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Summary
Background Exposure to vitamin D in early life has been associated with improved bone mineralization, but no
studies have investigated the combined effect of pregnancy supplementation and childhood 25(OH)D concentrations
on bone health.

Methods We analyzed the effect of serum 25(OH)D concentrations at age 6 months and 6 years and the combined
effect with prenatal high-dose vitamin D (2800 vs. 400 IU/day) on bone mineral density (BMD) and content (BMC)
assessed by dual-energy X-ray absorptiometry (DXA) scans at age 3 and 6 years and longitudinal risk of fractures in
a double-blinded, randomized clinical trial in the Copenhagen Prospective Studies on Asthma in Childhood 2010
(COPSAC2010) mother-child cohort with enrollment from March 4, 2009, to November 17, 2010, and clinical fol-
low-up until January 31, 2019 (NCT00856947). All participants randomized to intervention and with complete data
were included in the analyses.

Findings At age 6 months, serum 25(OH)D concentration was measured in 93% (n = 541) of 584 children. Children
with sufficient (≥ 75 nmol/l) vs. insufficient (< 75 nmol/l) concentrations did not have lower risk of fractures: inci-
dence rate ratio (95% CI); 0.64 (0.37;1.11), p = 0.11. However, vitamin D sufficient children from mothers receiving
high-dose supplementation during pregnancy had a 60% reduced incidence of fractures compared with vitamin D
insufficient children from mothers receiving standard-dose: 0.40 (0.19;0.84), p = 0.02.

At age 6 years, serum 25(OH)D concentration was measured in 83% (n = 318) of 383 children with available DXA
data. Whole-body bone mineralization was higher in vitamin D sufficient children at age 6 years; BMD, adjusted
mean difference (aMD) (95% CI): 0.011 g/cm2 (0.001;0.021), p = 0.03, and BMC, aMD: 12.3 g (-0.8;25.4), p = 0.07,
with the largest effect in vitamin D sufficient children from mothers receiving high-dose vitamin D supplementa-
tion; BMD, aMD: 0.016 g/cm2 (0.002;0.030), p = 0.03, and BMC, aMD: 23.5 g (5.5;41.5), p = 0.01.

Interpretation Childhood vitamin D sufficiency improved bone mineralization and in combination with prenatal
high-dose vitamin D supplementation reduced the risk of fractures.

Abbreviations: 25(OH)D, 25-hydroxyvitamin D; BMC, bone mineral content; BMD, bone mineral density; COPSAC, copenhagen

prospective studies on asthma in childhood; DXA, dual energy X-ray absorptiometry; RCT, randomized clinical trial; TBLH, total
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Introduction
The negative implications of early life severe vitamin D
deficiency on bone health are well known; rickets in
children1 and possibly osteoporosis later in life.2,3 This
relationship is the basis for recommending vitamin D
supplementation during pregnancy and in early

childhood in most countries.4 In observational studies,
findings of a positive association between vitamin D sta-
tus and bone mineral outcomes assessed by dual-energy
X-ray absorptiometry (DXA) scans in childhood5,6 and
until time of peak bone mass7 have been demonstrated,
while others could not confirm this finding.8 In addi-
tion, some studies have demonstrated association
between maternal vitamin D deficiency in pregnancy
and lower offspring bone mass.9,10 Importantly, an
inverse association has been demonstrated between
bone mineral content in childhood and risk of child-
hood fractures11 and osteoporosis later in life 2, which is
probably due to the bone tracking phenomenon begin-
ning in utero12 and emphasizes the importance of a pre-
ventive strategy initiated in early life. Interestingly, the
National Osteoporosis Foundation has suggested early
life bone accrual as the most influential factor for pre-
venting current and future fractures.13

Recently, our randomized clinical trial (RCT)14 in the
Copenhagen Prospective Studies on Asthma in Child-
hood 2010 (COPSAC2010) mother-child cohort showed
that high-dose compared with standard-dose of vitamin
D supplementation during pregnancy improved off-
spring bone outcomes assessed by DXA scans by age 6
years of life.15 Here, we analyzed serum 25-hydroxyvita-
min D (25(OH)D) concentrations in childhood and
aimed to investigate the combined effect of supplemen-
tation in pregnancy and vitamin D sufficiency during
childhood on fracture risk and bone mineralization to
guide future vitamin D supplementation strategies.

