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Abstract: Over the last decades, epidemiology and functional studies have started to reveal a pivotal
role of vitamin D in both type 1 and type 2 diabetes pathogenesis. Acting through the vitamin
D receptor (VDR), vitamin D regulates insulin secretion in pancreatic islets and insulin sensitivity
in multiple peripheral metabolic organs. In vitro studies and both T1D and T2D animal models
showed that vitamin D can improve glucose homeostasis by enhancing insulin secretion, reducing
inflammation, reducing autoimmunity, preserving beta cell mass, and sensitizing insulin action.
Conversely, vitamin D deficiency has been shown relevant in increasing T1D and T2D incidence.
While clinical trials testing the hypothesis that vitamin D improves glycemia in T2D have shown
conflicting results, subgroup and meta-analyses support the idea that raising serum vitamin D
levels may reduce the progression from prediabetes to T2D. In this review, we summarize current
knowledge on the molecular mechanisms of vitamin D in insulin secretion, insulin sensitivity, and
immunity, as well as the observational and interventional human studies investigating the use of
vitamin D as a treatment for diabetes.
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1. Introduction

Vitamin D is a group of fat-soluble secosteroids. This term generally refers to vi-
tamin D2 (ergocalciferol), a plant-derived product of sterol ergosterol, and vitamin D3
(cholecalciferol), an animal-derived product of 7-dehydrocholesterol. A small quantity of
vitamin D, including vitamin D2 and vitamin D3, can be acquired from dietary sources.
The majority of circulating vitamin D, in the form of vitamin D3, is formed in the skin
from 7-dehydrocholesterol (7-DHC) in the presence of sunlight [1]. Through two succes-
sive steps of hydroxylation catalyzed by 25-hydroxylase and 1α-hydroxylase, respectively,
vitamin D in humans is progressively converted into 25-hydroxyvitamin D (25(OH)D) in
the liver and 1,25-dihydroxyvitamin D (1,25(OH)2D) in the kidney (Figure 1) [2]. While
25-hydroxyvitamin D (25(OH)D) is the primary circulating form and an excellent biomarker
for overall vitamin D levels [3], 1,25-dihydroxyvitamin D (1,25(OH)2D) is the metabolically
active form of vitamin D [4].

Vitamin D exerts its effects via both genomic and nongenomic actions. For the genomic
pathway, 1,25(OH)2D, as a ligand, binds to vitamin D receptor (VDR), a ligand-dependent
nuclear receptor that functions as a transcription factor by generating a heterodimer with
the retinoid X receptor (RXR) upon ligand binding [5]. The VDR/RXR complex recog-
nizes vitamin D-responsive elements (VDRE), a direct tandem repeat of two hormone
response element in the regulatory regions of target genes [5], activating or repressing
gene expression in a context-dependent manner (Figure 1). The downstream effects of
VDR are tightly regulated by the specific composition of its coregulatory partners, such as
chromatin remodelers, co-activators, and co-repressors [6]. Additionally, 1,25(OH)2D may
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bind to membrane-anchored receptors to regulate the activity of signaling molecules or the
production of second messengers [7].

Figure 1. Vitamin D protects against type 2 diabetes. 1,25 (OH)2 D3, the active form of vitamin D3, is
produced from cholesterol through successive hydroxylation of UVB generated 7-dehydrocholesterol
(DHC). 1,25 (OH)2 D3 activates the vitamin D receptor (VDR) retinoid X receptor (RXR) heterodimer
in the major metabolic tissues. The active VDR/RXR heterodimer binds to vitamin D response
elements (VDREs) to induce changes in gene expression that in combination, improve islet function
and decrease insulin resistance.

