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Abstract
Viral respiratory infections could range from a common cold to severe pneumonia, and their 
resolution mainly relies on appropriate immune system function. The widespread popular 
knowledge that nutritional habits influence immune system function has been demonstrated 
over the past decades in which increasing scientific evidence unveils certain nutrients as critical 
drivers of immunity. Micronutrients encompass minerals and vitamins necessary for a broad 
range of biological processes; since their deficiency could cause several clinical manifestations, 
such as weakness, growth retardation, and susceptibility to infections; hence, micronutrients 
represent one of the multiple factors that modulate immune function. Among micronutrients 
are those that act mainly as antioxidants, regulating gene expression and as a structural part 
of proteins for their proper function. Here, we review how some of the most recognized 
micronutrients are participating at the molecular level in each step of the innate and adaptive 
immune response against viruses focusing on viral respiratory tract infections, such as those 
caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2).

Introduction

Respiratory tract infections (RTI) can range from a self-limiting cold to severe pneumonia 
with sepsis development [1]. Although several etiologies exist, viruses have gained 
significant attention due to the current global sanitary situation caused by the severe acute 
respiratory syndrome coronavirus-2 (SARS-CoV-2). Among causal viruses of RTI, besides 
SARS-CoV-2 and other coronaviruses, are the enterovirus, respiratory syncytial virus (RSV), 
metapneumovirus, rhinovirus, parainfluenza virus, influenza virus, and adenovirus [2].
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Despite the causal virus and the pathogenic evasion mechanisms of each one, all of them 
evoke the activation of the innate and adaptive immune response, which in general involves 
the following steps:
•	 1.) The epithelial barrier is the first defense restricting infections; the airway epithelial 

barrier performs mechanical actions such as cilia movement and warming air; this also 
contains in the airway liquid surface (ALS) mucins (MUC) and antimicrobial peptides 
(AMP), molecules which help to reduce the possible infection.

•	 2.) Once viruses bypass epithelial barrier actions and molecules, they infect target 
cells and cause cellular stress. In response, host cells will use their pattern recognition 
receptors (PRRs) to recognize viral pathogen-associated molecular patterns (PAMPs), 
triggering an antiviral alarm state in which interferons (IFN) type I and III are 
synthesized, natural killer (NK) cells are activated, and inflammation is generated. At 
this time-point viral infection might resolve, but if that is not, the antigen-presenting 
cells (APC) are ready to trigger the next steps.

•	 3.) APC such as macrophages and dendritic cells (DC) process endogenous and 
exogenous antigens to further present them on their major histocompatibility complex 
(MHC) molecules class I or II, respectively. Antigens loaded on MHC-I molecules are 
presented to the T cell receptor (TCR) of T cytotoxic (Tc) CD8+ lymphocytes, whereas 
antigens loaded on MHC-II are presented to the TCR of T helper (Th) CD4+ lymphocytes, 
giving rise to the adaptive immune response.

•	 4.) Tc CD8+ lymphocytes are the major players in the adaptive cellular response that 
aims to kill infected cells. On the other hand, Th CD4+ lymphocytes could also participate 
in cellular response; however, they mainly cooperate with B lymphocytes to elicit the 
adaptive humoral response characterized by antibody production [3].
The expected result of the antiviral immune response is the control and elimination of 

the pathogen (Fig. 1 and 2); however, some factors could affect the infection resolution, such 
as evasion mechanisms of the viruses, stress, environmental pollution, hormonal status, 
comorbidities, and nutrition [4-10].

Fig. 1. Innate immune response 
against respiratory viruses. a) The 
mucins (MUC) and antimicrobial 
peptides (AMP) that are present 
on the airway epithelial barrier; 
the type I and III interferons (IFN) 
produced by the recognition of vi-
ral components by the pattern rec-
ognition receptors (PRRs); the ac-
tivation of the Janus kinase (JAK)/
signal transducer, and activator of 
transcription proteins (STAT)/in-
terferon regulatory factors (IRF) 
pathway in the neighboring cells; 
the activation of natural killer (NK) 
cells; the induction of inflamma-
tory response; and the activation 
of antigen-presenting cells (APC) 
are part of the innate immune re-
sponse against respiratory viruses. 
Figure created with BioRender.com.
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In this regard, SARS-CoV-2 infection causes a severe inflammatory response in patients 
with comorbidities such as diabetes, hypertension, and obesity [11], pathologies tightly 
related to metabolic and nutritional alterations.

Indeed, micronutrient imbalance is associated with the risk of complicated respiratory 
tract infections, as has been reported for vitamins A, D, E, and C and the trace elements zinc 
and magnesium [12-20]; therefore, their supplementation improves the effector function of 
the immune system, as has been excellently reviewed elsewhere [21, 22]. Here we will focus 
on how those micronutrients mentioned above, in which deficiency or supplementation 
impacts immune function, participate at the molecular level in each step of the immune 
response against respiratory viruses. Considering their three main action mechanisms as 
antioxidants, gene-expression regulators, and structural components of proteins, we will 
revise their functions as immuno-stimulators, immuno-regulators, or even both.

General overview of micronutrients

Micronutrients encompass vitamins and minerals typically considered cofactors involved 
in many enzymatic reactions; however, they perform several other functions. For example, 
vitamins C and E act as antioxidants, vitamins A and D regulate the expression of several 
genes, and the trace elements zinc and magnesium are structural parts of transcriptional 
factors (Fig. 3).

•	 1.) Antioxidant vitamins: Oxidative stress is a typical process occurring during 
respiratory viral infections that requires to be tightly regulated to avoid its contribution 
to the pathology progression [23]. The two vitamins, well known for their antioxidant 
properties, vitamins C and E, are also involved in each step of the immune response 
through their antioxidant and other mechanisms.
Vitamin C, also known as ascorbate or its oxidized form dehydroascorbate (DHA), is taken 

up by cells via sodium-dependent vitamin C transporters (SVCT) and glucose transporters 
(GLUT) [24]; in immune cells, SVCT2 and GLUT3 seem to be especially relevant for vitamin C 
uptake, and the contribution of each one depends on the lineage and differentiation status 
[25-27].

Fig. 2. Adaptive immune response 
against respiratory viruses. The 
adaptive cellular response involves 
the presentation of endogenous 
antigens onto the major histo-
compatibility complex (MHC)-I 
molecules to T cytotoxic (Tc) CD8+ 
lymphocytes, which aim to kill the 
infected cell. In contrast, the adap-
tive humoral response involves 
the presentation of exogenous an-
tigens onto the MHC-II molecules 
to the T helper (Th) CD4+ lympho-
cytes and their cooperation with 
B lymphocytes that subsequently 
produce antibodies to neutralize 
viruses, induce the classical path-
way of complement, or trigger the 
antibody-dependent cellular cy-
totoxicity (ADCC). Figure created 
with BioRender.com.
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The antioxidant function of vitamin C relies on its electron donor capacity but also 
functions as a metabolic and epigenetic modulator through the alpha-ketoglutarate-
dependent dioxygenases (αKGD), enzymes that use this vitamin as a cofactor [28-30].

On the other hand, vitamin E embraces eight lipophilic molecules sharing a chromanol 
ring structure, four tocopherols isomers (α, β, γ, δ) and four tocotrienols isomers (α, β, γ, δ); 
these can be distinguished among them by the number of bonds of the side chain and by the 
methyl groups in the chromanol ring structure. Due to its chemical nature, vitamin E could 
easily conjugate with lipophilic compounds such as bile acids, cholesterol, and other lipids 
and is taken up by cells mainly through the scavenger receptor B type I (SR-BI) but also by the 
cluster of differentiation (CD)36 [31-33]. Interestingly, CD36 is a molecule highly expressed 
on phagocytic cells such as neutrophils, monocytes, and macrophages; and its expression is 
affected by respiratory viruses, as has been reported for influenza virus and RSV infections 
in vitro [34, 35]. Once inside cells, vitamin E is transformed into carboxychromanol (COOH) 
metabolites through different steps of oxidation and shortening the side chain length [31, 
32].