Methods

The COPSAC2010 vitamin D RCT
Participants were from the Danish mother-child cohort
COPSAC2010 with enrollment of mothers during preg-
nancy and prospective monitoring during childhood
with deep clinical phenotyping of the children, i.e. the
children were followed longitudinally in the clinic at
several time-points throughout childhood with collec-
tion of detailed information on asthma symptoms, treat-
ment and diagnoses including several objective
measurements to clinically phenotype the children.
Baseline characteristics and enrollment procedures are
previously detailed.14−17 Healthy women were randomly
assigned (1:1) at the COPSAC research clinic during

Research in context

Evidence before this study

A positive association between 25(OH)D concentrations
and bone mineralization in childhood has been sug-
gested in a range of observational studies and a protec-
tive effect of pregnancy vitamin D supplementation on
offspring bone mineralization has been demonstrated
in a randomized controlled trial (RCT) in the COP-
SAC2010 mother-child cohort (PubMed search using
terms “vitamin D”, “25(OH)D”, “bone mineral content”,
“bone mineral density” and “childhood fractures”
including clinical trials, RCTs and systematic reviews
until April 2021). Further, a negative association
between bone mineralization and risk of fractures in
childhood has been suggested.

Added value of this study

This is the first study to show a combination of high-
dose vitamin D supplementation during pregnancy and
vitamin D sufficiency (≥ 75 nmol/l) in childhood reduces
the risk of childhood fractures and improves bone min-
eralization outcomes at age 6 years. Childhood vitamin
D sufficiency also improve bone mineral outcomes by
age 6 years independent of the prenatal high-dose sup-
plementation. Finally, a history of fractures was associ-
ated with a lower whole-body bone mineralization
status.

Implications of all the available evidence

This trial suggests that sufficient childhood levels
improve bone mineralization at age 6 years and in com-
bination with prenatal high-dose vitamin D supplemen-
tation reduces fracture risk in childhood by 60%, which
may contribute to increased peak bone mass and
decreased risk of osteoporosis as early life bone accrual
has been suggested by the National Osteoporosis Foun-
dation as the most influential factor for preventing cur-
rent and future fractures.
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pregnancy week 24 to a high-dose supplementation of
2400 IU/day of vitamin D or placebo on top of the stan-
dard recommended intake of 400 IU/day until 1 week
after birth; i.e. a dose comparison study of 2800 IU/day
vs. 400 IU/day of vitamin D. The exclusion criteria for
the RCT were gestational age above week 26, daily vita-
min D intake of more than 600 IU or having any endo-
crine, heart, or kidney disorders. The primary outcome
was asthma/persistent wheeze in the first 3 years of life
and the women also participated in a factorial design of
n-3 long-chain polyunsaturated fatty acids (n-3
LCPUFA) RCT during pregnancy.16 Offspring bone
mineralization was a pre-specified secondary outcome,
whereas risk of fractures was added as a post hoc analy-
sis.

The trial was registered on clinicaltrials.gov
(NCT00856947) and approved by the Danish Ethics
Committee (H-B-2008−093), the Danish Data Protec-
tion Agency and the Danish Health and Medicines
Authority. Both parents gave written informed consent
before enrollment. This study adheres to the STROBE
reporting guidelines.

Serum 25(OH)D concentrations were measured at
age 6 months and age 6 years (see details in Online
Supplement). The method for quantitative determina-
tion of 25(OH)D is a chemiluminescence immunoassay
(CLIA) using the DiaSorin LIAISON 25(OH)D Vitamin
D Total Assay. The laboratory used National Institute of
Standards and Technology (NIST) level 1 protocol and
for quality control for all 25(OH)D measurements, sam-
ples of NIST level 1 standard reference material 972
(SRM 972) for vitamin D in human serum were
included in each run.

