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Abstract 
Long Covid has many symptoms that overlap with ME (myalgic encephalo-
myelitis)/CFS (chronic fatigue syndrome), FM (fibromyalgia), EBV (Eps-
tein-Barr virus), CMV (cytomegalovirus), CIRS (chronic inflammatory re-
sponse syndrome), MCAS (mast cell activation syndrome), POTS (postural 
orthostatic tachycardia syndrome), and post viral fatigue syndrome. They all 
portend a “long haul” with an antioxidant shortfall and elevated Ca:Mg. 
Oxidative stress is the root cause. Linkage between TGF (transforming 
growth factor)-β, IFN (interferon)-γ, the RAS (renin angiotensin system), 
and the KKS (kallikrein kinin system) is discussed. Technical explanations for 
the renin aldosterone paradox in POTS, the betrayal of TGF-β, and the 
commonality of markers for the Warburg effect are offered. The etiology of 
the common Long Covid symptoms of post exertional malaise, fatigue, and 
brain fog as well as anosmia, hair loss, and GI symptoms is technically dis-
cussed. Ca:Mg is critical to the glutamate/GABA balance. The role of GABA 
and butyrates from the “good” intestinal bacteria in the gut-brain axis and its 
correlation with chronic fatigue diseases are explored. The crosstalk between 
the ENS (enteric nervous system) and the ANS (autonomic nervous system) 
and the role of the vagus in both are emphasized. HRV (heart rate variabili-
ty), the fifth vital sign, points to an expanded gut-brain-heart/lung axis. A 
suggested approach to all of these—Long Covid, chronic fatigue diseases, post 
viral fatigue syndrome, and general health—is presented. 
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1. Introduction 

Nobel laureate and anti Nazi Otto Warburg first presented his Warburg hypo-
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thesis in 1924. He believed that cancer should be interpreted as mitochondrial 
dysfunction. Mitochondria are the energy factories of the cell and their currency 
is ATP. Optimal mitochondrial function is at the heart of health. This same can-
cer related mitochondrial dysfunction also arises in a setting of chronic inflam-
mation and oxidative stress. Antioxidants are protective, but under such condi-
tions their consumption is accelerated. Oxygen is a very toxic element, due to 
the susceptibility of O2 to form the superoxide radical ·O2

−
2O−⋅ , which along with 

its partners, hydrogen peroxide H2O2 and the hydroxyl radical OH constitute 
reactive oxygen species (ROS). These can also create reactive nitrogen species 
(RNS), e.g., peroxynitrite ONOO−. 

Pathogens and chronic exposure to biotoxins (CIRS) that elicit chronic in-
flammation can also produce cellular hypoxia and a Warburg suitable microen-
vironment for the Warburg effect (mitochondrial dysfunction) [1]. Elevated 
TGF-β and lactate [2], encountered in Long Covid and the two greatest scourges 
of mankind, tuberculosis [3] [4] and malaria [5] [6], trigger this phenomenon.  

2. Discussion  
2.1. Oxidative Stress 

The function of antioxidants is to reduce these oxidizing agents (oxidants), 
which can fatally overwhelm cellular defenses. Oxidative stress develops when 
oxidants outnumber antioxidants. Cellular hypoxia can develop due to inflam-
mation and ROS production at the gas blood interchange (lungs), during deli-
very (erythrocytes and endothelial cells), or within the mitochondrion itself. 
During the latter, intracellular oxidant levels can quickly increase and overcome 
the onboard antioxidants, which may have been at marginal levels.  

This creates the hypoxic microenvironment. ROS are primarily produced in 
mitochondria where the energy of oxygen is transformed into ATP. These oxi-
dizing agents, if not reduced, are very toxic to cells and threaten their destruc-
tion. In order to avoid this, cells shut down their mitochondria, the source of the 
ROS, to survive. The glycolytic pathway from glucose to pyruvate normally 
proceeds to the Krebs cycle for oxidative phosphorylation and ATP production 
within mitochondria. Instead pyruvate proceeds to lactate only. ATP production 
goes from 38 to 2 ATPs per glucose. Mitochondria are especially dense in muscle 
cells (skeletal, cardiac, smooth). Fatigue becomes unavoidable. Brain oxygen 
consumption represents 20% of the total. So, eventually some degree of cognitive 
compromise is inevitable.  

The resulting hypoxia and increased lactic acid trigger release of TGF-β, the 
primary cytokine of the Warburg effect. This cytokine is elevated in CFS and 
many other chronic fatigue diseases. TGF-β and IFN-γ counterbalance and sup-
press each other. IFN-γ possesses C1 (complement component 1 of the CCP) 
inhibiting properties [7] [8]. 