Besides its chromanol ring structure-dependent antioxidant function, other functions of 
this vitamin are to regulate plasma membrane curvature under stress conditions, modulate 
the inflammatory process, and even suggest controlling gene expression through the 
pregnane X receptor (PXR) [36-40].

•	 2.) Gene-regulating vitamins: The liposoluble vitamins A and D can bind to their 
receptors to activate their transcriptional factor function and promote the expression 
of several genes, including some involved in the innate and adaptive immune responses.
Vitamin A, also referred to as retinol, requires to be transported by the retinol-binding 

protein (RBP) to enter cells by passive diffusion or through the receptors SR-BI, adenosine 
triphosphate (ATP)-binding cassette transporter (ABCA4), and stimulated by retinoic acid 
gene 6 (STRA6) [41, 42]. Inside cells, retinol is metabolized to retinaldehyde and retinoic acid 
(RA) through retinol dehydrogenase and retinaldehyde dehydrogenase, respectively. While 
retinaldehyde is involved in the visual cycle, RA regulates the expression of several genes 
through its recognition by the RA receptor (RAR). RAR, together with the retinoid X receptor 
(RXR), functions as a transcriptional factor when bound to hundreds of genes that contain 

Fig. 3. Action mechanisms of mi-
cronutrients, in addition to be-
ing cofactors. Vitamin A (Vit. A) 
is metabolized to retinaldehyde 
and retinoic acid (RA); which is 
recognized through the RA recep-
tor (RAR) that, in turn, interacts 
with the retinoid X receptor (RXR); 
RAR/RXR dimer functions as a 
transcriptional factor that binds 
genes containing RA response ele-
ments (RARE). The active form of 
vitamin D (Vit. D) binds to the vita-
min D receptor (VDR), which also 
interacts with RXR, functioning 
also as a transcriptional factor that 
binds to genes containing vitamin D response elements (VDRE). Vitamin E (Vit. E) can be part of the plasma 
membrane to regulate its curvature, acts as an antioxidant, and can be metabolized to carboxychromanols 
which exert other functions. Vitamin C (Vit. C) is an antioxidant and a cofactor of several alpha-ketogluta-
rate-dependent dioxygenases (αKGD), enzymes that regulate epigenetics and metabolism. Zinc (Zn) and 
magnesium (Mg) interact with and support the function of many biomolecules, mainly proteins such as 
enzymes and transcriptional factors. Figure created with BioRender.com.
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RA response elements (RARE) [41]; among these are immune response genes, such as the 
RA inducible gene-I (RIG-I), a PRR that recognizes viral RNA; and the 2’-5’-oligoadenylate 
synthase 1 (OAS1), a protein involved in the viral RNA degradation [43, 44].

Vitamin D can be acquired from dietary sources as vitamin D2 (ergocalciferol) from 
plants or as vitamin D3 (cholecalciferol) from animals; however, its primary source is the 
7-dehydrocholesterol in the skin, which is converted to vitamin D3 by the action of ultraviolet 
light. Vitamin D is transported by the vitamin D binding protein (DBP) to the liver, where 
hepatocytes convert it to 25-dihydroxy vitamin D3 (25(OH)D3 to then reach the kidneys, 
where tubular cells transform it into the active form of vitamin D, the 1,25-dihydroxy vitamin 
D3 (1,25(OH)2D3). Interestingly, some immune cells, such as macrophages, dendritic cells, 
and T cells, can also produce the active form of vitamin D [45-47].

The active form of vitamin D acquired or synthesized by cells is recognized by the 
vitamin D receptor (VDR), which also interacts with RXR to function as a transcriptional 
factor that binds several genes containing vitamin D response elements (VDRE) to regulate 
their expression [48]. The most know function of vitamin D is the induction of the expression 
of the transient potential vanilloid type 6 (TRPV6) required for the promotion of calcium 
absorption; however, it also promotes the expression of several genes associated with 
immunoregulatory functions [49].

•	 3.) Structural trace elements: Zinc and magnesium are two metals that stabilize the 
structure of hundreds of biomolecules, mainly proteins, and therefore allow them to 
function.
Zinc is one of the most relevant metals in the organism; estimating that it interacts with 

near of 10% of the human proteome, mainly enzymes and transcriptional factors [50, 51]. 
Zinc is taken up by cells through the Zrt/Irt-like proteins (ZIP), intracellularly this mineral is 
found inside organelles and vesicles or bound to proteins named metallothioneins (MT); and 
its concentration is regulated by the ZIP-dependent uptake, as well by its release through 
the zinc transporters (ZnT) [52]. A relevant finding from nearly two decades ago is that zinc 
deficiency affects immune system development, causing thymic atrophy in rodents [53, 54] 
since the zinc-dependent hormone thymulin produced by thymic epithelial cells is necessary 
for proper T lymphocyte development [55, 56].

On the other hand, magnesium is well known for its participation in stabilizing DNA, 
its requirement for DNA polymerase reactions, and for being bound to ATP, facilitating the 
phosphate group transference; however, as occurs with zinc, it participates in several cellular 
processes due to its interaction with hundreds of proteins. Different transporters take up this 
metal in immune cells, such as the transient receptor potential cation channel subfamily M 
(TRPM)6 and 7, the solute carrier family 41 members 1 and 2 (SLC41A1/A2), and the 
magnesium transporter 1 (MAGT1) [57, 58]. Among its different functions, the involvement 
of magnesium in immune response was initially discovered because a defect in its transport 
due to a mutation of the MAGT1 gene in humans causes a combined immunodeficiency 
mainly affecting T lymphocytes response [59].

Functions in airway epithelial barrier

The respiratory tract is a tightly impermeable barrier covered by ALS, which plays a 
fundamental role in clearing pathogens and other foreign molecules. ALS is composed of 
several substances, including MUC and AMP.

In vitro, MUC homogenates have been reported to restrict infection of several viruses in 
epithelial cell cultures [60], particularly MUC1 interacts with the influenza virus and restricts 
the infection in lung epithelial cells in vitro and in vivo [61], also decreases the production 
of the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) in RSV-infected lung 
epithelial in vitro [62]. Although there is no evidence yet of the effect of MUC1on SARS-CoV-2 
replication, severe COVID-19 patients show increased levels of this in bronchial mucus [63].
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On the other hand, the β-defensins (BD) are AMP widely expressed in epithelia that, in 
addition to their antibacterial functions, can also interact with viruses to prevent their entry 
into the host cells. Mouse BD (MBD) 3, MBD4, and a fusion peptide that contains MBD1 and 
MBD3 have been reported that interact with the influenza virus and impair the experimental 
infection in vitro and in vivo [64-66]. Similarly, human BD (HBD) 2 has been reported to 
disrupt the envelope of RSV, reducing its infection in vitro [67]. A short peptide derived from 
MBD4 named P39 also has been shown to decrease in vitro infection with the influenza virus, 
middle east respiratory syndrome (MERS)-CoV, and SARS-CoV, although interaction with the 
viruses is still unexplored [68]. Another interesting function of BD is enhancing antibody 
production, as has been demonstrated for HBD2 and MBD2 in mice immunized with MERS-
CoV spike (S) protein and influenza virus [69, 70].

BD has not been reported to have a direct effect on SARS-CoV-2; however, the human 
neutrophil peptides (HNPs) 1, 2, and 3, and the human defensin (HD) 5, all of them α-defensins 
(AD), have shown to limit the infection in vitro [71]. AD are found mainly in neutrophil 
granules [72]; therefore, their release involves neutrophil activation and degranulation, 
although this has been associated with poor outcomes in COVID-19 patients [73].

Cathelicidins are another type of AMP found in neutrophil granules involved in 
protection against respiratory viruses since they have been shown to limit RSV and influenza 
virus infection in vitro and in vivo by disrupting viral membranes [74-77]. Human, porcine, 
and ovine cathelicidins also have been reported to diminish rhinovirus infection in vitro 
[78]; however, an evasion mechanism of rhinovirus to avoid cathelicidins function is to 
modify their cationic to a neutral charge [79]. In the case of SARS-CoV-2, it has been reported 
that human cathelicidins interact with the viral S protein restricting the in vitro and in vivo 
infection [80].