Vitamin D sufficiency was defined as 25(OH)D
≥ 75 nmol/l, insufficiency as 25(OH)D < 75 nmol/l, and
deficiency as 25(OH)D < 50 nmol/l according to recog-
nized guidelines.18

Information on fractures was obtained by parental
interviews at the COPSAC clinic and validated in the
children’s medical records until January 31, 2019, as
previously described.15 We included all radiologically
verified fractures of larger long bones (i.e., clavicle,
radius, ulna, tibia, fibula, femur and humerus) in the
analyses and excluded fissures (i.e., minor cracks). The
fracture outcome was defined as a binary variable 1 (at
least one fracture) or 0 (no fractures).

Whole-body DXA scans were performed at age 3 and
6 years with a Lunar iDXA densitometer (GE Health-
care, United States) with ENCORE software for bone
mineral analyses with low radiation dose and short scan
time.19 The children were scanned in one movement
lasting approximately 3 min. All the scans were quality
validated by an experienced specialist and only accept-
able quality scans were included in the analyses. Weight
and height were measured at the time of the scan. The
analyses of bone mineral density (BMD) and bone min-
eral content (BMC) of the total body, total body less

head (TBLH) and head were adjusted for body size, age
and sex due to the influence of these growth parameters
in previous studies.20−23

The COPSAC2000 replication cohort
We sought replication in the Danish mother-child
cohort the COPSAC2000.

24 Pregnant mothers with a
history of asthma were enrolled before pregnancy week
36 and monitored prospectively with deep clinical phe-
notyping from age 1 month through 18 years, including
assessment of serum 25(OH)D concentrations at age 4
years and DXA scans at age 7 years with the same equip-
ment as in COPSAC2010.

24 The study was approved by
the Danish Ethics Committee (KF 01−289/96).

Statistical analysis
The combined effect of the high-dose vitamin D supple-
mentation in pregnancy and vitamin D status in child-
hood on fracture risk and DXA outcomes was analyzed
in a four-group model according to intervention group
(high-dose vs. standard-dose) and child vitamin D status
(sufficient ≥ 75 nmol/l vs. insufficient < 75 nmol/l)
combinations.

The effect of vitamin D status (sufficient vs. insuffi-
cient) and the combined effect of high-dose supplemen-
tation and vitamin D status (four-group model) on
fracture risk was analyzed in a Quasi-Poisson regression
model adjusted for observation time estimating the inci-
dence rate ratio (IRR). The association between a history
of fractures and DXA outcomes was analyzed using a
multivariable linear regression model adjusting for age,
sex, height and weight.

The effect of vitamin D status at age 6 months and 6
years on DXA outcomes at age 3 and 6 years was ana-
lyzed separately using multivariable linear regression
models adjusted for age, sex, height and weight,20−23

whereas the effect of vitamin D status at age 6 months
in relation to bone mineralization outcomes was ana-
lyzed in a random intercept mixed-effects model includ-
ing both DXA time points.

Additionally, sub-analyses were performed in a six-
group model according to intervention group (high-
dose vs. standard-dose) and vitamin D status (deficiency
(< 50 nmol/l), insufficiency (≥ 50 nmol and < 75 nmol)
and sufficiency (≥ 75 nmol/l)).

The analyses were further adjusted for the high-dose
vitamin D and n-3 LCPUFA interventions and sample
season.

Statistical analyses were performed with R (version
4.1.1) with p < 0.05 considered indicative of signifi-
cance. The trial was powered for persistent wheeze as
primary outcome. We did not perform a post hoc power
calculation for the secondary outcomes. All participants
randomized to the pregnancy vitamin D intervention
and with complete data were included in the analyses; i.
e. complete case analysis. No imputation was performed
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for missing data as we considered data to be missing
completely at random.

