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a b s t r a c t

Introduction: Cardiovascular dysautonomia comprising postural orthostatic tachycardia syndrome
(POTS) and orthostatic hypotension (OH) is one of the presentations in COVID-19 recovered subjects. We
aim to determine the prevalence of cardiovascular dysautonomia in post COVID-19 patients and to
evaluate an Artificial Intelligence (AI) model to identify time domain heart rate variability (HRV) mea-
sures most suitable for short term ECG in these subjects.
Methods: This observational study enrolled 92 recently COVID-19 recovered subjects who underwent
measurement of heart rate and blood pressure response to standing up from supine position and a 12-
lead ECG recording for 60 s period during supine paced breathing. Using feature extraction, ECG features
including those of HRV (RMSSD and SDNN) were obtained. An AI model was constructed with ShAP AI
interpretability to determine time domain HRV features representing post COVID-19 recovered state. In
addition, 120 healthy volunteers were enrolled as controls.
Results: Cardiovascular dysautonomia was present in 15.21% (OH:13.04%; POTS:2.17%). Patients with OH
had significantly lower HRV and higher inflammatory markers. HRV (RMSSD) was significantly lower in
post COVID-19 patients compared to healthy controls (13.9 ± 11.8 ms vs 19.9 ± 19.5 ms; P ¼ 0.01) with
inverse correlation between HRV and inflammatory markers. Multiple perceptron was best performing
AI model with HRV(RMSSD) being the top time domain HRV feature distinguishing between COVID-19
recovered patients and healthy controls.
Conclusion: Present study showed that cardiovascular dysautonomia is common in COVID-19 recovered
subjects with a significantly lower HRV compared to healthy controls. The AI model was able to
distinguish between COVID-19 recovered patients and healthy controls.
© 2022 Indian Heart Rhythm Society. Published by Elsevier B.V. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

COVID-19 made a huge impact globally leading to unprece-
dented morbidity and mortality [1]. A significant proportion of
ment of Cardiology, Govind
on & Research, Room no. 125,

upta).
Rhythm Society.

blished by Elsevier B.V. This is an
patients present with functional limitations and decline in quality
of life at various time intervals following COVID-19 recovery. They
characteristically occur within 3e12 weeks post recovery and are
labelled as Post-acute COVID-19 syndrome or “Long Haul COVID-
19” [2]. Although not well characterized, common presenting
symptoms pertaining to the cardiovascular system include fatigue,
dyspnea, chest pain, orthostatic intolerance, lightheadedness and
palpitations. Post COVID-19 cardiovascular dysautonomia (PCCD) is
often attributed to SARS-CoV2 virus-related direct damage, cyto-
kine storm mediated or immune-mediated dysregulation of the
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autonomic nervous system (ANS) [3,4]. It is characterized by failure
or increased activity of sympathetic or parasympathetic compo-
nents of the ANS [5]. PCCD continuum comprises of orthostatic
intolerance syndrome including orthostatic hypotension (OH) and
postural orthostatic tachycardia syndrome (POTS) as well as inap-
propriate sinus tachycardia and reflex syncope [5]. Such dysauto-
nomia has been previously reported following multiple viral
infections including hepatitis C, human immunodeficiency virus
and Epstein-Barr virus [6].

There is scarcity of systematic data on occurrence of cardio-
vascular dysautonomia in post-acute COVID-19 syndrome [3,7e10].
With recurring waves in this pandemic, the likely burden of this
syndrome is going to increase. Hence, there is an urgent need to
develop simple non-invasive tools to identify this entity. Heart rate
variability (HRV) is a simple non-invasive marker of cardiovascular
dysautonomia [11]. Frequency and time-domain measures of HRV
have emerged as one of the promising tools to evaluate the balance
between sympathetic and parasympathetic components of ANS
[11]. It can easily be determined on a 12-lead electrocardiography
(ECG) based on the difference in time between two successive
heartbeats. HRV time-domain measures can be analyzed from ECG
monitoring periods from <1 min to >24 h. These include the
standard deviation normal sinus beats (SDNN), root mean square of
successive differences between normal heartbeats (RMSSD) and
the number of adjacent NN intervals that differ from each other by
more than 50 ms (NN50) [12]. Variations in HRV often reflect the
presence of pathological conditions with high HRV seen in healthy
individuals with normally functioning of ANS while lower HRV is
reflective of dysautonomia [13]. There is a paucity of systematically
conducted study reporting the utility of HRV as a predictive of
autonomic dysfunction in COVID-19 recovered patients [14e17].

