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Abstract: Chronic kidney disease (CKD) is a highly prevalent condition worldwide in which the kidneys
lose many abilities, such as the regulation of vitamin D (VD) metabolism. Moreover, people with
CKD are at a higher risk of multifactorial VD deficiency, which has been extensively associated with
poor outcomes, including bone disease, cardiovascular disease, and higher mortality. Evidence is
abundant in terms of the association of negative outcomes with low levels of VD, but recent studies
have lowered previous high expectations regarding the beneficial effects of VD supplementation in
the general population. Although controversies still exist, the diagnosis and treatment of VD have
not been excluded from nephrology guidelines, and much data still supports VD supplementation in
CKD patients. In this narrative review, we briefly summarize evolving controversies and useful clinical
approaches, underscoring that the adverse effects of VD derivatives must be balanced against the need
for effective prevention of progressive and severe secondary hyperparathyroidism. Guidelines vary, but
there seems to be general agreement that VD deficiency should be avoided in CKD patients, and it is
likely that one should not wait until severe SHPT is present before cautiously starting VD derivatives.
Furthermore, it is emphasized that the goal should not be the complete normalization of parathyroid
hormone (PTH) levels. New developments may help us to better define optimal VD and PTH at different
CKD stages, but large trials are still needed to confirm that VD and precise control of these and other
CKD-MBD biomarkers are unequivocally related to improved hard outcomes in this population.

Keywords: chronic kidney disease; CKD-MBD; calcitriol; vitamin D; calcidiol; secondary
hyperparathyroidism; osteoporosis; skeletal fragility
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1. Introduction

Chronic kidney disease (CKD) is a highly prevalent condition worldwide in which
the kidneys are functionally and/or structurally damaged [1,2]. As a result, the kidneys
lose their ability to properly excrete waste products and perform certain specific endocrine
functions [3]. For example, the kidneys are known to play a crucial role in regulating
vitamin D (VD) metabolism by converting VD into its active form [1,25-dihydroxy-VD or
calcitriol (CTR)] [3,4]. In people with CKD, this ability is impaired, not only because of the
loss of functional kidney tissue as CKD progresses but also because of the important role of
the multifactorial and early increase in fibroblast growth factor-23 (FGF23) [5,6]. FGF23 is
a bone-derived hormone whose main target organ is the kidney, where it suppresses the
transcription of the key activation enzyme, 1α-hydroxylase (CYP27B1), and activates the
transcription of the key degradation enzyme, 24-hydroxylase (CYP24A1), in the proximal
renal tubules [7,8], thereby leading to reduced availability of CTR. Moreover, the circulating
concentration of CTR is a positive regulator of FGF23 secretion in bone, creating a feedback
loop between kidney and bone. The intracellular signaling cascades downstream of the FGF
receptors that regulate the transcription of these hydroxylases in the proximal renal tubules
remain to be elucidated [7], as well as the effects of calcium on FGF23 metabolism [9]. It
is also important to consider the early reduction of the important FGF23 cofactor klotho
in CKD [10,11]. In the presence of klotho, the FGF23 protein gains bioactivity to influence
phosphate (P) homeostasis and VD metabolism [12,13]. Among many other effects [13],
independently of CKD itself [14], both increased levels of FGF23 and decreased levels of
klotho have been clearly associated with mortality [15–17] and survival [18,19].

It is now known that VD deficiency [as defined by serum 25-hydroxy-VD (calcidiol)
levels] is very common in the general population worldwide [20,21], and studies have
shown that people with CKD are at a higher risk of multifactorial VD deficiency due to
dietary restrictions and reduced sunlight exposure, among many other factors [22,23]. VD
deficiency has been extensively associated with poor outcomes, including bone disease,
cardiovascular disease, and higher mortality [24–26]. Indeed, a plethora of pleiotropic
effects have been associated with VD, which is partly explained by the fact that extra-renal
organs have the enzymatic capacity to convert calcidiol into CTR [22,27]. There is no
doubt that the evidence is abundant in terms of the association of almost all negative
outcomes with low levels of VD, above all the information poured from experimental
studies [27–30]. In humans, retrospective cohorts, prospective studies, and even meta-
analyses have found this association [28–31], but the recent VITAL randomized clinical trial
(RCT) has significantly lowered the previous high expectations regarding the beneficial
effects of VD supplementation in the general population [32], and RCTs in CKD have
mostly failed—but not all—in their primary objectives [31,33–35].