Role of funding sources
The funding agencies did not have any role in design
and conduct of the study; collection, management, and
interpretation of the data; or preparation, review, or
approval of the manuscript.

Results
A total of 623 pregnant women were included in the
COPSAC2010 vitamin D RCT, where 315 vs. 308 women
were successfully randomized to high-dose or standard-
dose vitamin D between March 4, 2009, to November
17, 201015 (Figure 1). Of the 584 included children, 541
(93%) and 428 (73%) had serum 25(OH)D concentra-
tions measured at age 6 months and 6 years,

respectively. There was no effect of the prenatal high-
dose vitamin D supplementation on childhood serum
25(OH)D concentrations at age 6 months, mean differ-
ence (95% CI); �0.67 nmol/l (�4.68;3.33) p = 0.74.

Fracture risk
Among the 541 children with serum 25(OH)D concen-
trations measured at age 6 months, 65% (n = 351) were
vitamin D sufficient and 35% (n = 190) were insuffi-
cient. Of these 541 children, 9% (n = 51) had at least one
fracture with 55 fractures registered in total (follow-up
age, mean (SD): 8.5 (1.3) years). The distribution of frac-
ture types was forearm 53% (n = 29), humerus 24%
(n = 13), crus 14% (n = 8) and clavicle 9% (n = 5). A total
of 8% (n = 27/351) of the vitamin D sufficient children
had a history of fractures in early childhood vs. 13%
(n = 24/190) of the vitamin D insufficient children
(Table 1).

Figure 1. CONSORT Flowchart.
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The risk of fractures was not associated with vitamin
D status at 6 months: IRR (95% CI), 0.64 (0.37;1.11),
p = 0.11. Vitamin D sufficient children at age 6 months
born to mothers receiving high-dose vitamin D supple-
mentation in pregnancy (n = 179) had a significantly
lower risk of fractures compared with vitamin D insuffi-
cient children born to mothers receiving standard-dose
(n = 93): 0.40 (0.19;0.84), p = 0.02 (Figure 2 and
Table 1). Adjusting the analysis for the vitamin D inter-
vention, n-3 LCPUFA intervention and sample season
did not change the results (Table 1). There was no inter-
action between vitamin D status and the high-dose vita-
min D intervention (pinteraction= 0.42).

Children with a history of fractures had lower whole-
body bone mineralization at age 6 years compared with
children not having a fracture; total BMC: adjusted
mean difference (aMD) for age, sex, height and weight
(95% CI); �19.6 g (�38.9;�0.30), p = 0.047 (Fig. E1).

Bone mineralization
At age 6 years, 318 (83%) of 383 children with acceptable
DXA scans also had assessment of serum 25(OH)D con-
centrations. Vitamin D sufficiency (n = 88) was signifi-
cantly associated with higher total BMD: aMD for age,
sex, height and weight (95% CI); 0.011 g/cm2

(0.001;0.021), p = 0.03, but not statistically significant
higher total BMC; 12.3 g (�0.8;25.4), p = 0.07, TBLH
BMD; 0.007 g/cm2 (�0.0004;0.015), p = 0.07, head
BMD; 0.026 g/cm2 (�0.002;0.054), p = 0.07, and head
BMC 6.5 g (�0.3;13.4), p = 0.06 (Table 2). Adjusting the
analyses for the high-dose vitamin D intervention
showed similar results (Table 2) and further adjusting
for the n-3 LCPUFA intervention and sample season
were similar to the main analyses (Table E1). The analy-
ses stratified by intervention group are shown in Table
E2.

The previously reported protective effect of high-dose
vitamin D supplementation on bone mineralization at
age 6 years was independent of serum 25(OH)D con-
centrations at age 6 years in the adjusted analyses
(Table E3). Finally, there was no interaction between
vitamin D status and prenatal high-dose vitamin D sup-
plementation on any of the bone mineral outcomes (all
pinteraction>0.05) and the supplementation effect was
not mediated by vitamin D status in childhood (all
pACME> 0.05) (Table E4).