With the increase in TGF-β and the suppression of IFN-γ there is increased 
classic complement pathway (CCP) activity with cross talk to the KKS. There is 
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no KKS crosstalk with either the alternative complement pathway or the lectin 
complement pathway [9]. BKN (bradykinin) is the principal hormone of the KKS 
as angiotensin II is the principal hormone of the RAS. Estrogen down-regulates 
ACE, which degrades BKN. The subsequent angioedema appears to create the 
brain fog, post exertional malaise, and fatigue of Long Covid and its cousins.  

The interface between insufficient magnesium and elevation of TGF-β in Long 
Covid begins with cellular hypoxia. Long Covid afflicts a younger age group, 
predominantly female, the opposite of the Covid-19 group. Perhaps more of the 
elderly males with Covid-19 died, affecting the gender and age breakdown for 
Long Covid. Perhaps it is due to decreased magnesium intake, more prevalent in 
females under 50, especially teens, and males over 50 (see Figure 1). 

Or perhaps the hypoxia/lactate induced up regulation of TGF-β and conse-
quent suppression of IFN-γ is the explanation? These last two are interrelated. If 
magnesium is insufficient, then the low grade inflammatory state has given 
TGF-β the upper hand over IFN-γ. 

Magnesium, as will be shown, is critical to the production of antioxidants. 

2.2. Antioxidants  

The primary problem for these chronic fatigue diseases appears to be a shortage 
of antioxidants aka mitochondrial optimizers or enhancers. Their inability to 
quench the increased ROS generated during a respiratory viral infection leads to 
oxidative stress and pressure on mitochondria. 

Most endogenous antioxidants require methylation and SAMe  
(S-adenosylmethionine) is the universal methyl donor. Magnesium is not only a 
required cofactor but also an ATP chelate for all SAMe methylations, which oc-
cur in the mitochondria [11] [12]. 

 

 
Figure 1. Magnesium deficiency is accentuated in females less than 50 and males over 50 
[10]. 
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Glutathione, the master antioxidant, requires SAMe, but does not cross the 
blood brain barrier. Each molecule of glutathione can be regenerated from sev-
eral sources, e.g., alpha lipoic acid, cysteine, NAC, …, but several ATPs are re-
quired for each pathway to glutathione synthesis. The currency of regeneration 
is in short supply under oxidative stress conditions. 

Many antioxidants have been recommended for ME/CFS [13] [14] [15] [16], 
FM [13] [14] [17], and EBV [18]. Most of these are otherwise endogenously 
produced, but require methylation to attain active status. Those requiring me-
thylation include melatonin, betaine, choline, cysteine, taurine, CoQ10, carni-
tine, creatine, creatinine, and lysine. Figures of the biochemical pathways for 
many of these are available online [19]. Others require just multiple ATPs, e.g., 
NADH, tryptophan. Unfortunately direct SAMe supplementation has recently 
been shown to be counterproductive [20]. 

Vitamins B3,9 (folate), 12 require methylations (Mg2+ as cofactor and ATP 
chelate) to attain active status. Vitamins B1,2,6 require phosphorylations (Mg2+ 
chelated to ATP) to attain this. In short, magnesium is critical to the synthesis of 
all endogenous antioxidants. 

However, some exogenous antioxidants have been suggested—D-ribose [21], 
zinc, quercetin, curcumin, resveratrol, selenium, zinc, vitamin C, all fat soluble 
vitamins (A, D, E, K), cannabinoids [22]. D-Ribose—can create one ATP thru 
pentose phosphate shunt. One study suggested sodium as a nutritional supple-
ment for CFS [23]. Although not an antioxidant, this speaks to the likelihood of 
some degree of chronic dehydration in many with CFS [24]. Sweat generates 
much more sodium loss than that of magnesium, but renal resorption of water 
can cause magnesuria. 

This critical role for magnesium is inextricably entwined with serum Ca:Mg. 
The Western diet has seen this ratio escalate from 2.3 - 2.9 in 1977 to 2.9 - 3.5 in 
2007 [25] with a rise in magnesium deficiency. 