Among the micronutrients that support the airway epithelial barrier integrity and the 
production of MUC and AMP with antiviral activity are vitamins A, D, E, C, and zinc (Fig. 4).

Vitamin A is relevant in embryogenesis, particularly in the respiratory tract; its deficiency 
causes malformations in the trachea, lung, and smooth muscle [41, 81]. In mature airways, 
this vitamin has been shown to participate in tissue remodeling upon injury, promoting the 
activation of the mitogen-activated protein kinase (MAPK) and modulating the extracellular 
matrix composition [82-84]; while, through RAR/RXR activation can promote the expression 
of MUC2, MUC5A, MUC5B, and cathelicidins in airway epithelial cells [85-87].

Vitamin D also has been demonstrated to induce the expression of cathelicidins, and some 
BD in airway epithelial cells and other cell types [87-92], particularly the LL-37 cathelicidin 
and the HBD2 genes are known to contain a VDRE that promotes their expression [91].

Fig. 4. Micronutrients functions 
in the airway epithelial barrier. 
Vitamin A (Vit. A) induces the ex-
pression of mucins (MUC) and an-
timicrobial peptides (AMP); it also 
promotes the mitogen-activated 
protein kinase (MAPK)/extracellu-
lar signal-regulated kinase (ERK) 
pathway upon injury to promote 
tissue remodeling. Vitamin D (Vit. 
D) influences the expression of 
AMP. Vitamin E (Vit. E) can be part of the plasma membrane regulating its fluidity, blocking bioactive phos-
pholipids, and mitigating reactive oxygen species (ROS). Vitamin C (Vit. C) also functions as an antioxidant, 
participates during collagen synthesis for tissue remodeling, and promotes cystic fibrosis transmembrane 
conductance regulator (CFTR) activity, a channel that induces chloride secretion and hydrate airway liquid 
surface (ALS) and MUC. Zinc (Zn) is necessary to preserve tight junctions in the epithelial barrier. Figure 
created with BioRender.com.
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The antioxidant function of vitamin E indirectly modulates the inflammatory response 
in airway epithelium [93] and, as a component of the plasma membrane, has been shown 
to contribute to its fluidity and that interact and neutralize dangerous lipids such as 
lysophosphatidylcholine and platelet-activating factor (PAF) [94], molecules released during 
respiratory viral infections that have been reported to promote inflammation and epithelial 
barrier leakage [95-97].

On the other hand, vitamin C, as vitamin A, has been demonstrated to be relevant for 
proper healing since, during airway injury, the prolyl hydroxylase (PHD)-dependent type VI 
collagen synthesis requires this vitamin as a cofactor [98, 99]. In the ALS, vitamin C has been 
discovered that promotes the activation of the cystic fibrosis transmembrane conductance 
regulator (CFTR), a channel that elicits chloride secretion for fluid hydration in nasal and 
tracheal epithelial cells [100]; therefore, since MUC are released as dehydrated polymers, 
vitamin C indirectly impacts on MUC fluidity [101].

Under stress conditions, it has been described that airway epithelial cells increase zinc 
uptake through the ZIP8 transporter, hypothesizing that it functions as a second messenger 
to maintain the barrier impermeability; since zinc depletion causes paracellular permeability 
due to reduced levels of the thigh junctions proteins zonula occludens-1 (ZO-1) and claudin-1 
[102, 103].

Roles in the antiviral response mediated by interferons (IFN)-I

Viruses infect using different host cell receptors, as has been reported for CoV through 
ACE2 [104]; RSV through C-X3-C Motif Chemokine Receptor 1 (CX3CR1) [105]; influenza 
virus, parainfluenza virus, and enterovirus through sialic acid [106-108]; metapneumovirus 
through integrins [109]; rhinovirus through low-density lipoprotein receptor (LDLR) and 
very-LDLR (VLDLR) [110]; and adenovirus through desmoglein [111].

Once inside, viral nucleic acids can be recognized by different PRRs. For example, single-
strand (ss) RNA could be identified by toll-like receptor (TLR) 7, TLR8, and nucleotide-
binding oligomerization domain-containing protein 2 (NOD2); double-strand (ds)RNA could 
be recognized by retinoic acid-inducible gene I (RIG-I), melanoma differentiation-associated 
protein 5 (MDA5) and TLR3; moreover, other receptors such as the NOD-like receptor 
family pyrin domain-containing (NLRP) 1 and NLRP9b also have been reported to recognize 
dsRNA [112, 113]. On the other hand, viral DNA is identified through TLR9, cyclic GMP–AMP 
synthase (cGAS)–stimulator of interferon genes (STING), DExH-Box Helicase (DHX) 9, and 
DHX36 [114, 115].

PRRs activation triggers several signal pathways that activate transcriptional factors 
such as the interferon regulatory factors (IRF) and the nuclear factor kappa B (NF-κB); 
these transcriptional factors induce the expression of IFN-I, IFN-III, and pro-inflammatory 
cytokines to induce an antiviral state in the neighboring cell and promoting the inflammatory 
response [116, 117].

IFN-I act in paracrine through IFN α/β receptors (IFNAR), whereas IFN-III act through 
the IFN-λ receptor (IFNLR). IFNAR and IFNLR ligation activate the Janus kinase/signal 
transducer and activator of transcription (JAK/STAT) pathway to induce an antiviral state 
characterized by the expression of interferon-stimulated genes (ISG) [116]. Besides the 
antiviral state induction, IFN-I also participates in the development and modulation of NK 
cells [118-120], as well as in the promotion of dendritic cell maturation for a proper antigen 
presentation [121, 122].

IFN-I response could vary among viral challenges; for example, IFN-I pretreatment 
reduces straightly viral replication of SARS-CoV-2 compared to influenza and SARS-CoV 
in vitro [123]. However, some respiratory viruses can subvert IFN-I production through 
their non-structural protein 1, which has been reported for the influenza virus, RSV, and 
SARS CoV-2 [124-127]. Indeed, the impaired production of IFN-I has been associated with 
disease worsening in COVID-19 patients [128-130], probably by a delayed production, as 
demonstrated in a SARS-CoV mice model [131].
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The micronutrients implicated in stimulating the IFN-I response include vitamins A, C, 
and zinc (Fig. 5).

Vitamin A has been reported to enhance RIG-I expression [44, 132], a kind of PRR that 
recognizes influenza virus, SARS-CoV2, metapneumovirus, parainfluenza virus, and RSV 
[126, 133-136].

On the other hand, vitamin C has been demonstrated to enhance the expression of several 
ISG, including MDA-5 and RIG-I, which are involved in the viral dsRNA recognition; and Mx1, 
a protein that interferes with the viral polymerase activity of the influenza virus [137-139]. 
However, the antiviral response influenced by this vitamin could be an indirect effect since 
it has been reported that it preserves mitochondrial functions [140, 141] and prevent the 
decrease of the mitochondrial antiviral signal-protein (MAVS) induced by influenza virus 
infection in mice [142]. MAVS is an outer mitochondrial membrane protein necessary to 
anchor MDA-5 and RIG-I during their activation for IFN-I production [143].

Zinc has been reported to enhance the antiviral action of IFN-I in vitro [144]. One 
reported mechanism is by the action of the zinc finger CCHC domain-containing protein 3 
(ZCCHC3), a protein that facilitates viral dsRNA and dsDNA delivery to different PRRs such 
as RIG-I, MDA5, and cGAS [145, 146]; moreover, ZCCHC3 also has been shown to promote 
oligomerization of RIG-I, MDA5, and TLR3 for their activation [146, 147].

Vitamin D’s role seems to be immunomodulatory since it downregulates ISG expression 
and IFN-I production in an NF-κB-dependent manner during RSV infection in tracheal 
epithelial cells without affecting viral replication [148].