In addition to the canonical functions in regulating calcium absorption, bone growth and
remodeling [8], vitamin D has other roles in metabolism and immunity. Notably, growing
evidence supports that vitamin D plays a relevant role in islet dysfunction and insulin resistance
in T2D [9–12]. From an epidemiology perspective, the worldwide trend of prevalent vitamin D
insufficiency [13,14] may be linked to the growing incidence of T2D in humans. We summarize
the molecular mechanisms of vitamin D in regulating insulin secretion and insulin action in
both homeostasis and T2D, as well as the epidemiology and clinical evidence ascertaining a
protective role of vitamin D in T2D pathogenesis. Lastly, we discuss the role of vitamin D in
suppressing autoimmunity and preserving islet function in T1D.
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2. Vitamin D and Islet Dysfunction in T2D Progression

Already a prevalent endocrine disease, the incidence of T2D is expected to escalate
rapidly in the coming decades. T2D is characterized by diminished insulin secretion from
pancreatic islets and insulin resistance in peripheral organs. Insulin secretion defects
and insulin resistance, triggered by chronic and excess nutritional intake, cause glucose
intolerance and hyperglycemia. Both β cell mass and glucose-stimulated insulin secretion
(GSIS) are reduced even in the early prediabetic stage [15]. The deterioration of β cell
function and reduced β cell mass is likely caused by multiple risk factors, including
glucotoxicity, lipotoxicity, and elevated inflammation [15–17].

β cells express both the vitamin D receptor transcript (Vdr) and 1α-hydroxylase
(Cyp27b1), which catalyzes the activation of 25(OH)D into 1,25(OH)2D, consistent with
the cell-intrinsic role for VDR [18]. Furthermore, the presence of a VDRE in the human
insulin receptor gene promoter region suggests a potential role of vitamin D in influencing
insulin action [19], although direct evidence of VDR occupancy at the INS locus is still
lacking. Several in vivo and ex vivo studies in rats have indicated that vitamin D deficiency
in vivo resulted in reduced serum insulin levels and impaired islet insulin secretion in
isolated islets [20–22]. Conversely, in vitamin D-deficient mice, several studies showed that
vitamin D supplementation could restore islet insulin secretion [20–24], suggesting a direct
role of vitamin D in regulating islet insulin secretion function. In addition, serum insulin
and Ins2 expression are significantly decreased in VDR-mutant mice [23], suggesting that
vitamin D-VDR controls the expression of genes related to insulin expression and secretion.

Evidence corroborating the function of vitamin D in human β cells has been shown
in clinical studies in T2D patients [25], prediabetic [26], and non-diabetic populations [27].
However, while the correlation between vitamin D levels and islet function is robust, it
should be noted that whether vitamin D treatment can directly improve insulin secretion
in humans remains unclear, with intervention clinical trials showing mixed results of
vitamin D supplementation in improving human islet function [18,28,29].

Vitamin D regulates insulin synthesis and secretion through multiple mechanisms. On
the one hand, the active form of vitamin D, 1,25 (OH)2D, binds to VDR and induces genes
related to glucose transport, insulin secretion [19], and cellular growth in β cells [30]. On the
other hand, vitamin D may indirectly regulate insulin secretion by impacting intracellular
calcium concentrations. Calcium triggers insulin release [31] by promoting the mobiliza-
tion of insulin vesicles and their exocytosis [32]. 1,25 (OH)2D leads to depolarization of
cytoplasmic membranes in β cells, opening of Ca2+ channels and elevation of intracellular
Ca2+ levels [33,34]. One possible molecular mechanism of this action is that 1,25 (OH)2D ac-
tivates PKA and enhances channel function by phosphorylating L-type voltage-dependent
Ca2+ channel-related proteins [33]. Moreover, 1,25 (OH)2D activates VDR to regulate the
expression of voltage-gated calcium channel to enhance insulin secretion [35]. Another
mechanism is that 1,25 (OH)2D promotes PLC synthesis and activates inositol triphosphate
that releases Ca2+ from the ER [34,36]. In addition, vitamin D adjusts the expression of
calbindin [37,38], a Ca2+-binding protein involved in maintaining Ca2+ concentrations.