2.3. POTS Paradox, Hypocortisolism, and Histamine 

An elevated Ca:Mg and background oxidative stress may be responsible for the 
dysautonomic symptoms of POTS and the renin aldosterone paradox (low renin 
and aldosterone in the face of hypovolemia). Those with Long Covid and those 
with CFS have lower levels of cortisol [26] [27], and those with POTS [28] in ad-
dition have inappropriately low aldosterone and renin in the face of hypovole-
mia. Aldosterone, corticosterone, and cortisol synthesis occur in mitochondria 
and all require 11-beta hydroxylase (see Figure 2), i.e., ATP and magnesium are 
essential. Magnesium deficiency not only retards intramitochondrial aldosterone 
synthase but also increases Ca:Mg and the baroreflex blood pressure threshold ≥ 
orthostatic hypotension [29]. 

In addition Mg2+ is cofactor for adenyl/guanyl cyclase and chelate for the sub-
strate ATP/GTP in the synthesis of “second messengers” cAMP and cGMP. En-
dothelial cGMP and NO (nitric oxide) trigger renin secretion [30] [31] [32]. 
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Figure 2. Aldosterone and cortisol require enzymes that are located in the mitochondria 
and require magnesium as cofactors [33]. 

 
The histamine overload in MCAS and some forms of Long Covid may be due 

to an inability to degrade it. The primary degradation pathway for histamine 
requires SAMe, Mg2+, and ATP. Some Covid long haulers find relief with anti-
histamines [34]. 

2.4. TGF-β 

TGF-β is initially anti-inflammatory. If the oxidative stress persists and IL-6 is 
added, TGF-β can switch from anti inflammatory to pro-inflammatory [35].  

It can also switch from protecting against cancer to promoting it. The me-
chanism behind these switches is not clear. One possibility is the TGFBR (TGF-β 
receptor), of which there are three types. Type one and type two require kinases 
for activation. All kinase reactions (phosphorylations) require magnesium as an 
ATP chelate. TGFBR3 does not [36]. TGFBR3 also portends a much poorer 
prognosis than the other two [37] and is associated with Alzheimer’s disease 
[38]. 

TGF-β is the master cytokine in the etiology of most chronic fatigue diseases, 
including Long Covid [39], CFS [40] [41] [42], EBV [43], CMV [44], CIRS (bio-
toxins from chronic mold exposure and chronic Lyme disease) [45]. 

TGF-β is elevated in Alzheimer’s disease [46] and Alzheimer’s disease pro-
gression is accelerated post Covid-19 [47] [48] and in EBV [49], CIRS [50], FM 
[51], and CMV [52].  
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2.5. TGF-β Channels and Inflammasomes 
2.5.1. TRPM2 v TRPM5,7 
The TGF-β connection between Long Covid and its chronic disease cousins has 
been demonstrated. An additional Alzheimer’s disease connection has also been 
demonstrated. ROS and TRPMs (transient receptor potential melastatin) are 
integral to neurodegenerative diseases [53] [54] and the mechanism appears to 
involve a Ca:Mg imbalance in the Warburg microenvironment (mitochondrial 
dysfunction). TRPM channels mediate intracellular calcium and magnesium 
balance. TRPM2 is the calcium channel [55] and TRPM5,7 are the magnesium 
channels [56]. 

ROS induce TRPM2 activation in endothelial cells [55]. Increased extracellu-
lar Ca:Mg and ROS facilitate TRPM2 activation, which promotes increased intra-
cellular Ca2+ and a positive feedback loop with additional input from TRPM2 (see 
Figure 3) [55] [57]. Increased extracellular Mg2+ reverses the TRPM2 dominance 
over TRPM5,7 and reduces Ca2+ signaling in endothelial cells [58]. TRPM2 
channels also contribute to the pathogenesis of inflammatory bowel disease [59]. 
A TRPM2 facilitated increase in intracellular Ca2+ leads to an assault on mito-
chondria via the permeability transition pore (see Figure 4) [60] [61]. 

2.5.2. NLRP3 Inflammasome 
TGF-β and the NLRP3 (NACHT, LRR and PYD protein 3) inflammasome are 
connected [62] and both of these are associated with the Warburg effect [63]. 
The inflammasome is vital to the pathogenesis of ME/CFS [64], FM, Alzheimer’s 
[65], IBD [66] [67], autoimmune disease [68] [69], EBV [70] and Long Covid 
[71]. The Ca:Mg imbalance is at the root of all these diseases and magnesium 
therapy reverses the imbalance via CaSRs and TRPM5,7. The CaSR regulates the 
NLRP3 inflammasome [72] and can be downregulated by increasing Mg2+ [73] 
[74] [75]. Calcium-sensing receptor (CaSR) activates the NLRP3 inflammasome, 
mediated by increased intracellular Ca2+ and decreased cellular cyclic AMP 
(cAMP). 