Artificial intelligence (AI) has emerged as a powerful tool in the
field of biomedical research. AI confirms the traditional statistical
results and is able to rank and identify the top features that can
distinguish between two classes. In the present study, we deter-
mine the prevalence of cardiovascular dysautonomia, as well as its
spectrum in post COVID-19 recovered patients based on HRV
analysis. We also developed and evaluated an AI model to identify
which time domain HRV measure is most suitable for short term
ECG to differentiate between post-COVID-19 recovered subjects
and healthy controls.

2. Methodology

2.1. Data collection

This was a prospective single-centre study in the Department of
Cardiology in a tertiary care centre from December 2020 to March
2021. A total of 117 consecutive subjects (�18 years of age) recently
recovered (within 30e45 days) from COVID-19 infection (COVID-19
reverse transcription polymerase chain reaction [RT-PCR negative])
were screened for eligibility. Subjects with presence of one or more
pre-existing conditions known to affect HRV analysis (atrial fibril-
lation, numerous atrial or ventricular extra systoles, bundle branch
blocks, malignancy, renal or hepatic failure, diabetes mellitus) and
reduced left ventricular function (LVEF<50%) were excluded. A total
of 117 patients were screened of whom 25 were excluded due to
uninterpretable or noisy ECG data. In the 92 patients included in
the study, clinical details (active infection and convalescent phase),
comorbidities and severity [18] (mild, moderate, severe) of COVID-
19 infection were recorded. Baseline clinical, hematological,
biochemical parameters (hemogram, liver and kidney function
tests) as well as inflammatory markers [C-reactive protein (CRP), D-
dimer, ferritin, interleukin (IL)-6 and lactate dehydrogenase (LDH)]
were obtained at the time of admission during COVID-19 infection
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on a pre-structured proforma. Raw electrocardiogram of the six
limb leads (I, II, III, aVL, aVR and aVF) and six chest leads (V1, V2, V3,
V4, V5 and V6) was recorded over a 60 s period during supine paced
breathing using VESTA 301i (500 Hz). Each subject's ECG data was
stored in.dat&.xls format for further feature extraction. In addition,
in all these patients heart rate (HR) and blood pressure (BP)
response to standing up from supine position was determined. The
patients were rested in a supine position for 5 min prior to standing
up for a period of 3 min. HR as well as systolic and diastolic BP were
measured just before standing in supine position and after every
minute for 3 min following active standing. A patient was labelled
to be suffering from PCCD if the following abnormal response were
recorded (a) orthostatic hypotension (OH) if there was a fall of
>20 mmHg systolic and/or >10 mmHg diastolic BP following
standing for 3 min [19], (b) postural orthostatic tachycardia syn-
drome (POTS) if there were orthostatic symptoms (in absence of
OH) and increase in heart rate of >30 beats/minute (age: 12e19
years - 40 beats/minute) following standing [20]. One hundred and
twenty age and sex-matched controls were also recruited who
underwent a 12-lead ECG over 60 s (Fig. 1: central illustration).

2.2. Pre-processing and features extraction from raw ECG data

Lead II of the 12-lead raw ECG was used to for the study. The
samples were visualized after plotting the ECG as a graph, and the
samples deemed too noisy were removed. Baseline wandering was
present in some samples for which a correction was done
(Supplementary Fig. S1). After correcting the R wave noise, feature
extraction algorithm was used to extract various ECG features
namely (a) average RR interval defined as the average distance
between two R peaks, (b) average sig value defined as average value
of the ECG signal, (c) HR mean defined as the average value of an
individual's HR, (d) HR standard deviation defined as standard
deviation of an individual's HR, (e) Heart rate variability [HRV
(RMSSD)] defined as the temporal variation between sequences of
consecutive heartbeats and (f) SDNN defined as standard deviation
of all of the RR intervals.