Although controversies still exist [30,35–38], diagnosis and treatment of VD deficiency
[with either nutritional (native) or active forms of VD] have not yet been excluded from
nephrology practice and guidelines [22,31,39,40], and despite the poor quality of available
evidence, much data may still support VD use in populations with VD deficiency or
certain special characteristics, such as CKD patients [36,39,40]. Furthermore, when an
optimized prediction tool was recently developed using machine-learning techniques, both
parathyroid hormone (PTH) and calcidiol were found to be among the seven variables
identified as having the best predictive value for 2-year all-cause mortality in patients with
CKD G4-G5 [41].

The purpose of this narrative review is to briefly summarize evolving controversies
and useful clinical approaches resulting from recent developments in nephrology, taking
into account the low levels of evidence that are very common in all fields of nephrology [42].

2. CKD-MBD, Vitamin D, Skeletal Fragility, and Osteoporosis

Since all these complex VD pathophysiology pathways lead to important derange-
ments in CKD, VD is still considered an integral part of the systemic CKD mineral and
bone metabolism disorder, now known by the acronym CKD-MBD [39,43,44] (Figure 1).
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VD plays a vital role in maintaining bone health by promoting intestinal calcium absorp-
tion and regulating the activity of osteoblasts and osteoclasts [4,45]. In addition, VD is
involved in many other genomic, biochemical, and clinical pathways, with stimulatory
or inhibitory effects on the occurrence of morphological and/or functional changes in
vital organs, which confer on VD its systemic functions beyond bone [45–47]. Specifically,
VD deficiency is not merely one of the laboratory abnormalities in need of clinical mon-
itoring but rather is associated with all of the other components (bone disease, vascular
calcification, fractures, cardiovascular disease, and mortality) (Figure 1) [39,40,43,44,48].
Moreover, VD deficiency (native or active) has been associated with the development of the
well-known CKD-associated secondary hyperparathyroidism (SHPT). In fact, 42%–80% of
patients with CKD G3–G4 have SHPT with low serum calcidiol levels and/or other related
pathophysiological factors (e.g., increasing P load) [4,39,40,49–54]. The incidence of SHPT
increases with decreasing renal function, and VD deficiency is more common in patients
with CKD than in the general population [39,40,49,55]. Both VD deficiency and SHPT have
also been associated with an increased rate of CKD progression, cardiovascular events,
and increased mortality [50,56–59]. This topic is becoming even more relevant with the
increasing importance recently given to the diagnosis and potential treatment of skeletal
fragility and osteoporosis in CKD patients [39,40,60–63] (Figure 1). In fact, a very important
increase in the risk of fractures has been clearly recognized in patients with CKD, with a
multifactorial predisposing factor of muscle weakness and/or risk of falling as contributory
factors [39,40,60,61,64–66].
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Figure 1. Schematic representation of the chronic kidney disease-mineral and bone disorder (CKD-
MBD). CKD-MBD represents a systemic disorder of mineral and bone metabolism due to CKD man-
ifested by either one or a combination of: (a) Laboratory abnormalities [calcium (Ca), phosphate (P), 
or vitamin D (vitD), among others (i.e., alkaline phosphatase, AP), etc.]; (b) Bone abnormalities in 
bone turnover, mineralization, volume, etc., ultimately affecting bone strength; and (c) Cardiovas-
cular or other soft tissue calcifications. This figure illustrates the interrelated nature and consequences 
of CKD-MBD. The area occupied by different concepts is not associated with their relative im-
portance. Adapted from S. Moe et al. (references [43,44]). CVD = Cardiovascular disease. 