In T2D, islet dysfunction is caused by a combination of stress factors, including
glucolipotoxicity, inflammation, ER stress, and Islet Amyloid Polypeptide (IAPP) toxicity.
Vitamin D has long been identified as an anti-inflammatory hormone in the immune
response. Vitamin D or over-expression of VDR has also been shown to repress cytokine-
induced proinflammatory responses and apoptosis in β cell lines and islets [39–41]. The
inflammation suppressive function of vitamin D is likely because of the direct suppression
of NF-κB activation by liganded VDR. In addition to its anti-inflammatory role, vitamin D is
also an active suppressor of ER stress and IAPP-induced β cell dysfunction [39]. Vitamin D
is able to downregulate essential ER stress players, such as p-PERK, p-IREa, and CHOP in
monocytes, liver, and islets [42]. It is unclear, though, whether the suppression is through
direct repression of ER stress gene expression or a secondary effect of the anti-inflammatory
function of vitamin D.
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Although the pleiotropic protective role of vitamin D in islets is clear, vitamin D
supplementation showed mixed results in glucose metabolism [1,43–46]. This may be
partly due to the significant reduction in VDR expression in both T1D and T2D islets [41]. A
recent elegant mouse study showed that overexpressing VDR in islets was able to rescue the
islet dysfunction, suggesting that a supraphysiological activation of VDR may be required
to achieve a functional improvement in islet dysfunction [41]. Pharmacologically, we have
shown that a combination of vitamin D and BRD9 inhibitors can induce a synergistic
activation of the anti-inflammatory response in β cells and protect against islet dysfunction
in several T2D mouse models [39]. Mechanistically, we showed that the balance between
two antagonizing chromatin remodeling complexes, BRD9-containing BAF, and BRD7-
containing PBAF, defined the amplitude and duration of VDR activation [39]. Future
dissection of the epigenetic mechanisms regulating VDR activity may provide additional
targets to maximize vitamin D signaling potential in reverting islet dysfunction in T2D.

It is noteworthy that the contributions of vitamin D in regulating islet function may also
come from non-β endocrine and non-endocrine cells in islets. Islet macrophages express
VDR, which suggests that vitamin D may function in islet-resident immune cells [47].
Interestingly, the vitamin D binding protein (DBP, encoded by the GC gene), is highly
expressed in dysfunctional α cells and contributes to α cell adaptation [48] and β cell
dedifferentiation [49]. Future studies using tissue-specific knockout models will be essential
to define the precise function of vitamin D in different islet cell types.