2.3. Artificial Intelligence (AI) model for feature ranking

The study data was divided into two groups: (a) training dataset
to train an AI model and (b) testing data set for testing the trained
AI model. The samples of both classes were divided into five folds.
Three folds had data of 18 post-COVID-19 subjects, while two folds
had 19 post-COVID-19 subjects. Each fold had 24 healthy subjects
who belonged to the control population. In the five-fold cross-
validation, four folds are used for training, while the 5th fold was
used as the test data. This process was repeated every time with a
different classifier until each of the folds was used as the test data
once. Thus, five classifiers were trained, using one of the folds as the
test data. Once all 5 classifiers were trained and tested, overall re-
sults of every AI model were quoted after considering the cumu-
lative performance of all the 5 classifiers. To handle class imbalance
in this training data, the standard practice of Random Over-
sampling Technique was employed on the training data. However,
to avoid any bias in the test results, no oversampling was carried
out on the test fold during the cross-validation. This ensured that
the test fold did not contain repeated samples and hence, every
sample was treated as the test sample only once for reporting the
results of cross-validation. Python sklearn library was used for
developing AI models. Nine candidate features were used as input
and trained with eight AI algorithms viz. the traditional method of
Logistic Regression, four tree-based methods (RandomForests,
CatBoost, XGBoost, Extra-tree classifier), Artificial Neural Network
(Multiple Perceptron (MLP)) classifier, Support Vector Machine



Fig. 1. Central illustration of the heart rate variability (HRV) analysis of COVID-19 recovered subjects and healthy controls. OH: orthostatic hypotension; POTS: postural orthostatic
tachycardia syndrome; AI: artificial intelligence; ECG: electrocardiograph; BP: blood pressure; HRV: Heart Rate Variability.
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Classifier and AdaBoost Classifier to distinguish between COVID-19
recovered patients and healthy controls. The performance of
various AI models was assessed by comparing sensitivity, speci-
ficity, receiver operating characteristic (ROC) area under the curve
(AUC), precision-recall and Matthews's correlation coefficient
(MCC). For the top performing AI model, AI interpretability ShAP
algorithm [21] was applied and the feature ranking was done by
permutation importance algorithm for all the AI models.

2.4. Statistical analysis

Continuous data was expressed as mean ± SD and categorical
data was represented as proportions. Normality of distribution of
continuous variables were assessed using the Kolmogorov-Smirnov
test. Comparison of means of continuous variables was done using
Student's t-test or Mann-Whitney U test as appropriate, while
Fisher exact test or c2 test was used for categorical variables. In
addition, ANOVA or Kruskal Wallis was used to compare mean
values of continuous variables between the groups based on
severity of COVID-19. Correlation between inflammatory markers
and HRV was done using Pearson or Spearman correlation coeffi-
cient test as appropriate. Multivariate logistic regression analysis
was used to determine independent predictors of PCCD. A two-
sided p value of �0.05 was considered to be statistically signifi-
cant. SPSS version 24.0 (IBM Corp, Armonk, NY) was used for sta-
tistical analysis. The study was approved by the Institutional ethics
committee and awritten informed consent was obtained from each
patient prior to enrollment.

