of data beyond disease codes, such as medica-
tion, laboratory values, observations in clinical notes and abdominal 
imaging (computed tomography and magnetic resonance imaging) as 
well as population-wide germline genetic profiles and health records 
from general practitioners27,46 and, in the future, patient-provided 
information about their health state from wearable devices.

The particular advantage of a real-world high-risk prediction–sur-
veillance process is that computational screening of a large popula-
tion in the first step is inexpensive, whereas the costly second step of 
sophisticated clinical screening and intervention programs is limited 
to a much smaller number of patients—those at highest risk. Prediction 
performance at the level shown here may be sufficient for an initial 
design of real-world clinical prediction–surveillance programs, and 
future improvements are likely. AI on real-world clinical records has 
the potential to produce a scalable workflow for early detection of 
cancer in the community, to shift focus from treatment of late-stage 
to early-stage cancer, to improve the quality of life of patients and to 
increase the benefit/cost ratio of cancer care.
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Methods
Processing of disease code trajectory datasets
We followed the MI-CLAIM checklist47 to improve the reporting of our 
methods. The checklist is available in Supplementary Table 6.

Population-level DNPR dataset
The first part of the project was conducted using a dataset of disease 
histories from the DNPR, covering all 229 million hospital diagnoses 
of 8.6 million patients between 1977 and 2018. This includes inpatient 
contacts since 1977 and outpatient and emergency department con-
tacts since 1995 but not data from general practitioners’ records34. 
Each entry of the database includes data on the start and end date of an 
admission or visit as well as diagnosis codes. The diagnoses are coded 
according to the ICD (ICD-8 until 1994 and ICD-10 since then). The accu-
racy of cancer diagnosis disease codes, as examined by the Institute of 
Clinical Medicine, Aarhus University Hospital, has been reported to be 
98% (accuracy for 19 Charlson conditions in 950 reviewed records)48. 
For cancer diagnoses specifically, the reference evaluation was based 
on detailed comparisons among randomly sampled discharges from 
five different hospitals and review of a total of 950 samples34. We used 
both the ICD-8 code 157 and ICD-10 code C25, ‘malignant neoplasm of 
pancreas’, to define pancreatic cancer cases.

Use of ICD codes
The ICD system has a hierarchical structure, from the most general 
level—for example, ‘C: Neoplasms’—to the most specific four-character 
subcategories—for example, ‘C25.1: Malignant neoplasm of body of 
pancreas’. The Danish version of the ICD-10 is more detailed than the 
international ICD-10 but less detailed than the clinical modification 
of the ICD-10 (ICD-10-CM). In this study, we used the three-character 
category ICD codes (n = 2,997) in constructing the predictive models 
and defined ‘pancreatic cancer patients’ as patients with at least one 
code under ‘C25: Malignant neoplasm of pancreas’. For the diagnosis 
codes in the DNPR, we removed disease codes labeled as ‘temporary’ 
or ‘referral’ (8.3% removed; Extended Data Fig. 1), as these can be mis-
interpreted when mixed with the main diagnoses and are not valuable 
for the purposes of this study.

Filtering the Danish dataset
Danish citizens have, since 1968, been assigned a unique lifetime CPR 
number, which is useful for linking to person-specific demographic data. 
Using an encrypted version of this number, we retrieved patient status 
as to whether patients are active or inactive in the CPR system as well as 
information related to residence status. We applied a demographic con-
tinuity filter. For example, we excluded from consideration residents of 
Greenland and patients who lack a stable place of residence in Denmark, 
as these would potentially have discontinuous disease trajectories. By 
observation time, we mean active use of the healthcare system.