3. Vitamin D and Insulin Sensitivity and Resistance

Insulin resistance, defined as an impaired ability of insulin to induce glucose uptake
in peripheral tissues resulting in hyperglycemia, is a hallmark of prediabetes and T2D.
Vitamin D has been suggested to regulate insulin sensitivity in cell lines and peripheral
metabolic organs [43]. Several in vitro studies showed that 1,25(OH)2D activates VDR
to increase insulin receptor expression [19,50,51], which could subsequently increase in-
sulin sensitivity. Dunlop et al. showed that peroxisome proliferator-activated receptor
(PPAR) δ was the primary 1,25(OH)2D activated target in several cancer cell lines [52],
while subsequent studies suggested an association between PPAR δ and insulin sensitivity
through 1,25(OH)2D [53,54]. More recent studies have started dissecting the tissue-specific
role of vitamin D in insulin resistance. Skeletal muscle is a major organ contributing to
insulin resistance. Zhou et al. concluded that 1,25(OH)2D ameliorated insulin resistance
in C2C12 myotube cells triggered by free fatty acid [55]. Manna et al. demonstrated that
1,25(OH)2D enhanced glucose uptake via the SIRT1/IRS1/GLUT4 axis by activating SIRT1,
phosphorylating IRS1, and ultimately translocating GLUT4 in myotubes [10]. Moreover,
activation of VDR increases Ca2+ concentrations in muscle, enhances the translocation of
GLUT4, and increases glucose uptake [56]. Together, these results indicate a protective
role of vitamin D against insulin resistance in skeletal muscle. In liver and adipose tissue,
whether vitamin D directly regulates insulin receptor expression remains unclear. The
reduction in insulin receptor gene expression in the livers of diabetic Wistar rats could
be rescued with the treatment of vitamin D3 [57]. A different conclusion from high-fat
diet-fed mice, however, indicated that vitamin D did not influence the transcript level of
the insulin receptor gene in the liver [58]. In contrast, the anti-inflammatory function of
vitamin D in liver and adipose is more verified. A recent study showed that activation of
VDR acts on resident liver macrophages to reduce liver inflammation and insulin resistance
in diet-induced obese mice [59]. Some evidence from VDR macrophage knockout mice
supports the beneficial role of vitamin D by showing that deletion of VDR promotes insulin
resistance in liver [60]. In obese adipose tissue, vitamin D downregulates the expression
of proinflammatory cytokines (IL-1β, IL-6, TNF-α) [61,62] and chemokines (CCL2, CCL5,
CXCL10, CXCL11) [63] released by adipocytes and resident immune cells [64], to conse-
quently repress inflammatory responses. A study in human monocytes suggested that the
mechanism of downregulation might involve a reduction in transcript and protein levels of
TLR2 and TLR4 via VDR [65]. The anti-inflammatory activity of vitamin D partly relies on
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the suppression of NF-κB and MAPK signaling by VDR [66,67], which binds to and acti-
vates MAPK phosphatase-1 [68] and IKBa [39,69]. Moreover, the vitamin D/VDR axis also
inhibits monocyte recruitment into adipose tissue and promotes a shift to anti-inflammatory
M2 macrophages in adipose tissue [70].

A number of studies have shown that vitamin D is involved in lipid metabolism by
regulating adipogenesis, lipolysis, and lipogenesis. The exact function of vitamin D in
these processes is likely to be context-dependent. For in vitro studies using mesenchymal
cells (MSCs) from adipose tissue or bone marrow, vitamin D promotes differentiation of
the adipocyte progenitors, likely through upregulating lineage factors, such as PPARγ and
AP2 [71–74]. In human MSCs, supplementing vitamin D can promote terminal differen-
tiation by increasing the expression of adipogenesis regulators, such as PPARγ and AP2
and functional enzymes, such as LPL [73]. However, these results are contradictory to
the fact that the MSCs from VDR whole-body knockout mice also showed an increase in
PPARγ and AP2, and an enhancement of differentiation [75]. A similar trend is observed in
adipocyte differentiation using glucocorticoids or thiazolidinedione (TZD) [76]. Moreover,
in 3T3-L1 cells, a widely used adipocyte progenitor cell line, vitamin D suppresses lipid
deposition and terminal differentiation [77,78]. Since most of these studies were performed
on in vitro cultured primary cells or cell lines, the various culture conditions could be a
major confounding factor.

Several animal models have been used to interrogate vitamin D’s role in adipose tissue
function and lipid homeostasis. Mice fed with vitamin D3-containing diet for 3 weeks
showed an increase in subcutaneous and visceral fat [79], while mice administrated with
calcitriol through a continuous pump showed reduced adipose weight [80]. Mice with
whole body knockout of VDR showed a reduced white adipose tissue mass, reduced serum
triglyceride, and cholesterol [81–83]. Interestingly, the UCP1 expression is significantly
elevated in the WAT of these mice [81], suggesting that elevated energy production could
be a cause for the reduced WAT mass. Mice with adipose-specific deletion of VDR, on the
other hand, have increased visceral fat in females but not in males [84]. Interestingly, the
adipose specific knockout of VDR does not change the glucose tolerance [84], suggesting a
limited impact of adipose vitamin D signaling on glucose homeostasis.