3. Results

A total of 92 subjects were included in the study for final anal-
ysis. The mean age of the study population was 50.6 ± 12.1 years.
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The demographic characteristics of all the included patients is
shown in Table 1. On the basis of National Institute of Health (NIH)
[18] COVID-19 severity classification, 87.1% were symptomatic
during the illness. Mild illness was observed in 38 (40.8%), mod-
erate disease was reported in 33 (35.4%) and severe in 10 (10.8%).
Following recovery from COVID-19 infection, 39 (41.9%) were likely
to be symptomatic with dyspnea (17.4%), palpitations (16.3%),
dizziness (14.1%) and fatigue (11.9%) being the commonest pre-
sentation. HRV (RMSSD) was significantly lower in post COVID-19
recovered subjects as compared to the control population
(13.9 ± 11.8 ms vs 19.9 ± 19.5 ms; P¼ 0.01) [Supplementary Fig. S2].
Patients with severe COVID-19 infection were more likely to have a
lower HRV as compared to asymptomatic or mild cases (HRV
[RMSSD]- asymptomatic: 24.2 ± 13.4 ms; mild: 16.3 ± 13.4 ms;
moderate: 9.3 ± 6.4 ms; severe: 7.2 ± 3.8 ms; P < 0.0001). Posthoc
analysis revealed a significant difference between HRV in mild and
moderate cases (P ¼ 0.04). A significant inverse correlation was
documented between HRV [RMSSD] and levels of inflammatory
markers viz. CRP (r ¼ �0.30; P ¼ 0.02) and IL-6 (r ¼ �0.36;
P ¼ 0.005).

PCCD was observed in 15.21% cases. Orthostatic hypotension
was reported in 12 patients (13.04%), while two patients (2.17%) had
POTS. The patients with OH were more likely to have suffered from
moderate (5/12[41.7%]) or severe COVID-19 (5/12[41.7%]) illness.
Patients with OH had a significantly lower HRV (RMSDD) as
compared to those without (5.3 ± 3.2 ms vs 15.2 ± 12.1 ms;
P ¼ 0.006). They also had significantly higher levels of inflamma-
tory markers (CRP: 56.5 ± 109.8 mg/L vs 15.8 ± 32.5 mg/L; P ¼ 0.03
and IL-6: 36.3 ± 82.2 pg/mL vs 6.7 ± 12.4 pg/mL; P ¼ 0.01) as
compared to those without. There was no significant difference in
terms of presence of co-morbidities, haemoglobin and creatinine
levels as well as left ventricular ejection fraction (LVEF) between
patients with OH and those without (Table 2). None of the healthy



Table 1
Comparative evaluation of the features between COVID-19 recovered and 120 healthy controls subjects.

Post COVID-19 patients (n ¼ 92) Controls (n ¼ 120) p-value

Age 50.6 ± 12.1 51.8 ± 4.2 0.39
Gender (Male) 54 (58.7%) 65 (54.1%) 0.51
Hypertension 11 (11.9%) 10 (8.3%) 0.37
Mean HR 88.1 ± 15.2 77.6 ± 11.3 <0.0001
HRV (SDNN) 16.9 ± 12.9 22.5 ± 17.6 0.01
HRV (RMSSD) 13.9 ± 11.8 19.9 ± 19.5 0.01
Avg signal value (microV) 0.1 ± 0.3 0.1 ± 0.3 0.907
Avg RR interval (ms) 704.3 ± 116.1 787.8 ± 110.2 <0.001
COVID-19 recovered subjects' symptoms
Symptoms during COVID-19
Fever 63 (68.5%) e

Cough 50 (54.3%) e

Sore throat 16 (17.4%) e

Dyspnoea 34 (36.9%) e

Chest pain 14 (15.2%) e

Myalgia 11 (11.9%) e

Anosmia/Aguesia 10 (10.9%) e

Headache 4 (4.3%) e

Symptoms post COVID-19 39 (42.4%) e

Dyspnoea 16 (17.4%) e

Cough 8 (8.7%) e

Fatigue 11 (11.9%) e

Palpitations 15 (16.3%) e

Orthostatic intolerance 14 (15.2%) e

Chest pain 11 (11.9%) e

Dizziness 13 (14.1%) e

Syncope 2 (2.1%) e

Severity
Asymptomatic 12 (13.1%) e

Mild 38 (41.3%) e

Moderate 32 (34.7%) e

Severe 10 (10.9%) e

Abbreviations: Avg: average; HR: heart rate; HRV: Heart rate variability; microV: microvolt; ms: millisecond; RMSSD: Root Mean Square Standard Deviation.
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controls had OH or POTS. The independent predictors of PCCD
included (a) HRV (RMSSD) [OR:1.63; 95% CI: 1.39e1.99; P ¼ 0.04],
(b) severity of COVID-19 infection [OR:3.60; 95% CI: 1.21e10.78;
P ¼ 0.02] and (c) raised IL-6 [OR: 5.88; 95% CI: 1.14e30.25; P ¼ 0.03
] (Fig. 2).