Functions in NK cell differentiation and activation

Under a steady state, NK cells remain inactive due to inhibitory signals from their killer 
Ig-like receptors (KIR), such as NKG2A and Ly49, which recognize MHC-I molecules from 
self-cells in an antigen-independent manner. Although some respiratory viral infections 
have been reported to decrease MHC-I molecules to avoid the adaptive cellular response 
[149, 150], NK cells are ready to respond. These will be activated due to the loss of KIR 
inhibitory signals, by the recognition of molecules on infected cells by the killer activation 
receptors (KAR) such as NKG2D and NKp46, and through the ligation of CD16 to finally 
execute their cytotoxic effect on infected cells by releasing perforins and granzyme B and 
producing cytokines such as IFN-γ [151-153].

However, some respiratory viruses subvert NK cell response, such as has been described 
for metapneumovirus, which reduces KAR ligands on infected cells in vitro [154]; or SARS-
CoV-2, which increases surface levels of the inhibitory receptor NKG2A on NK cells, resulting 
in less degranulation and IFN-γ production [155].

Fig. 5. Roles of micronutrients in the antiviral re-
sponse mediated by interferons (IFN)-I. Vitamin 
A (Vit. A) promotes the expression of the retinoic 
acid-inducible gene I (RIG-I), a receptor that de-
tects viral double-strand (ds)RNA. Vitamin C (Vit. 
C) enhances interferon-stimulated genes (ISG) ex-
pression by stimulating mitochondrial metabolic 
changes. Zinc (Zn) is necessary for the function of 
the zinc finger CCHC domain-containing protein 3 
(ZCCHC3), a protein that interacts with viral dsRNA 
to facilitate its delivery to different receptors such 
as RIG-I, melanoma differentiation-associated pro-
tein 5 (MDA5), and toll-like receptor 3 (TLR3). Fig-
ure created with BioRender.com.
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Although NK cells with an activation phenotype are necessary to eliminate infected 
cells, a subset of NK cells with a regulatory phenotype is also required to avoid harmful 
effects [156]. Indeed, enhanced NK cell numbers with activated phenotype in the lungs have 
been associated with severe lung injury during experimental models of influenza virus and 
RSV infections, probably by the exacerbated release of perforins, granzymes, and cytokines 
that potentiate the inflammatory response [157-159].

Several micronutrients are involved in modulating the development and function of NK 
cells. It has been described that vitamin D and zinc promote their differentiation; these same 
micronutrients, together with magnesium, favor their activation, while vitamins C, A, and 
zinc favor their regulation. (Fig. 6).

Vitamin A, through RAR, has been reported to decrease NK cell’s cytotoxicity and IFN-γ 
production by diminishing granzyme B and the KAR NKp46 levels in an NF-κB-dependent 
manner [160]. However, long-term vitamin A deficiency in rats also has been reported to 
result in lower levels and function of NK cells [161, 162], thus could suggest that this vitamin 
is required for both NK cell regulation and activation.

Similarly, vitamin D deficiency has been associated with reduced numbers of NK cells 
during pneumonia-derive SARS-CoV2 infection in humans [163], probably compromising 
NK cell generation, since it has been demonstrated that vitamin D induces the expression 
of the vitamin D upregulated protein 1 (VDUP1), a protein that promotes the differentiation 
of NK cells [164]. On the other hand, mature NK cells treated with vitamin D have been 
shown to increase their KAR levels and enhance their cytotoxic activity [165]. Moreover, in 
vivo, vitamin D supplementation has been reported to enhance the numbers and cytotoxic 
function of NK cells in healthy mice but not obese mice [166]; this could suggest that in 
obesity, which is considered a chronic inflammatory disease, vitamin D, instead being used 
by NK cells, it could be used by adipose tissue to regulate its metabolism and to limit the 
inflammatory response [167], as will be discussed below.

Vitamin C has been reported to stimulate the proliferation of NK cells and to promote 
a regulatory phenotype [168] by increasing the expression of KIR through the activity 
enhancement of an αKGD named ten-eleven translocation (TET) demethylase, which acts on 
KIR promoters to elicit their transcription [169].

On the other hand, zinc has been reported to be necessary for two zinc finger 
transcriptional factors involved in NK differentiation, GATA binding protein 3 (GATA-3) and 
zinc finger E-Box binding homeobox 2 (Zeb2) [170-172].

Fig. 6. Micronutrients func-
tions during natural killer 
(NK) cell differentiation and 
activation. Vitamin D (Vit. D) 
promotes NK cell differentia-
tion inducing vitamin D up-
regulated protein 1 (VDUP1) 
expression, while in mature 
NK cells promotes their acti-
vation by decreasing the ex-
pression of the killer Ig-like 
receptors (KIR). Zinc is re-
quired for the transcription-
al factors GATA binding protein 3 (GATA-3) and zinc finger E-Box binding homeobox 2 (Zeb2), both involved 
in the NK cell differentiation; in mature NK cells, zinc has dual roles, promoting their activation by increasing 
perforin levels, or promoting their regulation by inducing KIR polymerization. Magnesium (Mg) promote NK 
cell activation by increasing killing activation receptor (KAR) levels. Vitamin C (Vit. C) and vitamin A (Vit. A) 
promote the regulation of NK cells by decreasing KAR levels and increasing KIR levels, respectively. Figure 
created with BioRender.com.
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In differentiated NK cells, zinc supplementation has been demonstrated to increase 
perforin levels and enhance their cytotoxic effect triggered by IL-2 [151]; interestingly, zinc 
also has been reported to be necessary for the inhibitory signals of NK cells since it binds to 
the extracellular domain of KIR for their proper polymerization and inhibitory effect [173]; 
these findings could suggest that the effects of this metal could be different if it is found 
intracellularly, probably acting as a second messenger or bound to transcriptional factors; or 
if it is found in the extracellular environment bound to surface receptors.

Magnesium also seems to support the cytotoxic function of NK cells since it has been 
reported that in cells derived from magnesium-deficient patients, there is an impairment 
in their functionality, which can be reversed by in vitro supplementation with this trace 
element by increasing KAR levels and restoring the cytotoxic function [174].

Functions in the inflammatory response

Inflammation involves a series of vascular and cellular events in response to external 
or internal dangerous stimuli, which aims to eliminate or control them until the tissue 
homeostasis is recovered; hence, during a normal process, the onset phase is followed by 
the resolution phase. A wide variety of mediators participate during this process, including 
those already pre-formed and released immediately, those quickly generated by enzymatic 
reactions, and those transcriptionally induced by an upstream signal such as PRRs ligation; 
together, all of these mediators act on endothelial, tissue, and immune cells to drive their 
function [175, 176].

During the onset phase, vasodilation is one of the first events in which mast cells and 
platelets release histamine; this already pre-formed mediator increases blood flow and 
vascular permeability, as well as stimulates the release of molecules from endothelial cell 
Weibel-Palade bodies (WPB), contributing to the activation of neighboring cells [177-179].

Prostaglandins (PG), thromboxanes (TX), and leukotrienes (LT) are other types of 
mediators that, in addition to being involved in vasodilation and coagulation as histamine 
and WPB molecules, also participate in the generation of fever and leukocyte chemotaxis; 
these mediators are generated from arachidonic acid (AA) by the action of cyclooxygenase-2 
(COX-2), in case of PG and TX; or 5-lipoxygenase (5-LOX), in case of LT [180].

Like the AA-derived mediators, the reactive oxygen species (ROS) are generated by 
enzymatic reactions of several enzymes, such as the NADPH oxidases (NOX). Although the 
most known function of ROS in the immune response is their involvement in the respiratory 
burst of the phagocytic process, ROS also perform other functions. Among these are the 
induction of vascular permeability by stimulating the enzymes phospholipase D (PLD) and 
phosphatase type 2A (PP2A) [181-183]; and the activation of several signal pathways; indeed, 
ROS signaling can activate the transcriptional factors NF-κB and hypoxia-inducible factor 1 
(HIF-1) to drive the synthesis cytokines and cellular metabolic adaptations, respectively 
[184-190].