2.6. GABA 

Glutamate is synthesized primarily from TCA cycle substrates. GABA (gamma 
amino butyric acid) is synthesized directly from glutamate and requires cofactors 
P5P (pyridoxal-5-phosphate) and Mg2+ (see Figure 5). Beta and gamma isomers of 
hydroxybutyrate (butyrate from “good” intestinal bacteria) can replace glutamate 
[76] [77] in the synthesis of GABA. The ketone body butyrate is hydroxylated in 
the liver to produce the isomers beta and gamma hydroxybutyrate. GABA cannot 
normally pass the blood brain barrier, but GHBA and BHBA can. Glutamatergic 
neurons release glutamate and primarily employ NMDA (N-methyl-D-aspartate) 
receptors.  

Mg2+ can bind to both NMDA receptors (see Figure 6) [79] and GABA re-
ceptor sites [80]. In addition P5P is a required cofactor for GAD (glutamic acid 
decarboxylase) and GABA synthesis (see Figure 5). GABA plays the lead role in 
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the gut-brain axis and probably determines the anosmia/ageusia, headaches, and 
depression of Long Covid. Post Covid anosmia/ageusia are thrice as likely in 
Caucasians versus Asians [81]. Asians tend to exhibit lower serum Ca:Mg. Exci-
tatory NMDA receptor activity reflects this (see Figure 6). Might this chemo-
sensory dysfunction be excess glutamatergic tone [82] [83] and not some olfacto-
ry bulb related etiology? Anosmia/ageusia may be minor seizure symptoms [84] 
that would otherwise have been inhibited by functioning GABAergic neurons. 
Gabapentin, anticonvulsant and GABA analog, has been used to treat anosmia 
and ageusia. Hair loss is also associated with magnesium deficiency [85] and vi-
tamin D deficiency. Decreased rbc deformability due to oxidation, documented in 
Long Covid (increased RDW or red cell distribution width), ME/CFS, FM, slows 

 

 

Figure 3. ROS facilitate dominance of TRPM2 and increase intracellular Ca2+ and mitochondrial 
dysfunction [53]. 

 

 

Figure 4. Ca2+ competes with PTP-inhibitory Mg2+ and is an essential per-
missive factor for PTP (permeability transition pore) opening [61]. 
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Figure 5. GABA enabling roles for B6, Mg2+, GABA supplements (butyrates), and 
probiotics are shown [78]. 

 

 

Figure 6. Glutamate favors NMDA receptors. The Mg2+ plug closes the Ca2+ channel. 
Its removal opens the channel [79]. 

 
microcirculation and enhances thrombogenesis (basigin binds spike S) [86]. 

Ca2+ and Mg2+ share the CaSR and when elevated, both tell the parathyroid 
glands to decrease PTH secretion. However, at low concentrations Mg2+ delivers 
the same message, to decrease PTH secretion [87], inappropriately suppressing 
synthesis of 1,25(OH)2D. Is Mg2+ triaged from cytoplasmic PTH synthesis to 
mitochondrial hydroxylations of D? Increasing magnesium intake without ad-
dressing the calcium overage may also elicit the laxative effect. 

2.7. HRV and the Gut-Brain-Heart/Lung Axis 

HRV is the fifth vital sign and, like serum CRP (C reactive protein), is an early 
warning indicator of some health issue. Many studies have demonstrated an in-

https://doi.org/10.4236/oalib.1109414


P. Chambers 
 

 

DOI: 10.4236/oalib.1109414 9 Open Access Library Journal 
 

verse relationship between CRP and HRV [88]. Both can be excellent early indi-
cators of deteriorating health, response to therapy, and prognosis on any beha-
vioral, biologic, or epidemiological path [89]. They offer high sensitivity but low 
specificity. The list of such detectable problems is quite comprehensive, e.g., car-
diovascular disease [88], Covid-19 [90], sudden cardiac death [91], seizures [92], 
Crohn’s disease [93], ulcerative colitis [94], ME/CFS [95], depression [96]. 

HRV, a measure of vagal tone, is also inversely linked to Ca:Mg [97]. The va-
gus nerve or the wandering nerve is the longest in the body. It links the ENS 
with the ANS and, when dysfunctional, is responsible for such diverse health is-
sues as lone atrial fibrillation, orthostatic hypotension, Prinzmetal angina, and 
dysphagia. Many of these have been reported in Long Covid and a strong con-
nection between vagus nerve dysfunction implicated [98].  