AI models confirmed that HRV (RMSSD) is an important marker
for cardiovascular dysautonomia and to distinguish between
COVID-19 recovered patients and healthy controls with accuracy
ranging from 67 to 90% depending on the model (Table 3). The
GridSearch algorithm was used as the parameter tuning method-
ology. The hyperparameter considered for MLP was the number of
nodes in the hidden layer. All combinations of (6, 5, 4, 3) and (5, 4,
3) were used for the two hidden layers. The best combination was
(5, 3) for the hidden layers. Further, max iterations were increased
to 5000 because the default 2000 iterations did not allow the so-
lution to converge. Multiple perceptron was the top performing AI
model with sensitivity of 91.3%, specificity of 87.5%, accuracy of 89%,
AUC of 89.8% andMMC of 78% (Table 3& Table S1). MLP based ShAP
interpretability feature importance showed in Fig. 3. According to
ShAP summary plot, higher value of HR-mean has a higher impact
on the prediction of the post-COVID class. Similarly, HRV (RMSSD)
and HRV (SDNN), blue color is on the right side, indicating the
lower HRV is a marker of Post-COVID class. Permutation impor-
tance feature ranking was applied to all the AI models which
revealed HRV (RMSSD) to be the top feature distinguishing be-
tween COVID-19 recovered patients and healthy controls (Supple-
mentary Figure- S3).

4. Discussion

In the present study, cardiovascular dysautonomiawas common
(15.21%) in post COVID-19 recovered patients. This was reflected by
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lower HRV and presence of OH/POTS in the convalescent phase of
COVID-19 infection. In addition, HRV(RMSSD) time domain mea-
sures can be considered as a marker for cardiovascular dysauto-
nomia for short time ECG recording (60 s) as confirmed by the AI
model ShAP interpretability algorithm, standard statistics, and
permutation importance features ranking methods. Cardiovascular
dysautonomia in the form of OH or POTS has been previously
observed in active COVID-19 infection in some reports. However,
there is no systematic study documenting the same in COVID-19
recovered subjects.3,7-10,20Autonomic symptoms in COVID-19 are
often thought to be multifactorial with deconditioning, hypo-
volemia, hyperadrenergic state or viral/immune-mediated damage
to the ANS playing an important role [3]. OH is the most common
autonomic presentation in COVID-19 followed by POTS. The clinical
presentation in POTS varies with most of the patients reporting
orthostatic tachycardia, palpitations, dizziness, lightheadedness or
chronic fatigue [22]. Data regarding the occurrence of POTS
following COVID-19 infection is markedly limited [7,10,23]. Though
the exact mechanism for POTS in COVID-19 is still unclear, it has
often been attributed to post-viral autoimmune response and
damage to ANS [23,24]. In the present study, OH was the most
common autonomic dysfunction observed in 12/92 (13.04%) pa-
tients. These patients had significantly higher levels of inflamma-
tory markers and greater disease severity at the time of initial
presentation. In our study, POTS was less frequent as compared to
OH and was reported in 2/92 (2.17%) patients. An initial small study
reported OH in 41% patients and POTS in 22% patients [20]. Another
series of six patients documented OH in four while one patient had
POTS [3].

HRV analysis from ECG has been used as a surrogate marker for
cardiovascular dysautonomia. There is paucity of data regarding
HRV in both active as well as in those recently recovered from



Table 2
Comparative evaluation of patients with or without orthostatic hypotension.