In addition to the mechanisms discussed above, the pleiotropic role of vitamin D/VDR
in insulin resistance may involve (1) vitamin D-induced increases in parathyroid hormone
(PTH), which reduces insulin resistance by increasing the quantity of GLUT1 and GLUT4
in vitamin D-deficient adipose tissue, liver, and muscle [85,86]; (2) suppression of the
renin-angiotensin-aldosterone system (RAS) activity which impairs β cell function, in-
hibits peripheral insulin sensitivity [87], hinders GLUT4 recruitment [88], and triggers
insulin resistance [89]; (3) a high dose of 1,25(OH)2D supplement that can activate the
Ca2+/CaMKKβ/AMPK pathway to ameliorate insulin resistance and ER stress [90]; and
(4) vitamin D preventing ROS formation, an essential activator of insulin resistance [91].

Several clinical studies also support a protective role of vitamin D in insulin resistance.
Chiu et al. performed univariate regression analyses on 126 glucose-tolerant subjects
and concluded that patients with hypovitaminosis D have a higher risk of developing
insulin resistance [92]. Low plasma 25(OH)D levels are also proposed to be a risk factor
for T2D [93,94]. A decrease in insulin resistance and increased insulin secretion has been
reported with vitamin D supplementation [18,28,95,96]. However, in a separate study
in patients with normal levels of vitamin D, supplementation with 1(OH)D failed to
improve glucose homeostasis [97], while ergocalciferol supplementation was reported to
increase insulin resistance in three vitamin D-deficient T2D patients [98]. These apparently
contradictory findings highlight the need for additional clinical studies.
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4. Vitamin D Deficiency and Type 2 Diabetes—Results of Observational and
Intervention Studies and Meta-Analyses

Vitamin D deficiency is defined as a 25(OH)D level of less than 20 ng/mL, according
to established consensus [99]. Vitamin D deficiency has long been associated with islet
dysfunction, insulin resistance, and increased T2D incidence [43]. While growing evidence
in animal models has illustrated the underlying mechanisms of vitamin D in diabetes
pathogenesis, as described above, whether vitamin D supplementation could act as a pre-
ventative or interventional therapy for T2D remains unclear, with several studies showing
mixed results.

The overall link between vitamin D serum levels and metabolic health has been
observed in multiple studies. A cross-sectional study including 10,229 subjects showed a
negative association between serum 25(OH)D and BMI during winter months [100]. In a
cohort study with 9841 participants and 29 years of follow-up, low plasma 25(OH)D was
associated with a higher risk of T2D after adjustment for sex, age, BMI, and other health
factors [101]. A similar conclusion has been reported in several studies [102–105]. In a meta-
analysis summarizing 21 prospective studies that included 76,220 subjects and 4996 T2D
cases, Song et al. highlighted the monotonical association between higher 25(OH)D levels
and lower diabetes risk [106]. An increase of 10 nmol/L in 25(OH)D serum concentration
is estimated to correlate with a 4% reduction in the T2D incidence [106]. A positive
link between 25(OH)D levels and insulin sensitivity and β cell function has been shown
in a Californian study measuring insulin sensitivity index and islet secretion capacity
in 126 subjects [100]. However, several other studies showed no significant correlation
between vitamin D and insulin levels [107] or T2D incidence [108,109].

Based on epidemiological results, it has been postulated that supplementing vitamin D
may ameliorate insulin resistance and enhance glycemic control. A single-center, double-blind,
randomized placebo-controlled trial performed on 96 non-diabetic participants suggested a
significant beneficial effect of vitamin D3 supplement on peripheral insulin sensitivity com-
pared with placebo after six months [26]. A similar conclusion was drawn in trials performed
on overweight, and vitamin D-deficient subjects [110] and subjects with impaired fasting
glucose [111]. Improvements were also observed in HOMA-IR [13,112], serum fasting plasma
glucose and insulin [112], and body weight [113] in patients with T2D after being treated
with vitamin D. Additional trials on females with T2D [28] or with gestational diabetes [114]
who were given vitamin D supplements or placebo confirmed the positive role of T2D.
In contrast, no differences in insulin resistance were observed when 65 Caucasian men
with impaired glucose tolerance received vitamin D supplements [97]. Similarly, in a large,
multicenter, randomized clinical trial (D2d), daily supplementation with 4000 IU vitamin
D3 did not appreciably decrease the risk of diabetes among people with a high risk of
T2D [115]. Moreover, increases in fasting insulin levels and insulin resistance were re-
ported in three British Asian patients with non-insulin-dependent diabetes and vitamin D
deficiency after three months of vitamin D administration [98]. However, a recent meta-
analysis, including this dataset, reaffirmed the beneficial role of vitamin D in non-obese
subjects, suggesting that supplementation can promote the reversion from prediabetes to
normoglycemia [116]. Hence, whether vitamin D can prevent or revert T2D in humans will
still need further research.