Subset of Danish dataset used for training
The DNPR dataset comprised a total of 8,110,706 patients, of whom 
23,601 had the ICD-10 pancreatic cancer code C25 and 14,720 had 
the ICD-8 pancreatic cancer code 157. We used both ICD-10 and ICD-8 
independently, without semantic mapping, while retaining the pan-
creatic cancer occurrence label, assuming that ML is able to combine 
information from both. Subsequently, we removed patients who have 
too few diagnoses (<5 events). The number of positive patients used 
for training after applying the length filter are 23,985 (82% ICD-10 and 
18% ICD-8) (Fig. 2 and Supplementary Table 1). Coincidentally, this 
resulted in a more strict filtering for ICD-8 events, which were used 
only in 1977–1994 in the data. The final dataset was then randomly split 
into training (80%), development (10%) and test (10%) data, with the 
condition that all trajectories from a patient were included only in one 
split group (train/dev/test), to avoid any information leakage between 
training and development/test datasets.

Quality control using the Danish Cancer Registry dataset
To perform a quality check of the pancreatic cancer cases in the 
DNPR, we compared pancreatic cancer cases in the DNPR with pan-
creatic cancer cases in the Danish Cancer Registry (DCR). The DCR 
is a population-wide cancer cohort and one of the largest and most 
comprehensive in the world, which has recorded nationwide cancer 
incidences from 1943 (refs. 49,50). The DCR contains information on 
diagnosis, cancer type, tumor topography, TNM staging classification 
and morphology. The purpose of the DCR is to keep track of cancer 
incidences and mortality in Denmark and to study causes, courses and 
statistics for treatment improvements in the Danish health system. In 
1997, the cancer registry administration was moved from the Danish 
Cancer Society to the National Board of Health.

We compared the overlap between pancreatic cancer cases in 
the DNPR versus cases in the DCR to estimate the quality of our case 
population used for training. Eighty-eight percent of the pancreatic 
cancer cases used for training overlapped with the cancer registry. 
Owing to the differing nature of the DCR and DNPR, for which the latter 
is a more administrative registry with multiple coding purposes, such 
as hospital reimbursement, monitoring hospital services and patient 
trajectories and quality assurance, we did not expect these registries 
to overlap 100%. As there may be correctly labeled cases in the DNPR 
that did not get captured in the DCR, the 88% concordance is a lower 
bound on accuracy of the pancreatic cancer ICD-10 codes in the DNPR, 
which we used as case labels in training.

Military veterans US-VA dataset
For the US-VA system, we used data from the VA CDW, which collates 
EHR and cancer registry information on veterans treated at VA facili-
ties nationwide51, using methods similar to prior work52–54. The CDW 
includes EHR data from 1999 to the present, originating from the 
comprehensive range of primary care and specialized services the 
VA provides at its inpatient and outpatient facilities as well as claims 
data for care received at outside facilities and paid for by the VA. Each 
outpatient visit in the database is associated with the date of the visit, 
and each inpatient visit is associated with an admission and discharge 
date. Both inpatient and outpatient visits are also associated with ICD 
codes (ICD-9 before 1 October 2015 and ICD-10 on and after that date) 
pertaining to the visit.

US-VA cancer registry and data quality
In addition to EHR data, the CDW also includes cancer registry data. VA 
cancer registry activities were initiated pursuant to a national directive 
in 1998, with incident cases annotated retrospectively from 1995 and 
prospectively until the present55. Cases are abstracted manually by 
trained cancer registrars in accordance with standards of the North 
American Association of Central Cancer Registries56. Potential cases 
are flagged for review by custom software (OncoTraX), which identifies 
potential cases automatically based on occurrence of structured data, 
such as ICD codes, in the EHR. This approach, where semi-automated 
screening is followed by manual review by trained cancer registrars, 
results in highly accurate case ascertainment55,57. For example, one 
study found that VA cancer registry data in the CDW had near-perfect 
accuracy in colorectal cancer case ascertainment by all evaluated 
measures (PPV, negative predictive value (NPV), sensitivity and speci-
ficity) as compared to de novo manual review of 200 potential cases58. 
In contrast, case ascertainment using ICD codes from the EHR had only 
58% PPV. Regarding pancreatic cancer case ascertainment specifically, 
we compared pancreatic cancer cases in the VA cancer registry to cases 
identified based on ICD codes in the VA EHR. We found that 94.9% of 
pancreatic cases in the VA cancer registry between 1999 and 2020 had 
at least one ICD-10 code for pancreatic cancer in the EHR, whereas only 
32.4% of patients with a pancreatic cancer ICD code in the EHR were 
found in the cancer registry. Spurious ICD codes for pancreatic cancer 
can occur in the EHR due to multiple reasons, including outright error, 
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use of the cancer code for a screening or evaluation visit, use of the 
cancer code for medical history and use of the cancer code in dual-use 
scenarios where cancer care is provided outside the VA.