Parameters Patients with OH (n ¼ 12) Patients without OH (n ¼ 80) P-value

Age 56.42 ± 11.54 49.78 ± 12.06 0.07
Gender (Male) 7 (58.3%) 47 (58.7%) 0.97
Hypertension 2 (16.6%) 19 (23.7%) 0.58
Symptoms during COVID-19
Fever 11 (91.7%) 52 (65%) 0.06
Cough 9 (75%) 41 (51.2%) 0.124
Sore throat 2 (16.7%) 14 (17.5%) 0.943
Dyspnea 6 (50%) 28 (35%) 0.31
Chest pain 2 (16.6%) 12 (15%) 0.881
Myalgia 3 (25%) 8 (10%) 0.135
Symptoms post COVID-19
Dyspnea
Cough 1 (8.3%) 7 (8.7%) 0.96
Fatigue 4 (33.3%) 7 (8.7%) 0.01
Palpitations 5 (41.7%) 10 (12.5%) 0.01
Orthostatic intolerance 8 (66.7%) 6 (7.5%) <0.0001
Chest pain 2 (16.7%) 12 (15%) 0.88
Dizziness 7 (58.3%) 6 (7.5%) <0.0001
Syncope 2 (16.7%) 0 0.0002
Severity
Asymptomatic 0 12 (15%)
Mild 3 (25%) 35 (43.7%) 0.002
Moderate 4 (33.3%) 28 (35%)
Severe 5 (41.7%) 5 (6.25%)
HRV (RMSSD) [ms] 5.3 ± 3.2 15.2 ± 12.1 0.006
HRV (SDNN) [ms] 9.2 ± 6.0 18.1 ± 13.3 0.02
Mean HR 99.2 ± 17.8 86.4 ± 14.1 0.006
IL-6(pg/ml) 36.3 ± 82.2 6.7 ± 12.4 0.016
CRP(mg/L) 56.4 ± 109.8 15.8 ± 32.4 0.03
D-Dimer(mg/L) 919.9 ± 1283.8 453.2 ± 703.6 0.11
LDH(U/L) 373.4 ± 364.8 364.8 ± 182.3 0.89
Ferritin(mg/L) 8111.7 ± 25513.3 317.2 ± 298.9 0.04
Haemoglobin (gm%) 12.2 ± 2.5 12.4 ± 1.6 0.81
TLC (per mm3) 9283.6 þ 2927.7 9138.1 þ 9258.8 0.96
LVEF (%) 61.3 ± 5.7 60.5 ± 5.1 0.63
Avg signal value (microV) 0.002 ± 0.006 0.001 ± 0.003 0.26
Avg RR interval (ms) 635.9 ± 127.7 714.6 ± 111.5 0.028

Abbreviations: Avg: average; CRP: C-reactive protein; HR: heart rate; HRV: Heart rate variability; IL-6: interleukin-6; LDH: lactate dehydrogenase; LVEF: left ventricular
ejection fraction; ms: millisecond; microV: microvolt; OH: orthostatic hypotension; RMSSD: Root Mean Square Standard Deviation; TLC: total leucocyte count.

Fig. 2. Forest plot showing the independent predictors of development of post COVID-
19 cardiovascular dysfunction.
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COVID-19 [14e17]. In the present study, we observed significantly
lower HRV in COVID-19 recovered subjects as compared to healthy
controls. This is the first study to characterise lower HRV according
to disease severity and correlate it with inflammatory markers.
Previous small studies have reported lower HRV in covid recovered
patients [16,17]. However, these studies are limited by the design,
lack of severity assessment and absence of correlation with in-
flammatory markers.

COVID-19 infection is characterized by an intense hyper-
inflammatory response known as “cytokine storm” with elevation
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of inflammatory markers such as CRP and IL-6 [25]. They have been
reported as independent predictors of disease severity and worse
outcomes in COVID-19 [25]. It has been previously established that
ANS modulates the inflammatory response. Increased vagal re-
sponses has been associated with higher HRV and decreased in-
flammatory response through the cholinergic anti-inflammatory
pathway [26]. Conversely, sympathetic overactivity, a finding
observed in pro-inflammatory states is associated with lower HRV
and poor outcomes. Low HRV and dysautonomia has been reported
in other infectious states such as community acquired pneumonia,
dengue and HIV [27e29]. There is inverse correlation between both
short and long term HRV recordings and inflammatory markers
including CRP [30e32]. In the present study, patients with
increased levels of inflammatory markers such as IL-6 (r ¼ �0.36)
and CRP (r ¼ �0.30) had a significant negative correlation with
HRV. Further, patients recovering from moderate/severe COVID-19
had lower HRV and increased prevalence of OH reflecting higher
cardiovascular dysautonomia in these patients.