The most noticeable transcriptionally induced mediators in inflammation are cytokines 
and chemokines, such as interleukin (IL)-1β and IL-8. These are induced by different stimuli 
such as the mentioned ROS and PAMPs; these mediators can act in an autocrine, paracrine, 
and endocrine manner in different cells; for example, in APC could promote their migration, 
antigen processing capacity, expression of co-stimulatory molecules, and even the production 
of other cytokines [191-193].

On the other hand, once the dangerous stimuli are eliminated, the mediators of the onset 
phase are no longer produced or are counteracted by others, giving rise to the resolution 
phase. During this, the vascular tone is recovered, necrotic and apoptotic cells are eliminated, 
and the tissue is repaired [194].

Nitric oxide (NO) is an enzymatically produced mediator with anti-inflammatory 
properties; especially, NO produced by the endothelial nitric oxide synthase (eNOS) regulates 
the vascular tone and inhibits leukocyte migration [195]. Lipoxins, resolvins, protectins, 
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and maresins are lipid-derived mediators that also limit leukocyte migration; moreover, 
these also limit ROS production and pro-inflammatory cytokines production and promote 
phagocytosis of apoptotic cells and the production of anti-inflammatory cytokines [196, 
197].

Modulating cytokines of the onset phase involve their negative feedback and the 
production of anti-inflammatory ones [198]. A20 is a ubiquitin-editing enzyme induced as 
a negative regulator of pro-inflammatory cytokines signal, this functions as an upstream 
negative regulator of NF-κB, thus limiting pro-inflammatory cytokines production [199]. 
On the other hand, anti-inflammatory cytokines, such as IL-10 and transforming growth 
factor-beta (TGF-β) also are produced to shape the response of epithelial cells, fibroblasts, 
macrophages, and other cells during tissue repair [194, 200, 201].

Some respiratory viruses subvert the inflammatory process leading to pathological 
consequences. For example, it has been demonstrated that SARS CoV-2 takes advantage 
of histamine recognition by its H2 receptors on endothelial cells to increase its entry to 
them [202]. Also, in patients with severe COVID-19, it has been reported that in blood 
leukocytes, there is ROS overproduction, as well as the expression of its related transcriptional 
factor HIF-1α [203, 204]; it has even shown in vitro that HIF-1α facilitates SARS CoV-2 
infection and other respiratory viruses [204, 205].

As SARS-CoV-2, severe influenza infections also have been reported to develop a hyper-
inflammatory state in which oxidative stress and the expression of TNF-α, IL-1β, and IFN-I 
and their related genes coexist simultaneously [206-211].

Several micronutrients participate in the modulation of the inflammatory response in 
different types of cells, mainly to avoid harmful effects due to its overactivation (Fig. 7).

Vitamin C has been recognized to modulate the inflammatory response directly 
by scavenging ROS or indirectly by inhibiting ROS-triggered signaling pathways. Its 
administration has been reported to diminish tissue damage and lower several pro-
inflammatory mediators in lung injury induced by lipopolysaccharide (LPS) and influenza 
virus infection [212, 213]. In vitro, endothelial cells treated with 500µM of vitamin C have 
been shown to reverse LPS- and IFNγ-induced vascular dysfunction [183], probably due to 
its function as a stabilizer of the tetrahydrobiopterin (BH4), a cofactor of the eNOS required 
for its proper function [214, 215]. However, it is essential to note that higher doses of 

Fig. 7. Micronutrients modulate 
the inflammatory response. Vi-
tamin A (Vit. A) inhibits the nu-
clear factor kappa B (NF-κB) in 
macrophages. Vitamin D (Vit. D) 
induces the expression of sev-
eral negative regulators of NF-κB 
and mitogen-activated protein 
kinases (MAPK), such as the in-
hibitory kappa B alpha (IκBα), 
MAPK phosphatase-1 (MKP-1), 
dual-specificity phosphatase 1 
(DUSP1), thioesterase superfamily member 4 (THEM4), and T-cell Immunoglobulin 3 (TIM-3); as well pro-
motes the function of the inhibitor of the nuclear factor-kB kinase (IKK) in macrophages. Zinc (Zn) is neces-
sary to function the anti-inflammatory protein A20 in macrophages. Vitamin E (Vit. E) increases A20 levels 
through the dihydroceramide (DHC)/endoplasmic reticulum (ER) stress axis in macrophages, inhibits 5-li-
poxygenase (5-LOX) activity in neutrophils, and decreases cyclooxygenase-2 (COX-2), NF-κB and mitogen-
activated protein kinase (MAPK) activation in endothelial cells. Vitamin C (Vit. C) scavenges reactive oxy-
gen species (ROS), stabilizes tetrahydrobiopterin (BH4), a cofactor of the endothelial nitric oxide synthase 
(eNOS); and promotes proteasomal degradation of hypoxia-inducible factor 1 (HIF-1) in endothelial cells. 
Figure created with BioRender.com.



Cell Physiol Biochem 2022;56(S1):53-88
DOI: 10.33594/000000591
Published online: 2 December 2022 64

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2022 The Author(s). Published by 
Cell Physiol Biochem Press GmbH&Co. KG

Jiménez-Uribe et al.: Action Mechanisms of Micronutrients on Immune Response Against 
Respiratory Viruses

vitamin C (3-10 mM) have been reported to have the opposite effect on endothelial cells [216], 
taking into account that 28-100µM are the serum physiological levels [217]. In addition, 
vitamin C has been reported to negatively regulate the transcriptional factors NF-κB and 
hypoxia-inducible factor 1 (HIF-1) [218]. However, this could be the effect of its antioxidant 
functions, for HIF-1 regulation could also be involved in its proteolytic degradation by the 
HIF-prolyl hydroxylase (HPHD), a type of αKGD which requires this vitamin as a cofactor 
[219].

Vitamin A seems to be a dual modulator of inflammation. In vitro anti-inflammatory 
functions have been reported in LPS-stimulated macrophages, in which RA doses from 10 
to 100 mM diminish NF-κB activity. Conversely, in macrophages stimulated with different 
pro-inflammatory stimuli, the addition of lower concentrations ranging from 10 nM to 
1 mM has shown the opposite effect, enhancing NF-κB activity, increasing IL-1β production, 
and inducing a metabolic shift [220, 221]. On the other hand, the anti-inflammatory effects 
of this vitamin have been observed in a sepsis model in mice, decreasing NF-κB target genes 
expression [222-224]; also, during parainfluenza virus infection in guinea pigs, RA treatment 
has been reported to diminish leukocyte infiltration and promote the expression of muscarinic 
receptors in the lungs improving their function [225]. Although these findings could seem 
contradictory, a possible explanation is that RA could exert different functions depending on 
concentration and the presence of another stimulus in the cellular environment.

Vitamin D negatively regulates the inflammatory response through different 
mechanisms, mainly in monocytes and macrophages. This vitamin could exert its functions 
through genetic expression induced by the VDR or physical interaction with other proteins. 
VDR has been reported to upregulate the expression of the inhibitory kappa B alpha (IκBα), 
MAPK phosphatase-1 (MKP-1), dual-specificity phosphatase 1 (DUSP1), and thioesterase 
superfamily member 4 (THEM4) which are negative regulators of NF-κB and MAPK, 
thus limiting the pro-inflammatory response [92, 226-229]. VDR also has been shown to 
promote the expression of the T-cell Immunoglobulin 3 (TIM-3) in macrophages, a molecule 
involved in the acquisition of the M2 phenotype, which is required in the resolution of 
inflammation phase [230]; moreover, it has been described that VDR has other target genes 
with immunomodulatory functions in monocytes [49]. VDR also has been demonstrated to 
interact with the inhibitor of the nuclear factor-kB kinase (IKK), thus avoiding the NF-κB 
pro-inflammatory activity [231, 232]. Such is the relevance of immunomodulatory functions 
of this vitamin that it has been proposed as a treatment for airway inflammation in asthma 
[233], COPD [234], convalescent COVID-19 patients [235], and even as a preventive therapy 
for acute respiratory infections [236, 237].