Filtering the US-VA dataset and subset used for training
VA patients were included in the study as described in the flow chart 
(Extended Data Fig. 3). Out of all 15,933,326 patients with ≥1 ICD code 
in the US-VA CDW between 1999 and 2020 and available in our research 
study database, we randomly sampled a subset of approximately 3 
million patients (2,975,110) owing to limitations of the computational 
resources available. Based on the considerations above, we identified 
patients with pancreatic cancer as the overlap of those with a diagnosis 
of pancreatic cancer in the VA cancer registry and those with an ICD 
code in the VA EHR system. We excluded patients with an ICD code for 
pancreatic cancer in the VA EHR data who did not have an entry for 
pancreatic cancer in the VA cancer registry or vice versa, because the 
status of these patients was unclear. We further excluded patients with 
short trajectories (<5 events), as in the Danish dataset. This resulted in 
a final VA dataset of 1,948,209 patients total, including 3,418 patients 
with pancreatic cancer (Extended Data Fig. 3 and Fig. 2). We randomly 
allocated patients in the final VA dataset into training (80%), develop-
ment (10%) and test (10%) sets, with the condition that all trajectories 
from a patient were included in only one split group (train/dev/test), 
to avoid any information leakage between training and development/
test datasets, as in the Danish dataset.

Similarity of survival curves in the two healthcare systems
As a check on the quality of pancreatic cancer case ascertainment in the 
Danish and US-VA datasets, we plotted overall survival in each dataset, 
stratified by cancer stage (Extended Data Fig. 6). Cancer stage was 
obtained from the respective dataset’s cancer registry. Stage was avail-
able only on a subset of patients. The overall similarity of the survival 
curves in the two datasets adds confidence to the quality of the data 
as selected for the comparative study.

Training
The following processing steps were carried out identically for the 
DNPR and US-VA datasets. To best exploit the longitudinality of the 
health/disease records, for each patient the data were augmented by 
using all continuous partial trajectories of minimal length ≥5 diagnoses 
from the beginning of their disease history and ending at different 
timepoints, which we call the time of assessment.

For patients with cancer, we used only trajectories that end before 
cancer diagnoses. We used a step function annotation indicating cancer 
occurrence at different timepoints (3, 6, 12, 36 and 60 months) after the 
end of each partial trajectory. For the positive (‘PC’) cases, this provides 
the opportunity to learn from disease histories with longer time gaps 
between the time of assessment and the time of cancer occurrence. For 
example, for a patient who had pancreatitis a month or two just before 
the cancer diagnosis, it is of interest to learn which earlier disease 
codes might have been predictive of cancer occurrence going back at 
least several months or perhaps years. The latter is also explored by 
separately retraining of the ML model, excluding data from the last 
3 months or 6 months before cancer diagnosis.

For patients without a pancreatic cancer diagnosis, we only 
include trajectories that end earlier than 2 years before the end of 
their disease records (due to death or the freeze date of the DNPR 
data used here). This avoids the uncertainty of cases in which undiag-
nosed cancer might have existed before the end of the records. The 
datasets were sampled in small batches for efficient computation, as 
is customary in ML. Owing to the small number of cases of pancreatic 
cancer compared to controls, we used balanced sampling from the 
trajectories of the patients in the training set such that each batch 
has an approximately equal number of positive (cancer) and negative 
(non-cancer) trajectories.