  

Figure 1. Schematic representation of the chronic kidney disease-mineral and bone disorder (CKD-
MBD). CKD-MBD represents a systemic disorder of mineral and bone metabolism due to CKD
manifested by either one or a combination of: (a) Laboratory abnormalities [calcium (Ca), phosphate
(P), or vitamin D (vitD), among others (i.e., alkaline phosphatase, AP), etc.]; (b) Bone abnormalities in
bone turnover, mineralization, volume, etc., ultimately affecting bone strength; and (c) Cardiovascular
or other soft tissue calcifications. This figure illustrates the interrelated nature and consequences of
CKD-MBD. The area occupied by different concepts is not associated with their relative importance.
Adapted from S. Moe et al. (references [43,44]). CVD = Cardiovascular disease.

3. KDIGO Guidelines: From Vitamin D Deficiency to Osteoporosis Treatment

KDIGO (Kidney Disease: Initiative Global Outcomes) 2017 Clinical Practice Guideline
Update for the Diagnosis, Evaluation, Prevention, and Treatment of CKD-MBD represented
a selective update of the prior guideline published in 2009 [39,67].

Table 1 shows that, in the 2017 update, it was suggested that the potential presence
of VD deficiency should be evaluated in patients with CKD G3a-G5 [glomerular filtra-
tion rate (GFR) < 60 mL/min/1.73 m2, not on dialysis], among other modifiable factors,
whenever intact parathyroid hormone (iPTH) levels are progressively rising or persistently
above the upper normal limit (UNL) of the assay. VD deficiency is usually corrected with
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native VD (cholecalciferol, ergocalciferol, or even calcifediol), but dosage (daily, weekly,
monthly) and targets are still matters of controversy, with variations among different
guidelines [22,39,40,68–71]. For instance, in early 2011, a committee convened by the Insti-
tute of Medicine (IOM) issued a report on the Dietary Reference Intakes (DRI) for calcium
and VD (Table 2) [69,70], and in July 2011, the Endocrine Society Task Force published a
guideline for the evaluation, treatment, and prevention of VD deficiency [71]. Disagree-
ments concerning the nature of the available data and the resulting conclusions led to
some confusion [72], which may be even more evident if one also considers the presence of
CKD [73].

Table 1. Comparison of KDIGO guidelines 2009/2017 on treatment of abnormal PTH levels in
non-dialysis patients. Adapted from reference [39].

KDIGO 2009 KDIGO 2017

Guideline 4.2.1

In patients with CKD G3a-G5 not
on dialysis, the optimal PTH level is
not known. However, we suggest
that patients with levels of intact

PTH above the UNL of the assay be
first evaluated for

hyperphosphatemia, hypocalcemia,
and vitamin D deficiency.

(Evidence Level 2C)

In patients with CKD G3a-G5 not
on dialysis, the optimal PTH level is
not known. However, we suggest
that patients with levels of intact

PTH progressively rising or
persistently above the UNL for the
assay be evaluated for modifiable

factors, including
hyperphosphatemia, hypocalcemia,
high phosphate intake, and vitamin

D deficiency.
(Evidence Level 2C)

Guideline 4.2.2

In patients with CKD G3a-G5 not
on dialysis, in whom serum PTH is

progressively rising and remains
persistently above the UNL for the

assay despite correction of
modifiable factors, we suggest

treatment with calcitriol or vitamin
D analogs.

(Evidence Level 2C)

In adult patients with CKD G3a-G5
not on dialysis, we suggest that

calcitriol and vitamin D analogs not
be routinely used.
(Evidence Level 2C).

It is reasonable to reserve the use of
calcitriol and vitamin D analogs for

patients with CKD G4-G5 with
severe and progressive
hyperparathyroidism.

(Not Graded)