AI using deep learning neural networks and data fromwearable
devices have been previously used as an effective method for the
early detection of COVID-19 [33]. Both HR and HRV has been used
previously in a convolutional neural network model with an AUC of
0.77 ± 0.018 for prediction of onset of COVID-19. They reported
lower HRV with increased respiration and heart rate following
onset of COVID-19 [34]. In our study, we used ML algorithms to
confirm and select the best HRV time domain measure as a non-
invasive biomarker for Post- COVID-19 cardiovascular



Table 3
Comparative evaluation of the performance of various ML models.

Model Sensitivity (%) Specificity (%) AUC Accuracy (%) Accuracy (weighted)[%] MCC (%)

MLP Classifier 91.3 87.5 89.3 89.1 88.9 78.3
Ada Boost Classifier 85.8 66.6 76.3 75 76.2 52.5
Logistic Regression 77.1 74.1 75.6 75.5 75.3 50.9
SVC 84.7 65.8 75.2 74.1 75.2 50.5
Cat Boost Classifier 79.3 68.3 73.8 73.1 73.5 47.3
Extra Trees Classifier 77.1 65 71.1 70.3 70.8 41.9
XGB Classifier 79.3 58.3 68.9 67.4 69 37.8
Random Forest Classifier 75 60 67.6 66.5 67.4 34.9

Abbreviations: AUC: area under the curve; MCC: Matthews's correlation coefficient; MLP: Multiple Perceptron (MLP); ML: machine learning.

Fig. 3. SHAP summary plot using MLP AI model. Each point on a feature line is a SHAP
value for one subject's feature. The x-axis represents SHAP value, while the y-axis
represents features. The right-side (positive (þ) SHAP value) of the central line in-
dicates the post-COVID-19 class. A greater positive SHAP value indicates higher impact
on the prediction of the Post-COVID class. The color represents the value of the feature
from low (blue) to high (red). For example, in the case of HR-mean, there is a clear
distinction with red color on the right side. This indicates a higher value of HR-mean
has a higher impact on the prediction of the post-COVID class. Similarly, HRV (RMS)
and HRV SDNN, blue color is on the right side, indicating the lower HRV is a marker of
Post-COVID class.
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dysautonomia. We found MLP classification as the top performing
ML model in terms of its sensitivity (91.3%) and specificity (87.5%)
followed by AdaBoost Classifier (sensitivity 85.8% and Specificity
66.6%), Logistic Regression (sensitivity 77% and specificity 74%).
MLP based permutation importance feature ranking showed HRV
(RMSSD) is the top feature, followed by average RR and HR features
to distinguishing between COVID-19 recovered patients and
healthy controls. In the present study, HRV(RMSSD) time domain
measure is the most relevant and accurate measure of ANS activity
on a short-term ECG recording. In low- and middle-income coun-
tries, with a huge burden of COVID-19 recovered patients and
having “post COVID-19 syndrome”, ML using low-cost ECG is a
promising technique to identify those at risk of developing auto-
nomic dysfunction.

5. Limitations

Single centre study and a small sample size are the major lim-
itations of this study. However, this is the first study that examined
the use of AI and HRV in post COVID-19 recovered subjects. Addi-
tionally, another limitation of our study could possibly be the lack
of frequency domain measures of HRV as only time domain mea-
sures of HRV were analyzed. In the present study, there is a lack of
follow up data, although these patients are currently being fol-
lowed up every three months to assess HRV and the functional
status in order to determine the persistence and clinical impact of
dysautonomia in these patients.
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6. Conclusion

The findings of our study provide insights into cardiovascular
dysautonomia and its spectrum in COVID-19 recovered patients.
Reduced HRV analysis using ECG and AI algorithms was found to be
a simple, non-invasive biomarker for autonomic dysfunction in
post-COVID-19 subjects.
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