Model development
A desired model for such diagnosis trajectories consists of three parts: 
embedding of the categorical disease features, encoding time sequence 
information and assessing the risk of cancer.

We embeded each event denoted with a level-3 ICD code from a 
partial disease trajectory in a continuous and low-dimensional latent 
space59,60. Such embedding is data driven and trained together with 
other parts of the model. For ML models not using embedding, each 
categorical disease was represented in numeric form as a one-hot 
encoded vector. The longitudinal records of diagnoses allowed us to 
construct time sequence models with sequential neural networks.

After embedding, each sequence of diagnoses was encoded into a 
feature vector using different types of sequential layers (gated recur-
rent units (GRU)), attention layers (Transformer) or simple pooling 
layers (bag-of-words model, multilayer perceptron model (MLP)). 
The encoding layer also included age inputs, which have been demon-
strated to have a strong association with pancreatic cancer incidence11.

Finally, the embedding and encoding layers were connected to a 
fully connected feedforward (FF) network to make predictions of future 
cancer occurrence following a given disease history (the bag-of-words 
model uses only a single linear layer).

The model parameters were trained by minimizing the prediction 
error quantified as the difference between the observed cancer diag-
nosis in the form of a step function (0 before the occurrence of cancer 
and 1 from the time of cancer diagnosis) and the predicted risk score in 
terms of a positive function that monotonically increases from 0, using 
a cross-entropy loss function, with the sum over the five timepoints, 
and L2 regularization on the parameters (Fig. 1a).

loss 1
N

1
NT

∑
i,t
− [yi,t log [p̂Θ,t(xi)] + (1 − yi,t) log [1 − p̂Θ,t(xi)]] + λ2 ‖Θ‖2

where t ∈ {3,6, 12, 36,60}  is for months; NT = 5  is for non-cancer 
patients; NT ≤ 5 is for cancer patients where we use only the time-
points before the cancer diagnosis; i = 1, 2, 3,…,N labels samples; Θ is 
the set of model parameters; λ2 is the regularization strength; p̂ is the 
estimated risk output by the model; xi is the input disease trajectories; 
yi,t = 1  is for cancer occurrence; and yi,t = 0 is for no cancer within a 
t-month time window.

The Transformer model, unlike the recurrent models, does not 
process the input as a sequence of timesteps but, rather, uses an atten-
tion mechanism to enhance the embedding vectors correlated with the 
outcome. To enable the Transformer to digest temporal information, 
such as the order of the exact dates of the diseases inside the sequence, 
we used positional embedding to encode the temporal information 
into vectors, which were then used as weights for each disease token. 
Here, we adapted the positional embedding from ref. 38 using the 
values taken by cosine waveforms at 128 frequencies observed at dif-
ferent times. The times used to extract the wave values were the age 
at which each diagnosis was administered and the time difference 
between each diagnosis. In this way, the model is enabled to distin-
guish between the same disease assigned at different times and two 
different disease diagnoses far and close in time. The parameters in the 
embedding machine, which address the issue of data representation 
suitable for input into a deep learning network, were trained together 
with the encoding and prediction parts of the model with back- 
propagation (Fig. 2).

To comprehensively test different types of neural networks and 
the corresponding hyperparameters, we conducted a large parameter 
search for each of the network types (Supplementary Table 2). The 
different types of models include simple FF models (linear regression 
(LR) and MLP) and more complex models that can take the sequential 
information of disease ordering into consideration (GRU and Trans-
former). See the supplementary table with comparison metrics across 
different models (Supplementary Table 3). To estimate the uncertainty 
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of the performances, the 95% confidence interval was constructed 
using 200 resamples of bootstrapping with replacement.