There was no association between vitamin D status
at age 6 months and DXA outcomes at age 3 and 6 years
analyzed separately or in a random intercept mixed-
effects model in COPSAC2010 (Table E5).

A combined analysis showed that children who were
vitamin D sufficient at age 6 years and born to mothers
in the high-dose vitamin D supplementation group
(n = 47) had the highest bone mineralization, total
BMD: aMD (95% CI); 0.016 g/cm2 (0.002;0.030),
p = 0.03, total BMC: 23.5 g (5.5;41.5), p = 0.01 head BMD
0.048 (0.009;0.086), p = 0.02 and head BMC: 12.5 g
(3.0;22.0) p = 0.01 compared with vitamin D insuffi-
cient children born to mothers in the standard-dose
group (n = 120) (Table 3, Figure 3).

An additional combined analysis utilizing a six-
group model dividing vitamin D status at age 6 years
into sufficient, insufficient and deficient showed similar
improvements in bone outcomes from the combination
of high-dose intervention and vitamin D sufficiency
(≥ 75 nmol/l) compared with standard-dose and defi-
ciency (< 50 nmol/l) (Table E6). Interestingly, a higher
bone mineralization was consistently observed in the
vitamin D sufficient vs. insufficient children in all com-
partments suggesting an optimal bone beneficial
threshold of 25(OH)D of at least 75 nmol/l in childhood
(Fig. E2). We also analyzed the effect of vitamin D status
at age 6 years divided into a threshold of sufficiency

6 months vitamin D status: Combined: 6 months vitamin D status and prenatal intervention

Sufficient (n = 351) vs.
insufficient (n = 190)

High-dose and
sufficient (n = 179) vs.
Standard-dose and
insufficient (n = 93)

High-dose and
insufficient (n = 97) vs.
Standard-dose and
insufficient (n = 93)

Standard-dose and
sufficient (n = 172) vs.
Standard-dose and
insufficient (n = 93)

Number of children

with fractures,% (n)

8% (27) vs. 13% (24) 7% (12) vs. 17% (16) 8% (8) vs. 17% (16) 9% (15) vs. 17% (16)

Number of fractures, n 30 vs. 25 13 vs. 17 8 vs. 17 17 vs. 17

IRR 0.64 (0.37;1.11), p = 0.11 0.40 (0.19;0.84), p = 0.02 0.47 (0.19;1.07) p = 0.08 0.54 (0.27;1.08) p = 0.08

IRR adjusted *0.61 (0.35;1.07), p = 0.08 **0.38 (0.18;0.80),

p = 0.01

0.45 (0.18;1.04) p = 0.07 0.50 (0.25;1.02) p = 0.05

Table 1: Risk of fractures in childhood by vitamin D status at age 6 months and in a combination with prenatal intervention group. IRR
(incidence rate ratio) was calculated using a Quasi-Poisson regression model.
* adjusted for sample season, vitamin D and n-3 LCPUFA interventions.

** adjusted for sample season and n-3 LCPUFA intervention.
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(≥ 50 nmol/l) vs. deficiency (< 50 nmol/l) on bone min-
eralization outcomes (Table E7).

Observational replication analyses in the COP-
SAC2000 cohort confirmed the positive effect of vitamin
D sufficiency in childhood on bone mineralization: total
BMC; aMD (95% CI): 18.7 g (1.8;35.6), p = 0.03 (Table
E8).