Based on bone health, the IOM Recommended Dietary Allowances (RDAs; covering
requirements of ≥97.5% of the population) for VD ranged from 600 International Units
(IU)/day for ages 1–70 years and 800 IU/day for ages 71 years and older, corresponding to
a serum calcidiol level of at least 20 ng/mL (50 nmol/liter). Importantly, the maximum
daily intake increased from 2000 to 4000 IU/day [69,70]. In general, experts and most
scientific societies concerned with this matter consider VD deficiency to be present at
values lower than 20 ng/mL, VD insufficiency at values between 20 and 29 ng/mL, and
VD sufficiency at values ≥ 30 ng/mL (which probably should be considered optimal levels
of VD) [74,75]. However, additional controversy centers on whether it is necessary to
reach 30 ng/mL (or more) to achieve VD effects inside and outside the bone [75,76]. In
our experience, at least in non-dialysis CKD patients, a calcidiol level < 20 ng/mL was
an independent predictor of death but also progression in CKD patients G3-G5, with no
additional benefits when levels at or above 30 ng/mL were reached [24]. However, there
are bone biopsy data indicating that at VD levels below 30 ng/mL, the osteoid volume
will be higher, and osteomalacia was present in 25.6% of Northern European individuals
with such levels [77]. A similar calcidiol threshold was recently reported for optimal bone
mineral density (BMD) in the elderly with CKD [78]. The same thresholds were previously
associated with SHPT and hip bone loss in a Spanish population of postmenopausal
women and men aged 44–93 years old [79]. In fact, PTH could be taken as a potential
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surrogate marker and an interesting “functional” demonstration of VD deficiency (even
disregarding the use of non-standardized VD measurements) [80]. The National Kidney
Foundation recommends that people with CKD maintain calcidiol levels between 30 and
60 ng/mL and that adults with CKD consume at least 1000–4000 IU of VD daily [68]. The
Italian Association of Clinical Endocrinologists and the Italian Chapter of the American
Association of Clinical Endocrinologists recommend that in “categories at risk”, physicians
should aim to maintain calcidiol levels above 30 ng/mL [81], and the recent 2020 U.S.
KDOQI suggests that patients with CKD G1-G5D should receive supplementation using
the same strategies recommended for the general population, recognizing that patients
with CKD may require a more aggressive therapeutic plan [74,76]. It is clear, then, that there
is conflicting evidence on the optimal levels of VD (with disagreement on both the lower
normal limit and an undefined upper limit), not only in the general population but also
in CKD patients [76]. Correspondingly, the evidence regarding the safety and efficacy of
high-dose VD supplementation in patients with CKD remains discordant [37], and periodic
measurement of serum calcium and phosphate should be considered, especially for patients
who are using calcium-based phosphate binders and/or VD active analogues [74].

Table 2. Dietary Reference Intakes for Vitamin D (Institute of Medicine). Adapted from references
[69,70]. The upper level intake for calcium has not been included since it is much greater than the
upper limit considered safe in CKD patients (1000–1200 mg/day).

Estimated Average
Requirement (EAR)

Recommended Dietary
Allowance (RDA)

Upper Level
Intake

19–70 y/o

400 IU/day
The EAR for calcium varies

from 800 mg/day
(19–50 y/o females and

19–70 y/o males) to
1000 mg/day

(51–70 y/o females)

600 IU/day
The RDA for calcium varies

from 1000 mg/day
(19–50 y/o females and

19–70 y/o males) to
1200 mg/day

(51–70 y/o females)

4000 IU/day

>70 y/o
400 IU/day

The EAR for calcium is
1000 mg/day

800 IU/day
The RDA for calcium is

1200 mg/day
4000 IU/day

y/o = years old; IU = international units.

Finally, VD supplementation should also be considered in CKD patients when os-
teoporosis treatment is started. Importantly, the 2009 KDIGO guidelines suggested that
in patients with CKD G3-G5D with evidence of CKD-MBD, BMD testing should not be
performed routinely because it was believed that BMD did not predict fracture risk as it
did in the general population (evidence level 2B) [67]. Moreover, BMD does not predict
the type of “renal osteodystrophy” (ROD). Nevertheless, a very important increase in the
risk of fractures was subsequently recognized in patients with CKD [39,40,60,61,64,67],
leading to the conclusion that it is “time for action” [60]. In fact, multiple new prospective
studies documented that lower BMD (as measured by densitometry) predicts incident
fractures in patients with CKD G3a-5D, leading to an important paradigm shift in the
2017 KDIGO guidelines [39]. Thus, the guidelines now suggest that in patients with CKD
G3a-G5D with evidence of CKD-MBD and/or risk factors for osteoporosis, BMD testing
is appropriate to assess fracture risk if results will impact treatment decisions (evidence
level 2B in the opposite direction) [39]. The primary motivation for this revision was the
growing experience with osteoporosis medications in patients with CKD, low BMD, and a
high risk of fracture and the recognition that the lack of ability to perform a bone biopsy
(previously suggested) may not justify withholding antiresorptive therapy [39,67]. Multiple
algorithms, society endorsements, and consensus documents followed on the diagnosis
and management of osteoporosis in CKD [40,62,63,82,83], including at advanced CKD
stages and in dialysis patients [61]. Not only should vitamin D supplements be considered
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when initiating osteoporosis treatments, but an adequate calcium intake should also be
evaluated and reinforced since calcium intake in CKD patients is usually deficient and/or
impaired [84,85].