Vitamin E also modulates the inflammatory response since it has been reported 
that during an LPS-induced acute airway inflammation model in mice, the α-tocopherol 
administration diminishes neutrophil infiltration to the lungs and reduces tissue damage 
[238]. Similarly, in vitro, it has been shown that lung epithelial cells under inflammatory 
conditions treated with α-tocopherol reduce IL-8 and adhesion molecule levels due to 
decreased NF-κB and MAPK activity [93]. Although these effects could be by the directly 
scavenging of ROS induced during inflammation, vitamin E could also act at different levels, as 
has been reported for γ-tocopherol, δ-tocopherol, and some carboxychromanol metabolites 
that inhibit the COX-2-dependent prostaglandin E2 (PGE2) production in lung epithelial 
cells; or the carboxychromanol metabolites and γ-tocopherol that inhibit LOX-5-dependent 
leukotriene B4 (LTB4) production in neutrophils and eosinophils [37, 38]. Tocotrienols γ 
and δ have also been reported to regulate inflammatory response promoting the expression 
of A20 in macrophages through dihydroceramide (DHC) induction in the endoplasmic 
reticulum [239-241].

As mentioned, A20 is a negative regulator of NF-κB that requires zinc for its function 
[242]; indeed, in activated macrophages, zinc supplementation has been demonstrated 
to induce the expression of A20 while decreasing the activity of NF-κB resulting in lower 
expression of TNF-α and IL-1β [243]. Another mechanism that has been reported in which 
zinc regulates the inflammatory response is through the inhibition of phosphodiesterase 
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function (PDE), leading to increased intracellular levels of cyclic guanosine monophosphate 
(cGMP) and the consequent protein kinase A (PKA) activation [244, 245], a kinase involved in 
negative regulation of NF-κB [246]. Additionally, zinc has been demonstrated to be required 
for superoxide dismutase (SOD) function [50], a zinc-dependent antioxidant enzyme relevant 
to lung damage limitation [247].

The role of magnesium during the inflammatory response was described more than 
twenty years ago in an LPS-induced sepsis model in rats with a deficient magnesium diet, 
showing a hyperinflammatory state and increased mortality [248]. In vitro, it has been 
reported that magnesium decreases the expression of IL-6 and TNF-α in LPS-stimulated 
monocytes; moreover, in acute lung injury in mice, magnesium treatment increases 
antioxidant response and reduces inflammatory cytokines through NF-kB inhibition [249]. 
Although the exact mechanism is not fully understood yet, one possible mechanism may be 
the antagonism between magnesium and calcium, as calcium depletion has been shown to 
replicate the anti-inflammatory effects of magnesium in vitro and in vivo [250, 251].

Roles in the adaptive cellular response

Specific cellular response against viruses involves processing endogenous antigens 
and the consequent loading of their derived peptides onto MHC-I molecules. Although all 
nucleated cells can carry out this process, for the initiation of the adaptive cellular response, 
this must be carried out by APC that present the antigenic peptides to a TCR of a specific Tc 
CD8+ lymphocyte. Upon TCR activation, co-stimulatory signals and cytokines are required 
to complete the activation of the Tc CD8+ lymphocytes to induce their clonal proliferation. 
Almost all Tc CD8+ lymphocytes have effector functions; however, a pool of memory cells is 
generated for future encounters with the antigen [252].

Effector Tc CD8+ lymphocytes, through their TCR, detect MHC-I molecules with the 
antigenic peptide of the infected cells. Once recognized, Tc CD8+ lymphocytes kill infected 
cells by expressing death ligands or releasing perforins and granzyme B. Tc CD8+ lymphocytes 
also could produce cytokines such as IFN-γ and TNF-α, which are relevant for the autocrine 
stimulation and reinforcement of immunological memory [252-255]. To avoid an excessive 
response that could drive pathologic consequences, a late phase of contraction is necessary 
for which the majority of Tc CD8+ effector lymphocytes die, but a small portion becomes 
memory cells; this process requires the restriction of IL-2 production and the production 
of immunomodulatory cytokines derived from T regulatory (Treg) lymphocytes [255-258].

Some viruses such as metapneumovirus, influenza, and SARS-CoV-2 have been reported 
to alter Tc CD8+ lymphocytes response, resembling an exhaustion phenotype that impairs 
effector and memory functions, predisposing to delayed viral clearance and reinfections 
[155, 259-261].

In addition, influenza virus and SARS-CoV-2 have been reported to downregulate MHC-I 
expression in infected epithelial cells [149, 150]; therefore, even if Tc CD8+ lymphocytes 
were generated, they could not effectively recognize infected cells.

Many micronutrients support the adaptive cellular immune response since antigen 
presentation to Tc CD8+ lymphocyte effector functions (Fig. 8).

Vitamin A, as mentioned above, acts through the RAR, which is highly expressed in mature 
Tc CD8+ lymphocytes and plays a critical role in their function. It has been reported that the 
genetic ablation of the RARγ isoform in hematopoietic cells results in low IFNγ production, 
impaired cytotoxic function, and decreased proliferation of Tc CD8+ lymphocytes without 
compromising their development; however, RARγ deletion also affects cytokine production 
of macrophages [262]. Moreover, the specific deletion of RARα isoform, but not RARγ, in Tc 
CD8+ lymphocytes also has been shown to decrease the percentage of IL-2-producer and 
lower levels of the integrin α4β7 and chemokine receptor CCR9 [263], molecules required 
for T cells mucosal migration. This evidence suggests that RARα acts directly on Tc CD8+ 
lymphocyte function, whereas RARγ could act indirectly via other cells, such as APC. In 
addition, since it has been reported that there is a RARE in the second intron of the MHC-I 
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gene in different species [264], vitamin A could increase MHC-I expression. Vitamin A also 
has been demonstrated to serve as an excellent adjuvant for vaccines, enhancing memory 
Tc CD8+ lymphocyte population with a more significant proliferative potential, as has 
been reported in a viral vector vaccination to lymphocytic choriomeningitis virus (LCV) 
glycoprotein in mice [265].

Vitamin D signaling also is necessary for proper T CD8+ lymphocytes function since 
it has been observed that genetic ablation of VDR in mice reduces their TCR repertoire, 
decreases granzyme B levels, and retains them in lymph nodes, affecting both their effector 
and memory functions [266]. In vitro, the treatment with vitamin D has been reported to 
revert the exhausted phenotype of blood-derived Tc CD8+ lymphocytes from lung cancer 
patients, and even its oral administration shows similar results [267]; suggesting that the 
beneficial effects of this vitamin in respiratory viral infections that promote an exhausted 
phenotype could be due in part to this same mechanism.

Since IL-12 expression, a cytokine required for T lymphocytes proliferation, involves 
the action of the Jumonji-C domain-containing histone demethylases (JHDM), a type of 
αKGD [268, 269], vitamin C could support the cellular response through the activity of this 
enzyme; indeed, this vitamin has been reported to enhance IL-12 production in APC [270, 
271], that in turn results in an increased number of IFNγ-producers Tc CD8+ lymphocytes 
[271]. Directly to Tc CD8+ lymphocytes, vitamin C has been shown to improve their cytotoxic 
function [272] and increase a memory phenotype, probably due to metabolic antioxidant 
adaptation [273].

Magnesium also has been demonstrated to participate in Tc CD8+ lymphocyte function 
since, in a mice model of influenza virus infection, a magnesium-deficient diet results 
in increased viral replication associated with decreased numbers of Tc CD8+ and Th 
CD4+ lymphocytes [274]; moreover, activated Tc CD8+ lymphocytes cultured in depleted 
magnesium medium have decreased proliferation capacity and reduced levels of the 
activation markers CD25 and CD69 both molecules required for T lymphocytes activation 
and proliferation [275]. In addition, extracellular magnesium has been reported to support 
the activation of the co-stimulatory molecule leukocyte function-associated antigen 1 (LFA-
1) in memory T CD8+ lymphocytes, a molecule necessary for the switch to a cytotoxic effector 
phenotype [276].