Discussion
This study revealed a significant 60% lower incidence
of fractures in children who were vitamin D sufficient
at age 6 months and were born to mothers receiving
high-dose vitamin D supplementation during preg-
nancy compared with vitamin D insufficient children
born to mothers receiving standard-dose. Furthermore,
sufficient vitamin D status at 6 years was associated

with improved bone mineralization with independent
effects of pregnancy high-dose supplementation and
sufficient vitamin D status in childhood, showing a two-
fold increase in whole-body BMC compared with the
individual effects of high-dose supplementation15 and
sufficient serum 25(OH)D concentrations. The positive
association between childhood vitamin D sufficiency
and improved bone mineralization was confirmed in
our replication analyses. Finally, we found that children
having a fracture had lower whole-body BMC.

The strength of this study is the close longitudinal
follow-up of the children with frequent scheduled visits
at the COPSAC clinic and high follow-up rate.15 This
allowed for thorough registration of fractures. Further-
more, the cohort is population-based allowing for gener-
alization of the findings. The RCT, which is considered
to be the most reliable scientific evidence with minimal

Figure 2. An overview of the effects of vitamin D in early life on childhood bone health.
Note: The effect of high-dose vitamin D in pregnancy was reported in Brustad, N. JAMA Pediatr 174, 419−427 (2020).
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risk of bias, was designed with persistent wheeze/
asthma until age 3 years as the primary outcome, which
is the main limitation of this study as it was not pow-
ered for fractures or DXA outcomes. Our sample size
was limited by the inclusion of complete cases only due
to the relatively low amount of DXA scans with accept-
able quality. We assumed that our data were missing
completely at random with no systematic differences,
which was supported by a missing-completely-at-ran-
dom statistical test for all our observed values
(p = 0.175), but this could only be tested among our
observed values and our missing data could potentially
be related to any unobserved data allowing for differen-
ces between observed and missing cases. However, we
were able to demonstrate an effect of the high-dose
intervention on fractures and DXA outcomes, which
was significant and nominally largest in the combined
analyses integrating childhood vitamin D status with
maternal high-dose supplementation. Another limita-
tion is the lack of information on family history of frac-
tures and detailed information on physical activity and
diet of the children as bone health was not the primary
outcome. The primary analyses are based on an RCT
and confounders should be balanced, however, the

observational association analyses between vitamin D
status in childhood and bone outcomes could poten-
tially be influenced by these confounders. Further, we
found an overall effect on fractures but did not distin-
guish between types of fractures. We excluded mothers
and children with disabling diseases, but we did not
screen our study population for connective tissue, myo-
genic, neurogenic or endocrinologic disorders, which
could increase the risk of fractures. In addition, we did
not search for family history of sclerosing bone disor-
ders, vascular/neural calcifications or family history of
renal failure. However, these disorders are rare and
should be evenly distributed given the RCT design of
the study.

Low maternal 25(OH)D concentrations in pregnancy
has been associated with an increased risk of fractures
in the offspring and later osteoporosis,1 suggesting that
the intrauterine environment plays an important role in
bone health throughout life from prenatal program-
ming.3 In addition, a link between low 25(OH)D con-
centrations, poor bone mineralization and increased
childhood fracture risk has been shown in a pediatric
population.25 This association was not confirmed in our
study, which did not show a statistically significant

COPSAC2010 6 years vitamin D status:
sufficient (≥ 75 nmol/l) vs. insufficient (< 75 nmol/l)

Age 6y DXA Sufficient
Mean (SD)
n = 88

Insufficient
Mean (SD)
n = 230

aMD (95% CI)
n = 318

aMD* (95% CI)
n = 318

Total BMD, g/cm2 0.722 (0.042) 0.711 (0.040) 0.011 (0.001;0.021) p = 0.03 0.011 (0.001;0.021) p = 0.04

Total BMC, g 836.0 (54.8) 823.7 (51.6) 12.3 (�0.8;25.4) p = 0.07 11.7 (�1.38;24.7) p = 0.08

TBLH BMD g/cm2 0.563 (0.032) 0.556 (0.031) 0.007 (�0.0004;0.015) p = 0.07 0.007 (�0.001;0.015) p = 0.07

TBLH BMC g 533.7 (36.3) 527.8 (34.9) 5.8 (�3.1;14.6) p = 0.20 5.4 (�3.4;14.2) p = 0.23