Evaluation
The evaluation was carried out separately for each prediction interval 
of 0–3, 0–6, 0–12, 0–36 and 0–60 months. For example, consider the 
prediction score for a particular trajectory at the end of the 3-year 
prediction interval (Fig. 1c). If the score is above the threshold, one has 
a correct positive prediction if cancer has occurred at any time within 
3 years and a false-positive prediction if cancer has not occurred within 
3 years. If the score is below the threshold, one has a false-negative 
prediction if cancer has occurred at any time within 3 years and a 
true-negative prediction if cancer has not occurred within 3 years. 
As both training and evaluation make use of multiple trajectories per 
patient, with different end-of-trajectory points, the performance num-
bers were computed over trajectories. For each hyperparameter search, 
the best model was selected using the area under the precision recall 
curve (AUPRC).

The relative risk ratio (RR) is calculated as the odds of getting 
pancreatic cancer when classified at high risk compared to a random 
method that just uses the disease incidence in the population. RR is 
defined as

RR = precision
incidence

= TP/(TP + FP)
(TP + FN)/(TP + FP + TN + FN)

where TP is true positives, FP is false positives, FN is false negatives and 
TN is true negatives. The RR score is defined at a given operational deci-
sion point along the RR curve as a function of the number of patients 
predicted to be at high risk (Fig. 3, right, and Fig. 4). The RR ratio quanti-
fies by what factor a prediction method does better than a random pick 
based just on the population disease incidence.

For the purpose of comparing different algorithms, input modes 
and DNPR versus US-VA, we report exhaustive performance tables (Sup-
plementary Table 3a–i) with precision and recall at the F1 operational 
point, which maximizes the harmonic mean of recall and precision61. 
However, for consideration of clinical implementation, which requires 
severe limits on the number of patients who can be advanced to a 
surveillance program, we use an operational point for the top 1,000 
high-risk patients out of 1 million patients (0.1% of 1 million; see RR 
plots: Figs. 3 and 4).

Cross-application to the US-VA dataset
To assess the predictive performance of the model in other healthcare 
systems, we applied the best ML model trained on the DNPR to disease 
trajectories of patients in the US-VA dataset. For the US-VA dataset, we 
directly applied models without any adaptation except for mapping 
the ICD code from one system to the other. In brief, ICD-9 codes in the 
US-VA dataset were first mapped to ICD-10 codes, followed by adding 
a prefix ‘D’ to obtain Denmark-compatible ICD-10 codes.

Interpreting clinically relevant features
To find the features that are strongly associated with pancreatic cancer, 
we used an attribution method for neural networks called integrated 
gradients40. This method calculates the contribution of input features, 
called attribution, cumulating the gradients calculated along all the 
points in the path from the input to the baseline. We chose the output 
of interest to be the 36-month prediction. Positive and negative attribu-
tion scores (contribution to prediction) indicate positive and negative 
correlation with patients with pancreatic cancer. Because the gradient 
cannot be calculated with respect to the indices used as input of the 
embedding layer, the input used for the attribution was the output 
of the embedding layer. Then, the attribution at the token level was 
obtained summing up over each embedding dimension and summing 
across all the patient trajectories. Similarly, for each trajectory, we 

calculated the age contribution as the sum attribution of the integrated 
gradients of the input at the age embedding layer.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Danish registry-based studies do not require ethical approvals, and 
informed consent is not required. This study has been approved by the 
Danish Health Data Authority (FSEID-00003092 and FSEID-00004491), 
the Danish Data Protection Agency (ref: SUND-2017-57) and General 
Data Protection Regulation record of processing activity (ref: 514-
0255/18-3000). Application for data access can be made to the Danish 
Health Data Authority (contact: servicedesk@sundhedsdata.dk). 
Anyone wanting access to the data and to use them for research will be 
required to meet research credentialing requirements as outlined at 
the authority’s web site: https://sundhedsdatastyrelsen.dk/da/english/
health_data_and_registers/research_services. Requests are normally 
processed within 3–6 months.