5. Vitamin D in T1D Progression

Type 1 diabetes (T1D) is caused by the autoimmune destruction of pancreatic β

cells, leading to insulin deficiency. The development of T1D is a gradual process of
breaking tolerance to autoantigens. β cell-specific autoantigens (such as insulin, proinsulin,
and IGRP) are presented by antigen-presenting cells (APCs), triggering cytotoxic T cell
responses, which cause β cell damage [117,118]. Several studies in non-obese diabetic
(NOD) mice have elucidated that pancreas-infiltrated dendritic cells and macrophages
function in presenting islet autoantigens [119,120]. Thereafter, islet antigen-reactive CD4+

and CD8+ T cells induce β cell damage that consequently potentiates the immune response



Nutrients 2023, 15, 1997 7 of 15

by releasing more self-antigens [121–124]. In addition to T cells, autoantibody-producing B
cells and innate immune cells also participate in destroying β cells [125–127].

Animal models and epidemiological studies strongly support the ability of vitamin D
to prevent T1D pathogenesis. In CD-1 mice with diabetes induced by daily intraperi-
toneal injections of low doses of streptozotocin (STZ), intraperitoneal administration of
1α,25(OH) 2D3 protected the diabetic mice from developing hyperglycemia [128]. Long-
term treatment with a high dose of 1,25(OH)2D3 on NOD mice reduced the incidence of
insulitis and hyperglycemia [129–131]. In humans, epidemiological studies have shed light
on the association between vitamin D intake and T1D incidence. In a birth cohort study, a
significant reduction in T1D risk was observed in 10,366 children who received 2000 IU
of vitamin D daily [132]. Similarly, maternal intake of vitamin D is relevant to a reduced
risk of islet autoimmunity in offspring [133], which is consistent with the conclusion from a
more recent case–control study that showed that the lower maternal serum concentration
of 25(OH)D during pregnancy is correlated with a higher risk of childhood-onset T1D [134].
Zipitis and colleagues concluded that vitamin D supplementation in early childhood pre-
vented the development of T1D in a meta-analysis-based study [135]. A similar conclusion
was generated in a EURODIAB (European Community Concerted Action Programme
in Diabetes) subgroup multicenter study [136]. Although data from healthy subjects are
promising, there are only limited studies supporting the role of vitamin D in delaying T1D
development. Gabbay and colleagues [137] suggested that as an adjunctive therapy with
insulin, 2000 IU daily supplementation of vitamin D3 slowed the decline of residual β cell
function in patients with new-onset T1D. Two other studies, however, showed that there
was no protective effect of 1,25(OH)2D3 treatment in subjects with new-onset T1D [138,139].
Therefore, more trials evaluating the function of vitamin D supplementation in treating
T1D are still needed.