4. KDIGO Guidelines: Secondary Hyperparathyroidism and Active Vitamin D

Monitoring iPTH serum levels, beginning at CKD stage G3a or even earlier, has always
been recommended in CKD patients [4,39,67,68]. As mentioned above, iPTH has also
frequently been associated with hard kidney and/or cardiovascular outcomes, including
increased mortality [39,67].

In 2003, the U.S. Kidney Disease Outcomes Quality Initiative (KDOQI) guidelines
provided opinion-based ranges for iPTHs that are dependent on CKD stages [68]. Therapy
with active oral VD (i.e., CTR) was considered to be indicated in patients with CKD G3–G4
when serum levels of calcidiol were >30 ng/mL and plasma iPTH levels were simply
above the suggested target range. The 2009 KDIGO guidelines suggested that CTR or VD
analogs (e.g., paricalcitol) could be used in non-dialysis patients in whom serum iPTH is
progressively rising and remains persistently above the UNL for the assay despite correction
of modifiable factors (evidence level 2C) (Table 1). The same approach was suggested in
dialysis patients with elevated or rising iPTH to lower PTH levels towards the suggested
goals (2X-9X the UNL or increasing trends in between those values) for CKD-G5D patients
(using CTR or VD analogs alone or in combination with calcimimetics). However, in the
2017 KDIGO guidelines, an important change was introduced in that it was stated that it is
reasonable to reserve the use of CTR and VD analogs for patients with CKD G4-G5 (GFR
<30 mL/min/1.73 m2, not on dialysis) with severe and progressive SHPT [39] (Table 1).
Failure to undoubtedly demonstrate improvements in hard end-points and the increased
risk of hypercalcemia (P overload could also have been considered) were drivers for this
statement resulting from the PRIMO and OPERA studies [33,34,39,57]. Hypercalcemia
can be associated with faster progression of cardiovascular calcification, among other
complications, including worsening renal function. Additionally, some patients with CKD
are at a higher risk of developing kidney stones, and high doses of VD may increase this
risk. However, this important change towards the restriction of active forms of VD, a
frequent nephrology practice for many decades [4,68], was not graded. In fact, a clear-
cut definition of “severe and progressive SHPT” was not provided, and a controversial
discussion preceded the consensus statement [39]. In fact, the primary aim of the PRIMO
and OPERA studies was not the biochemical control of SHPT but the potential prevention
of the development of left ventricular hypertrophy [33,34]. Furthermore, in these trials,
patients only had moderate SHPT, quite unusually high doses of paricalcitol were used, and
a significant percentage of study participants received calcium-based P binders [57]. These
aspects could probably explain the high incidence of hypercalcemic episodes. Moreover,
the study design may have led to an undesired “oversuppression” of PTH secretion and
to FGF23 overstimulation [86]. Actually, it is well known that FGF23 may induce left
ventricular hypertrophy and thereby counterbalance the potential cardiac improvement
with VD [87].