Analysis in the US-VA system was conducted under a waiver of 
informed consent with approval from the VA Boston Healthcare System 
Institutional Review Board. All VA data used in this study are available 
to any investigator upon relevant approvals through the VA Informat-
ics and Computing Infrastructure (VINCI) (contact: VINCI@va.gov). 
Anyone wanting access to the data and to use them for research will 
be required to meet research credentialing requirements as outlined 
by the VA Office of Research and Development, which is expected to 
be processed within at least 6 months.

Code availability
The software, under the name CancerRiskNet (initial commit 22 Febru-
ary 2023), is freely available at https://github.com/BrunakSanderLabs/
CancerRiskNet. All analyses carried out in this study were performed 
using Python version 3.8.10. The Python package torch version l.9.0 
was used for developing the machine learning models, and integrated 
gradient was implemented using the Python package Captum version 
0.3.1. Visualization was obtained using Python packages matplotlib 
version 3.3.2 and seaborn version 0.11.0.
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Extended Data Fig. 1 | Preprocessing and filtering of the DK disease trajectory 
datasets. Filtering of the Danish (DK-DNPR) patient registries prior to training. 
In the Danish dataset, patient status codes were used to remove discontinuous 
disease histories such as patients living in Greenland, patients with alterations  
in their patient ID or patients who lack a stable residence in Denmark.  

We also removed referral and temporary diagnosis codes which are not the final 
diagnosis codes and can be misleading to use for training. Patients with short 
trajectories (<5 diagnosis codes) were removed. The final set of patients were 
split into Training (80 %), Validation (10%) and Testing set (10%).
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Distribution of disease codes as a function of 
age in the DNPR (Denmark) database. Distribution of disease codes for a 
representative subset of diseases known to contribute to the risk of pancreatic 
cancer, as a fraction of all pancreatic cancer patients (orange) and all non-
cancer patients (blue). The similarity of the distributions for some of these 

diseases with the distribution of occurrence of pancreatic cancer (red line, 
Gaussian fit to cancer diagnosis data) is consistent with either a direct or 
indirect contribution to cancer risk - but not taken as evidence in this work.  
The disease codes are ICD-10/ICD-8.
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Extended Data Fig. 3 | Preprocessing and filtering of US-VA disease trajectory 
datasets. Filtering of the US-VA patient registries prior to training. For the 
US-VA dataset, around 3 million of patients were randomly sampled due to 
computational limitations and patients with ICD-9/10 for pancreatic cancer, but 

without entries in US-VA cancer registry were excluded. Similar to the Danish 
dataset filtering, short trajectories (<5 diagnosis codes) were removed and 
patients were split into Training (80 %), Validation (10%) and Test set (10%).
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Extended Data Fig. 4 | Age as a contributing factor. The integrated gradient 
method was used to extract the contribution (arbitrary units) of patient age 
to the prediction at the time of assessment. This confirmed that the positive 

contribution to risk rises strongly from age 50. As for the disease contributions, 
the age contribution was calculated in relation to the 3 year (after the time of 
assessment/prediction) cancer risk.
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Extended Data Fig. 5 | Risk factor for patients without chronic pancreatitis. 
To assess to what extent the inclusion of people with chronic pancreatitis might 
boost model performance artificially, we have evaluated model performance for 
predicting cancer within 12 months for all patients above the age of 50, excluding 
data from the last three months before the PC diagnosis, for all cases without 
chronic pancreatitis and closely related conditions (ICD10 codes K86), for 

comparison with Fig. 4d in the paper. Result: the relative risk remains nearly the 
same, proving that including patients with chronic pancreatitis does not affect 
model performance. Moreover, this is supporting evidence for the robustness 
of the model that bases its prediction not on single diagnoses but rather on the 
entire set of codes in disease trajectories.
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Extended Data Fig. 6 | Survival curves. Overall survival in each dataset, stratified by cancer stage. Cases were ascertained using the methods described in Methods, 
and cancer stage was obtained from the respective dataset’s cancer registry. Stage was only available on a subset of patients.
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