Fig. 8. Micronutrients functions 
in adaptive cellular response. Vi-
tamin A (Vit. A) acts on dendritic 
cells (DC), increasing major his-
tocompatibility complex (MHC)-
I molecules; on T cytotoxic (Tc) 
CD8+ lymphocytes induce the ex-
pression of migration-associated 
molecules such as the C-C motif 
chemokine receptor 9 (CCR9) and 
the integrin α4β7: also promotes 
cytotoxicity, IL-2, and interferon-
gamma (IFN) γ production; in ad-
dition, stimulates memory cell. 
Vitamin C (Vit. C) stimulates IL-12 
production on DC. Vitamin D (Vit. 
D) participates in the T cell receptor (TCR) repertoire generation and could revert the exhausted phenotype 
on Tc CD8+ lymphocytes. Magnesium (Mg) stimulates the expression of the activator molecules CD25 and 
CD69; it is also necessary to activate leukocyte function-associated antigen 1 (LFA-1). Zinc (Zn) regulates 
the transcriptional factors for Tc CD8+ lymphocyte differentiation since it is required for the negative regu-
lators Myc-associated zinc finger-related factor (MARZ) and zinc finger E-Box binding homeobox 2 (Zeb2), 
and the positive regulator Ikaros. In mature Tc CD8+ lymphocytes, Ikaros also inhibits cell activation. Figure 
created with BioRender.com.
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Finally, zinc participates in adaptive cellular response through the function of different 
zinc-finger transcriptional factors required for Tc CD8+ lymphocytes development and 
activation. It has been demonstrated that Myc-associated zinc finger-related factor (MARZ) 
and Zeb2 repress their differentiation, whereas Ikaros promotes it [277-279]; also, in mature 
Tc CD8+ lymphocytes, Ikaros has been reported to restrain Tc CD8+ lymphocytes activation 
[280].

Functions in the adaptive humoral response

This part of the response involves the processing and presentation of exogenous 
antigens, such as inactive viral particles or viral components contained in apoptotic bodies, 
onto MHC-II molecules to Th CD4+ lymphocytes. Also, co-stimulatory signals and cytokines 
are required for the complete activation of these cells. Once activated, Th CD4+ lymphocytes 
proliferate to become memory and effector cells that cooperate with B lymphocytes. Effector 
Th CD4+ lymphocytes could acquire different profiles driven by particular transcriptional 
factors; for example, T-bet drives to Th1, GATA-3 drives to Th2, the retinoid orphan receptor 
gamma t (RORγt) drives to Th17, and forkhead box P3 (FoxP3) drives to Treg; each profile 
is characterized besides their associated transcriptional factor, by the production of specific 
cytokines. Memory cells could remain in the SLO or become tissue memory cells. Lastly, for 
the B lymphocytes activation, BCR antigen recognition facilitated by the SLO’s follicular DC 
(FDC) and cooperation with the T CD4+ follicular helper (Tfh) lymphocytes occur to promote 
their activation and differentiation to antibodies-producer plasma cells (PC) as well as the 
generation of memory cells [281, 282].

During viral infections, the Th1 profile, characterized by IL-2, IFNγ, and TNF-α production 
[283], has protective effects, as has been reported during SARS-CoV-2 and influenza infections 
[284, 285], in part due to its role in supporting the Tc CD8+ lymphocyte response [286]. Treg 
lymphocytes are also fundamental to controlling the overactivation of the Th1 and Tc CD8+ 
lymphocytes and aiding tissue repair once the infection is resolved [287, 288]. On the other 
hand, PC’s most relevant effector function to avoid viral infections at mucosal and systemic 
levels is the production of IgA and IgG antibody isotypes, as reported during SARS-CoV-2 
and influenza infections [289-291]. These antibodies can neutralize viral particles or trigger 
the elimination of infected cells by their opsonization or antibody-dependent cell-mediated 
cytotoxicity (ADCC) [292].

A broad range of respiratory viruses alters lymphocytes response in different ways, such 
as causing lymphopenia that has been reported in SARS CoV-2, influenza virus, parainfluenza 
virus, and RSV infections [261, 293-296] or inducing a T lymphocyte exhaustion phenotype 
caused by SARS CoV-2 and influenza virus infections [261, 297]. Moreover, respiratory 
viruses also could subvert Th1/Th2 balance in different manners, leading to pathological 
consequences; for example, PBMC derived from RSV patients stimulated in vitro have been 
shown to impair IFNγ and IL-2 production, both cytokines of Th1 profile; but able to produce 
IL-4, a cytokine of the Th2 profile [298, 299]. In contrast, rhinovirus infection, which is 
highly associated with the development of chronic obstructive pulmonary disease (COPD), 
has been shown to induce the production of Th1 cytokines but no Th2 cytokines in vitro 
[300]; and during metapneumovirus experimental infection, it has been demonstrated the 
convergence of Th1, Th2, and Th17 profiles [301]. In the case of severe SARS-CoV-2 infection 
in humans, there has been reported a marked increase in both Th1 and Th2 cytokines, 
contrary to pandemic H1N1 influenza infection, with a more discrete cytokine profile [302].

Regarding PC response, IgG antibody isotype is the most reported after immunizations 
and is related to protection and memory responses at the systemic level; however, in the 
case of respiratory viruses, mucosal IgA has been demonstrated to be more effective than 
IgG in serum, probably due to it resembles a natural infection [303-305]. Some viruses, such 
as RSV and SARS CoV-2, have been reported to impair IgA production [303, 306] or even to 
stimulate the IgE isotype switch, which is related to asthmatic complications, as has been 
demonstrated for RSV [307].
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Several micronutrients regulate adaptive humoral response with a broad range of 
actions (Fig. 9).

Vitamin A functions on adaptive humoral response depending on the differentiation 
state of the cells. For example, the treatment of immature DC with vitamin A has been shown 
to induce apoptosis; conversely, in a mature phenotype under pro-inflammatory conditions 
stimulates the antigen-presentation capacity through the increased expression of MHC-II 
and co-stimulatory molecules although, under immunomodulatory conditions, enhances a 
tolerogenic phenotype [308-311]. In Th CD4+ lymphocytes, it has been shown that RARα is 
required for Th1 induction [312]; similarly to DC, vitamin A potentiates the Treg profile in 
immunomodulatory conditions by increasing FoxP3 expression, restricting, in both cases, 
the Th17 profile [313]. However, vitamin A has also been shown to support the Th2 profile 
[314, 315]. For the proper development of FDC, it has been reported that epithelial-derived 
RA is needed [316]; moreover, in mature FDC, RAR activation is necessary for the germinal 
center formation (GC) and in B lymphocytes to promote class switching to IgA isotype in the 
mucosa [317, 318]. However, the effects of vitamin A-derived RA on B lymphocytes seem to 
depend on their maturation stage since in common lymphoid progenitor cells (CLP) from mice 
embryos, RA has been shown to inhibit B cell differentiation, whereas in CLP from adult mice 
promote B cell differentiation [319]. In vivo, a RA-rich diet in mice has been demonstrated to 
promote B cell differentiation [320]; restricting the proliferation rate in stimulated mature B 
lymphocytes while increasing the activation-induced cytidine deaminase (AID) expression, 
a key enzyme for isotype class switch [321]. RA acid has also been reported to stimulate 
memory B cells proliferation and their differentiation to antibody-secreting PC [322]. 