Although some international and national nephrology societies have adopted most of
the new 2017 KDIGO suggestions in their position statements, others have not done so for
various reasons [40,88–91]. Some consider that future responses to treatments aiming to
control iPTH may be compromised by the delay induced by the guideline update [40,57,59].
Untreated SHPT results in progressively increasing iPTH levels, as observed in RCTs
in placebo-treated patients [92–94], and increasing parathyroid hyperplasia may reduce
sensitivity to calcium and VD regulation [95]. It has been shown that increased iPTH
before dialysis inception predicts a higher PTH level 9–12 months later and greater use of
anti-parathyroid treatments [96]. Moreover, recent data from a German study show that
patients with CKD G3-G4 and incident SHPT of renal origin present with significantly
higher all-cause healthcare resource utilization and costs and increased CKD progression
as compared with patients without SHPT [97,98].
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Interestingly, independent effects and interactions of SHPT, hyperphosphatemia, and
hypercalcemia with respect to several outcomes were recently analyzed in the Spanish
NEFRONA cohort, which included low-risk CKD G3–G5 patients [99]. In this study,
SHPT and hyperphosphatemia (as defined by the old KDOQI guideline targets) and
higher iPTH and/or P levels were independently associated with an increased risk of both
CKD progression and/or cardiovascular events (a trend for SHPT in the fully adjusted
model) [99]. These results offer support for the claim that iPTH levels higher than those
specified by the KDOQI for non-dialysis CKD patients are indeed associated with clinically
significant hard outcomes [59,99]. The results also underline the need to better define cut-
off targets for safe upper PTH levels in non-dialysis patients and to consider whether the
KDIGO proposal that active VD analogs should be reserved for severe SHPT is exceedingly
cautious [57,59]. It should also be considered that optimal PTH targets are not really
known, especially for non-dialysis patients, and that they may be quite different depending
on whether bone, renal, or cardiovascular parameters are considered [39,40,57]. In any
case, it cannot be forgotten that a certain degree of SHPT may represent an adaptive
clinical response, and, accordingly, some recent clinical guidelines underline that clinicians
should neither wait until severe SHPT is present nor aim to completely normalize iPTH
levels [40,57]. The presence of bone hyporesponsiveness to PTH in CKD [52,100] and
the potentially beneficial phosphaturic properties of PTH at least partially explain this
last recommendation. On the other hand, PTH is recognized as a uremic toxin [101] and
has been associated with many untoward effects and undesirable kidney, cardiovascular,
and survival outcomes in observational studies (recently, these effects have even included
dementia) [57,102,103]. Moreover, PTH is a recognized inducer of FGF23 transcription in
bone cells [104]. Overall, not only should insufficient SHPT control be avoided, excessive
suppression of iPTH is undesirable if long-term outcomes are to be improved [40,57]. In fact,
low iPTH levels have also been associated with undesirable outcomes, although it is not
clear whether the potential development of adynamic (low turnover) bone disease per se
or the conditions leading to suppression of bone turnover (chronic inflammation, oxidative
stress, malnutrition, diabetes, etc.) are the real cause of the worse prognosis [105,106].

In summary, although SHPT is at the core of classical nephrology, it is clear that there
is still no homogeneous approach to the management of VD deficiency and/or SHPT,
especially in non-dialysis CKD patients [39,40,57,107,108]. The adverse effects associated
with increasing calcium and/or P levels with VD derivatives must be balanced against their
potential pleiotropic beneficial effects in CKD patients and the need for effective prevention
of progressive and severe SHPT and parathyroid gland autonomy. Guidelines may vary,
but there seems to be general agreement that VD deficiency should be avoided, and it is
likely that one should not wait until severe SHPT is present before cautiously starting active
VD derivatives. Furthermore, the goal should not be complete normalization of iPTH levels.
New developments, such as extended-release formulations [109,110] (which correct both
vitamin D deficiency and are more effective than native in decreasing iPTH levels) and new
analogs, biomarkers, molecular targets, and even renal pathologies [111–117], may then
help us better define optimal VD and iPTH levels or the best formulation at different CKD
stages [92,107,109], thereby directing us towards an improved, personalized medicine. It
is possible that the approaches that we took to correct VD deficiency are at least partially
wrong and that current interventions with native and/or active VD were not properly
targeted at more effective goals. This new era of nephrology, in which it is proposed that
we return to basics and to a holistic view focusing in particular on the early stages of CKD,
is the ideal scenario for the procurement of more evidence in an area of vital importance for
cardiovascular health, including the kidney-heart-bone interaction [118,119]. In any case,
we cannot sit back, and it is to be emphasized that large RCTs are still needed to confirm
that VD and precise control of these and other CKD-MBD biomarkers are directly and
unequivocally related to improved hard outcomes in CKD patients.
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