Most, if not all, of these vagal correlations are due to a Ca:Mg imbalance or a 
glutamate/GABA imbalance, e.g., lone atrial fibrillation [99] [100] [101]. Both im-
balances are tightly linked and diet dependent. Intestinal “friendly” bacteria (Bifi-
dobacterium pseudocatenulatum and Faecalibacterium prausnitzii) that produce 
butyrates are deficient in those with Long Covid [102], FM [103], and MS (mul-
tiple sclerosis) [104]. Glutamate producing intestinal bacteria are more numerous 
in ME/CFS (lactic acid bacteria and MSG (monosodium glutamate)) [105]. 

2.8. Diet 

Increased daily intake of omega-3 polyunsaturated fatty acids (DHA and EPA) 
significantly increased the density of bacteria that are known to produce buty-
rate [106] [107]. Aged cheese (up to 25 Ca:Mg) can aggravate Long Covid. Ex-
ogenous antioxidants that don’t require additional energy to activate might be 
helpful in an energy challenged host. Careful attention to hydration is highly ad-
visable, especially in the active and in the elderly, as the thirst reflex diminishes 
with age. The 30:1 gradient is between intracellular K+ and that extracellular 
requires ATP and magnesium. If Mg2+ is low, then K+ is probably also low (lots 
of ectopic beats) [100]. 

The ketogenic diet, popular for weight loss, encourages dairy, but this in-
creases Ca:Mg. The Mediterranean and Paleolithic diets, which encourage nuts 
and seeds (Mg2+ rich) and discourage dairy, might be better. But biologic indi-
viduality dictates an experimental approach. 

2.9. Summary 

In summary, Covid-19 severity is directly related to RAS activity. TGF-β, acti-
vated by angiotensin II type 1 receptors, is elevated in the elderly and those with 
comorbidities. Many of these never fully recover from the initial illness. Long 
Covid, characterized by symptoms such as brain fog, post exertional malaise, fa-
tigue, anosmia, ageusia, headaches, hair loss, and many others [108], selects 
those with less RAS and more KKS. Magnesium, critical to the synthesis of en-
dogenous antioxidants, is suboptimal. The virus that was at first asymptomatic 
or manifested few symptoms is not cleared (see Figure 7).  
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Figure 7. Spike protein S persistence in PASC (posts-acute 
sequelae of Covid-19) v primary SARS Cov 2 [109]. 

 
Inflammation smolders. A Warburg microenvironment (mitochondrial dys-

function) develops. TGF-β is elevated in both groups. The primary risk factor for 
any illness including cancer is immune function, and antioxidant sufficiency is 
critical in this. The ability to properly methylate protein is paramount to pre-
venting chronic inflammation. The ability to properly methylate DNA is para-
mount to preventing cancer. Following a diet that maintains the Ca:Mg between 
1.7 and 2.6, one that preserves the excitatory glutamate/inhibitory GABA bal-
ance, one that slows the sympathetic takeover of the ANS is highly advisable. 
Cultivate some intestinal “friendlies” that produce butyrates. The efficacy of vi-
tamin D is maximized with such a diet. The hydroxylations required to produce 
the active form of vitamin D 1,25(OH)2 cholecalciferol, from either sunlight or 
D3 occur in mitochondria and the full efficacy of vitamin D is not realized out-
side this Ca:Mg range. 

3. Conclusions  

Long Covid and ME/CFS, FM, EBV, CMV, POTS, MCAS, CIRS, and post viral 
fatigue syndrome are linked by antioxidant deficiency, elevated TGF-β, and the 
Warburg effect. “Friendly” butyrate producing intestinal bacteria are in short 
supply. Butyrates rectify the glutamate-GABA imbalance. These two neuro-
transmitters determine autonomic tone via the vagus nerve, which reflects gen-
eral health through the fifth vital sign, HRV. Perhaps the gut-brain axis should 
be expanded to include two other vital organs under vagal control—the gut- 
brain-heart/lung axis. 

The slowly increasing Ca:Mg in the Western diet incriminates magnesium de-
ficiency as a central player in the pathogenesis of most chronic fatigue diseases. 
With age there is a steady progression from parasympathetic to sympathetic 
tone, from GABAergic to glutamatergic predominance, and from a balanced 
Ca:Mg to a calcium predominant one, at least on a Western diet.  

Improving Ca:Mg starts with knowing what it is. A comprehensive chem pan-
el including serum calcium and magnesium in an otherwise healthy individual 
without renal disease or medication should provide this information. The io-
nized states of calcium and magnesium are the active forms. iCa:iMg = 50% se-
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rum Ca/70% serum Mg [110]. Addressing excess dietary calcium (Ca:Mg > 2.6) 
first and then slowly increasing magnesium intake might minimize any laxative 
effect. But for some, changing religion is easier than adjusting diet. 
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