Fig. 9. Micronutrients func-
tions in the adaptive hu-
moral response. Vitamin A 
(Vit. A) induces apoptosis 
in immature dendritic cells 
(DC); whereas in mature DC 
increases major histocom-
patibility complex (MHC) II 
expression and, therefore, 
increases antigen presenta-
tion capacity; on T helper 
(Th) CD4+ lymphocytes, 
depending on the environ-
ment, could drive to Th1, 
or T regulatory (Treg) pro-
file; on common lymphoid 
progenitor (CLP) and early 
lymphoid progenitor (ELP) 
stimulates B lymphocyte and 
plasma cell differentiation, and also promotes antibody class switching. Vitamin D (Vit. D) inhibits MHC-II 
expression on DC; increases the expression of the inhibitory molecules programmed cell death protein 1 
(PD-1), programmed cell death ligand 1 (PD-L1), and cytotoxic T-lymphocyte antigen 4 (CTLA-4) on Th 
CD4+ lymphocytes; stimulates antibody class switching on B lymphocytes, although it inhibits plasma cell 
differentiation. Vitamin C (Vit. C) stimulates MHC-II expression on DC; promotes Treg profile depending on 
environmental conditions; stimulates antibody class switching on B lymphocytes and their differentiation 
to plasma cells. Zinc (Zn) inhibits MHC-II expression on DC; promotes the Treg profile through the zinc-
dependent transcriptional factors Ikaros, helios, and eos (solid lines); whereas it promotes Th1 by eos, and 
restricts it by Ikaros and aiolos (dotted lines); zinc could also modulate positively and negatively B lympho-
cyte differentiation. Magnesium (Mg) is necessary for the surface expression of the activating molecules 
CD25 and CD69 on Th CD4+ lymphocytes; it also stimulates B lymphocyte and plasma cell differentiation. 
Figure created with BioRender.com.
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T-independent B lymphocyte response also could be protective against respiratory 
infections, such as those caused by influenza [323]; in this context, RAR also participates in 
T-independent B response promoting the localization of B lymphocytes in the marginal zone 
of secondary lymphoid organs (SLO), and the consequent production of IgM [324].

Vitamin D has an immunomodulatory effect on humoral response as described above 
for inflammatory response. In mature DC from mice, it has been reported that vitamin D 
treatment generates a tolerogenic profile characterized by reduced production of IL-12 
and chemokines, decreased MHC-II and co-stimulatory molecules, and increased IL-10 
production, which drives a reduced Th CD4+ lymphocyte proliferation [325, 326]. Directly 
on Th CD4+ lymphocytes, vitamin D also has been demonstrated to exert regulatory effects 
inducing the expression of the inhibitory surface markers programmed cell death protein 1 
(PD-1), programmed cell death ligand 1 (PD-L1), and cytotoxic T-lymphocyte antigen 4 
(CTLA-4) [327]; molecules that drive contraction phase and Treg induction [327-329]. 
However, vitamin D has been shown to have the opposite effect under immunosuppressor 
conditions, increasing Th CD4+ lymphocyte numbers and IL-2 production [330]. 
Immunomodulatory effects of vitamin D also have been reported on B lymphocytes, reducing 
their proliferation and PC differentiation [331], regulating their APC function, and inducing 
the expression of IL-10 [332], suggesting that vitamin D modulates B activation, which could 
result in decreased antibody production. However, as occur with vitamin A, this effect seems 
to depend on the environmental conditions since vitamin D, in conjunction with vitamin A 
through VDR/RARα axis, sustains TGFβ expression to induce isotype change to IgA [333].

Vitamin C has been reported to activate p38 MAPK on DC, leading to increased co-
stimulatory and MHC-II surface levels [270, 334]; moreover, LPS-stimulated DC increases 
IL-12 production, driving a Th1 profile. However, as with other micronutrients, the effect 
of vitamin C depends on the environment since this vitamin has been reported to drive 
Th17 or Treg profiles by activating JHDM and TET demethylases, respectively [335-337]. 
On activated B lymphocytes, vitamin C has been shown to promote the differentiation to 
antibody-producing PC in vitro and in vivo through TET demethylases [338, 339]. In addition, 
vitamin C seems to promote isotype switching to IgG2 in vitro, although contradictory results 
have been found in vivo [340]; whatever the case, vitamin C appears to reinforce antibody 
production, as has been reported in patients infected with the SARS-CoV-2, in which oral 
supplementation for 42 days with vitamin C and zinc increase the levels of neutralizing 
antibodies [341].

Due to the broad range of proteins that require zinc for their function, this micronutrient 
act positively and negatively at different levels of the humoral response. In DC, it has been 
reported that zinc reduces MHC-II molecules’ surface levels and induces a tolerogenic 
phenotype, probably through the action of the anti-inflammatory zinc-dependent A20 
protein [342, 343]. Interestingly, it has been reported that intracellular zinc is highly 
enriched in Treg lymphocytes compared to Th1 lymphocytes, and its depletion reverts the 
Treg profile leading to increased IFNγ production [344]. Other zinc-dependent proteins, 
mainly transcriptional factors, dictate each Th profile in addition to their respective master 
transcription factors. For example, the Th1 profile is promoted by Eos and inhibited by 
Ikaros and Aiolos, whereas the Treg profile is promoted by Ikaros, Helios, and Eos [345]. In 
B lymphocytes, zinc is required during development, activation, and PC differentiation since 
it has been reported that during B cell development in mice, zinc uptake by the transporter 
ZIP10 is necessary during the transition of pro-B to pre-B lymphocyte stage, whereas ZIP7 
is necessary during the transition of pre-B to immature-B lymphocyte stage [346, 347]. Also, 
the early B cell factor (EBF), the ATM Chk2-interacting zinc finger protein (ASCIZ), the zinc 
finger X-chromosomal protein (Zfx), and the Myc interacting zinc finger protein 1 (Miz-1) are 
zinc-dependent transcriptional factors that have been reported to promote the process [348-
351]. In contrast, the zinc-finger protein 521 (ZNF521) has been reported to regulate B cell 
development negatively [352]. During B lymphocyte activation, it has been reported that zinc 
uptake by ZnT7, ZIP7, ZIP9, and ZIP10 transporters is required [346, 353-355], leading to 
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increased intracellular zinc levels that activate the B cell lymphoma 6 (Bcl-6) and leukemia/
lymphoma-related factor (LRF), molecules required for B lymphocytes proliferation [356-
358]. Finally, during PC differentiation, the zinc finger and BTB domain (ZBTB)20 and the 
B-lymphocyte-induced maturation protein 1 (Blimp-1) have been reported to activate them, 
whereas the ZTBT18 negatively regulated their differentiation [359-361].

Magnesium, similar that zinc, interacts with a broad range of proteins; however, there 
is little information about its participation in the humoral response. Magnesium has been 
reported to be necessary for proper T lymphocyte activation since its depletion reduces Tc 
CD8+ and Th CD4+ lymphocytes numbers in response to antigenic stimulation in vivo; also, in 
vitro affects the TCR-induced signal pathway, reducing CD69 and CD25 activation molecules 
and decreasing intracellular calcium flux in stimulated T lymphocytes, signals highly relevant 
for lymphocytes proliferation [275, 362]. In B lymphocytes, the uptake of this micronutrient 
through TRPM7 has been demonstrated to be required for their proper development since 
its deletion causes cell arrest in the pre-B lymphocyte stage [363]. In contrast, the deficiency 
of MAGT1 has been shown to cause an increase in mature B lymphocytes and reduced PC 
numbers [364], suggesting that magnesium uptake by MAGT regulates the transition of 
activated B lymphocytes to PC differentiation.

Concluding remarks

The statement that micronutrients help improve the immune system has been proven 
by a significant number of scientific evidence; however, the mechanisms of action do not 
consistently boost effector functions of the immune system; instead, micronutrients function 
by modulating each step of the immune response at the molecular level. For example, vitamin 
A seems to boost immune response and even has been proposed as a vaccine adjuvant [365]; 
conversely, vitamin D, in general, appears to have immunomodulatory effects in almost all 
phases of the immune response, being an excellent candidate for treating hyperinflammatory 
conditions, such as severe SARS-CoV-2 [366]. In addition, knowing the patient clinical 
condition plays a central role in considering if the supplementation with some micronutrients 
alone or in combination is helpful in its therapeutical management, taking into account that 
some of these micronutrients could possess antagonism or synergistic effects.
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