Head BMD g/cm2 1.434 (0.113) 1.409 (0.113) 0.026 (�0.002;0.054) p = 0.07 0.025 (�0.003;0.053) p = 0.08

Head BMC g 302.3 (27.6) 295.9 (27.6) 6.5 (�0.3;13.4) p = 0.06 6.2 (�0.6;13.1) p = 0.07

Table 2: DXA scan results at age 6 years by vitamin D status.
Vitamin D levels calibrated for age, sex, height and weight. aMD: Adjusted mean difference for age, sex, height and weight.

* adjusted for age, sex, height, weight and vitamin D intervention.

COPSAC2010 Combined: Prenatal supplementation and 6 year vitamin D status

Age 6y DXA High-dose and sufficient (n = 47) vs.
Standard-dose and insufficient (n = 120)
aMD (95% CI)

High-dose and insufficient (n = 110) vs.
Standard-dose and insufficient (n = 120)
aMD (95% CI)

Standard-dose and sufficient (n = 41)
vs. Standard-dose and insufficient
(n = 120) aMD (95% CI)

Total BMD, g/cm2 0.016 (0.002;0.030) p = 0.03 0.009 (�0.002;0.019) p = 0.10 0.015 (0.0002;0.029) p = 0.047

Total BMC, g 23.5 (5.5;41.5) p = 0.01 13.8 (0.1;27.6) p = 0.049 13.9 (�5.0;32.7) p = 0.15

TBLH BMD g/cm2 0.008 (�0.002;0.019) p = 0.13 0.005 (�0.004;0.013) p = 0.26 0.011 (�0.0002;0.022) p = 0.05

TBLH BMC g 11.0 (�1.1;23.1) p = 0.08 7.9 (�1.4;17.2) p = 0.10 8.0 (�4.7;20.7) p = 0.22

Head BMD g/cm2 0.048 (0.009;0.086) p = 0.02 0.035 (0.005;0.064) p = 0.02 0.038 (�0.003;0.078) p = 0.07

Head BMC g 12.5 (3.0;22.0) p = 0.01 6.0 (�1.3;13.2) p = 0.11 6.0 (�4.0;15.9) p = 0.24

Table 3: DXA scan results at age 6 years by combination of vitamin D status and prenatal high-dose vitamin D supplementation.
aMD: Adjusted mean difference for age, sex, height and weight.
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lower incidence of fractures in children with vitamin D
sufficiency at age 6 months. However, we demonstrated
a significant 60% reduced fracture risk and the largest
improvement in bone mineralization outcomes in vita-
min D sufficient children whose mothers received high-
dose vitamin D supplementation during pregnancy
compared with vitamin D insufficient children whose
mothers received standard-dose, which suggests a com-
bined effect of high in utero exposure and sufficient
childhood serum 25(OH)D concentrations. Importantly,
there was no association between the pregnancy high-
dose intervention and childhood vitamin D status
and no evidence of interaction, suggesting that
serum 25(OH)D concentrations in pregnancy and
childhood have independent effects on bone mineral-
ization outcomes. Further, our causal mediation
analyses suggested that the effect of high-dose vita-
min D intervention was not mediated through child-
hood vitamin D status. Finally, we demonstrated that
fractures in childhood was associated with lower
bone mineralization at age 6 years, which also sug-
gests bone mineral content rather than density as

the most sensitive DXA measurement predicting
bone health in children.