The beneficial effects of vitamin D in T1D could be rooted in its versatile functions
in various immune populations. VDR is expressed in nearly all immune cells, including
activated T and B cells, dendritic cells, macrophages, and neutrophils [140–143]. Dif-
ferentiation of monocytes to macrophages or dendritic cells correlates with a decreased
expression of VDR [144,145], whereas T cell activation is accompanied by increased ex-
pression of VDR [140,146]. The presence of VDR in both T cells and antigen-presenting
cells suggests distinct, cell-type specific mechanisms of vitamin D in suppressing adap-
tive immunity [147,148]. In monocytes/macrophages, 1,25(OH)2D3 reduces MHC II and
co-stimulatory molecules (CD40, CD80 and CD86) expression and prevents T cell acti-
vation [149,150]. In rat and human dendritic cells, 1,25(OH)2D3 inhibited dendritic cell
maturation and stimulatory functions. 1,25(OH)2D3 treatment inhibits the expression of
CD1a+ (dendritic cell marker), MHC II, and co-stimulatory genes while maintaining the
expression of monocytic markers [151–154]. 1,25(OH)2D3 has also been demonstrated to
induce dendritic cell apoptosis [151,155], or induce tolerogenic dendritic cells featuring a
reduced expression of CD40, CD80, and CD86 [156,157]. Tolerogenic dendritic cells inhibit
autoimmune processes by enhancing Treg cell development in NOD mice [156]. Another
potential role of 1,25(OH)2D3 in dendritic cells is to induce the expression of the mannose
receptor, the endocytic capacity-related molecule involved in antigen-capturing [158]. Lym-
phocytes are also profoundly impacted by 1,25(OH)2D3. Th1 and Th17 cells are essential in
T1D initiation [159,160]. 1,25(OH)2D3 inhibits the expression of multiple cytokines, such as
IL-12 and IL-23, and consequently drives a T cell subpopulation shift from Th1/Th17 to
Th2 [161–164]. On the other hand, the recruitment of T cells to the pancreas by cytokines
and chemokines aggravates β cell damage. 1,25(OH)2D3 is able to suppress T cell infil-
tration by reducing gene expression and/or secretion of multiple cytokines (IL-6, IL-15)
and chemokines (CCL2, CCL5, and CXCL10) that manipulate T cell migration [69,165,166].
Furthermore, 1,25(OH)2D3 suppresses autoreactive T cells and maintains tolerance [167] by
promoting Treg cell development [168] and suppressing proinflammatory cytokines (IL-2,
IFN-
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cytokines (IL-2, IFN-ɤ, IL-17, and IL-21) expression [169]. In addition to its effect on T cells, , IL-17, and IL-21) expression [169]. In addition to its effect on T cells, 1,25(OH)2D3

also inhibits B cell proliferation, differentiation in memory B cells, and production of im-
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munoglobulins [170]. Whether the action of vitamin D on B cells is required for its T1D
prevention capacity remains to be elucidated.

6. Conclusions

In addition to its canonical role in skeletal function, vitamin D modulates insulin
secretion and action in diabetes. Vitamin D/VDR directly regulates functional genes, in-
cluding critical genes in the secretion pathway and insulin action. As an anti-inflammatory
hormone, vitamin D also acts on tissue resident immune cells to reduce local and systemic
inflammation, thus preventing islet, liver, and muscle dysfunction. Though vitamin D is
known to work on multiple organs and cell types, the relative contribution of individual
cell types to the anti-diabetic effects remain to be determined. Mechanistically, how does vi-
tamin D activate essential functional genes while repressing inflammatory targets? The cell
type-specific regulatory circuitry of vitamin D-VDR remains to be elucidated. Vitamin D
deficiency is prevalent in the general population and is linked to a higher type 2 diabetes in-
cidence. Normalizing the vitamin D levels in deficient patients has slowed T2D progression.
However, large-scale clinical trials have not demonstrated the clinical benefit of vitamin D
supplements in ameliorating type 2 diabetes [171]. These results raise more questions for
future studies: What is the optimal vitamin D level? Can vitamin D supplements achieve
this level without causing side effects? Further larger-scale prospective trials may still be
required to test whether vitamin D intake is able to prevent or reverse type 2 diabetes. In
T1D, the evidence of vitamin D in preventing at-risk subjects from developing diabetes is
lacking. It is also unclear whether the beneficial effects of vitamin D depend on its ability
to reprogram autoimmunity, prevent B cell damage, or both.
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