Both prenatal and early postnatal life seem crucial
for optimal bone health in childhood, which tracks into
adulthood,26 affects peak bone mass, and most likely
reduces future risk of osteoporosis.12 A theoretical anal-
ysis has suggested that a 10% increase in peak bone
mass would delay the risk of osteoporosis by 13 years
and identifies bone mass gain in early life as the single
most important factor for preventing osteoporosis com-
pared with age at menopause and non-menopausal
bone loss.2 This view is supported by the National Osteo
porosis Foundation stating that optimizing bone accrual
early in life might be the most influential factor for pre-
venting current and future fractures,13 which aligns
with our findings. Osteoporosis is a major global health
burden with high economic and individual costs and
the number of osteoporotic fractures is expected to rise
in the future due to an aging population,27,28 emphasiz-
ing the need of implementing preventive strategies.
Optimizing vitamin D supplies during pregnancy and
continuing to maintain vitamin D sufficiency with 25

Figure 3. Density plots of total body and head BMD and BMC at age 6 years by vitamin D status at age 6 years in combination with
pregnancy supplementation.
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(OH)D concentrations ≥ 75 nmol/l through childhood
could be a safe and cost-effective preventive approach.29

Our finding of association between childhood vita-
min D status and bone mineralization is in line with
most previous studies5−7 and is biologically plausible
due to the well-known vitamin D effect on calcium and
phosphate homeostasis,30 two key components in
hydroxyapatite; i.e. bone mineral.31 Our results suggest
a 25(OH)D beneficial threshold of minimum 75 nmol/l
on bone mineralization and fractures, which is in line
with current recommendations of vitamin D sufficiency
from the Endocrine Society based on evidence showing
up to a 65% increase in calcium absorption when going
from 50 nmol/l to 75 nmol/l18 and where the inverse
relationship with parathyroid hormone seems to reach a
plateau.18,32

The current recommended vitamin D intake of 400
IU/day in infants from the American Academy of Pedi-
atrics,32 the Institute of Medicine33 and the European
Food Safety Authority4 is based on a 25(OH)D suffi-
ciency concentration of 50 nmol/l for the prevention of
rickets, which may be inadequate to reach our suggested
beneficial threshold of 75 nmol/l for improved bone
mineralization. The results from a vitamin D dose-
response study among infants demonstrated 3.5-times
and 9.7-times higher chances of reaching 75 nmol/l
after 3 months of supplementation with 800 IU/day
and 1200 IU/day, respectively, vs. 400 IU/day.34 The
baseline 25(OH)D concentrations in that study were
similar to what we observed in our study at age 6 years
and are relatively high compared with studies of other
ethnicities with more skin pigmentation35 where daily
vitamin D requirements may be even larger. The num-
ber of intervention studies are limited, but a recent
RCT36 in infants reported no differences in bone miner-
alization from vitamin D supplementation of 400 IU/
day vs. 1200 IU/day, but the baseline mean 25(OH)D
concentrations of the children was above 80 nmol/l and
the findings may reflect that the effect of postnatal sup-
plementation is minimal beyond the 75 nmol/l thresh-
old. However, future large RCTs of infants and
preschool children with supplementation around the
tolerable upper intake levels of 1000 IU/day (up to 6
months), 1500 IU/day (6−12 months) and 2000 IU/
day (from 12 months) are needed to establish the most
beneficial vitamin D supplementation regime for opti-
mizing childhood bone health. In our study, there was
no evidence of toxicity with no children having 25(OH)
D concentrations above the upper threshold of
250 nmol/l defined by the Endocrine Society.18 Further,
a meta-analysis including 24 studies has suggested that
vitamin D intervention doses during pregnancy up to
5000 IU/day should be considered safe.29

In conclusion, this study suggests an overall 60%
reduced risk of fractures in vitamin D sufficient chil-
dren whose mothers received high-dose vitamin D sup-
plementation in pregnancy compared with vitamin D

insufficient children whose mothers received standard-
dose. This effect may be limited to certain types of frac-
tures and may not include fractures caused by underly-
ing skeletal diseases. In addition, overall independent
effects of vitamin D status in childhood and supplemen-
tation in pregnancy on bone mineralization outcomes
were demonstrated. These findings suggest vitamin D
as a crucial micronutrient in early life for preventing
fractures and promoting bone mineralization, which
further may contribute to a lower risk of developing
osteoporosis in addition to fractures later in life.
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