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ABSTRACT
Ischemia reperfusion (I/R) injuries occurred in many pathological and surgical 
processes (e.g. thrombolytic therapy, organ transplantation, aortic cross- 
clamping, coronary angioplasty and cardiopulmonary bypass) and harmed 
multiple organs and tissues. Vitamin D is a well-known sterol hormone and 
a nutritional ingredient able to promote the deposit of calcium and regulate 
phosphorus metabolism in the body. In addition, vitamin D has therapeutic 
effects on some diseases (e.g. cardiovascular disease, diabetes, cancer, neu-
rological diseases, multiple sclerosis and inflammation). Studies showed that 
vitamin D3 was closely related with I/R injury occurrences in heart, brain, 
spine, liver, kidney, and ovary. The literature searching was conducted in 
PubMed, Embase, Cochrane Library, Web of Science, and SCOPUS from 
inception to 20 September 2021. Data showed that supplements with vita-
min D3 can remarkably attenuate I/R injuries. This paper reviewed recent 
progresses of vitamin D3 preventing I/R injuries in clinical investigations and 
animal tests to enlighten future studies.
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Introduction

Ischemia reperfusion (I/R) refers to the process of restored perfusions after blood decreases or 
occlusions in tissues and organs. I/R usually occurs in some clinical and pathological processes, 
such as thrombolytic therapy, [1] organt ransplantation, [2] aortic cross-clamping, [3] coronary angio-
plasty, [4] cardiopulmonary bypass.[5] Although the reperfusion can timely supply oxygen and nutri-
ents to reduce tissue necrosis, further injury (I/R injury) often occurs due to inflammatory reactions 
and oxidative stress. I/R injury included molecule damages, cell deaths induced by apoptosis, necrosis, 
and autophagy as well as tissue and organ dysfunctions.[6] Free radicals and inflammation play vital 
roles in the process of I/R injury.[7] Due to the short therapeutic window period for reperfusion during 
and after ischemia, preconditioning owned optimized effects against I/R injury for safety, easy 
application and cost-effectiveness.[8] In contrast to the side effects of traditional drugs in precondi-
tioning, functional ingredients were the better choice to prevent I/R injury (e.g. resveratrol, [9] GABA, 
[10] n-3 polyunsaturated fatty acids [11]). Vitamin D, as an endogenous and foodborne substance, owns 
numerous biological functions and recently had been found able to attenuate I/R injury in many 
studies. Reviewing corresponding research progress would enlighten the application of vitamin D in 
preventing I/R injury in future.
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Sources, biosynthesis, and metabolism of vitamin D

Vitamin D is a type of fat-soluble sterol hormone that can increase the deposit of calcium and 
regulating phosphorus metabolism in our body. Its main forms include vitamin D2 and vitamin D3, 
[12] which were chemically characterized in 1931 and 1935, respectively. Natural vitamin D3 exten-
sively exists in fish liver oils and the flesh of fatty fish (e.g. trout, salmon).[13] There are also lower 
contents of vitamin D3 in beef, liver, cheese, egg yolks, etc. For human, endogenous vitamin D3 is 
synthesized from 7-dehydrocholesterol in skin through ultraviolet B (UVB) light from the sun.[14] 

Only 1, 25-hydroxyvitamin D3 (its active form) plays physiological actions through hydroxylations of 
vitamin D3 in position 25 (25-hydroxyvitamin D3) and 1 (1,25- hydroxyvitamin D3) in sequence by 
25-hydroxylase in liver and 1-hydroxylasein kidney (Figure 1). Serum 1,25- hydroxyvitamin D3 level 
can be strictly regulated by parathyroid hormone, calcium, and phosphate in serum.[15] And, 25- 
hydroxyvitamin D3 and 1,25-hydroxyvitamin D3 can be further inactivated by 24-hydroxylase.[16] 

However, 25-hydroxyvitamin D3 level more well reflects the vitamin D status because 25- 
hydroxyvitamin D3 or 25(OH)D3 has a longer half-life (15 days) compared with 1,25- 
hydroxyvitamin D3 with the shorter half-life (several hours).[15] In contrast, vitamin D2 in nature is 
formed from ergosterol in mushrooms under ultraviolet light .[17] Although 1,25- 
dihydroxyergocalciferol (the active form of vitamin D2) can also be activated by 25-hydroxylase in 
liver and 1-hydroxylase in kidney, [18] related studies are less for its less sources and less active.

Biological functions and receptors of vitamin D

It is well-known that vitamin D promotes calcium absorption in the gut and enables bone miner-
alization and growth.[14] Besides, lots of clinical surveys showed that vitamin D supplements can 
attenuate many diseases, such as cardiovascular disease, [19] multiple sclerosis, [20] type 2 diabetes, [21] 

cancers, [22] inflammation, [15] neurologic diseases (e.g. Parkinson’s disease and cognitive loss).[23] It 
also provided suggestions about these actions of vitamin D from the findings of positive relationships 
between low vitamin D and these disease occurrences.[24] Recently, vitamin D had been found being 
able to ameliorate the pathological process of COVID-19.[25] Constant findings of new vitamin 
D functions expanded potential applications of vitamin D.

Figure 1. Vitamin D3 structure and the pathway of its activation and inactivation in body. Vitamin D3 is synthesized from 
7-dehydrocholesterol through UVB irradiation in skin. 25-hydroxylase enzyme converts vitamin D3 to 25-hydroxyvitamin D3 in 
liver. Then, 1α-hydroxylation produces the active vitamin D3(1,25-hydroxyvitamin D3). 25-hydroxyvitamin D3 and 1,25- 
hydroxyvitamin D3 can be further inactivated into 24,25-hydroxyvitamin D3 and 1,24,25-hydroxyvitamin D3.
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1, 25-hydroxyvitamin D3 plays its biological actions via binding two types of vitamin D receptors 
(VDR), which were called as the membrane-located VDR, and the nuclear-located VDR, separately.[26] 

The former mainly mediates non-genomic actions, such as channel responses, adipocyte metabolism, 
insulinotropic effects, antiapoptotic pathways via second messengers (phospholipase C, phospholipase 
A2, phosphatidylinositol-3 kinase, Ca2+, cyclic AMP, etc.). The latter produced the genomic effects via its 
heterodimer with retinoid X receptor binding to vitamin D response element .[27] Meanwhile, on- 
genomic action also mediates the genomic function of vitamin D and nuclear-located VDR also mediated 
the non-genomic action.[28] It hinted that there may be overlapping between the actions of membrane- 
located VDR and the nuclear-located VDR in different circumstances. VDR distributed in almost every 
organs (e.g. intestine, kidney, pancreas, bronchial epithelial cells, skin, brain, heart, bone, immune cells, 
reproductive tissues [29,30]). Therefore, vitamin D possibly owns extensive actions in the whole body.

Dietary requirement for vitamin d and its deficiency and excess

In order to meet normally physiological needs of vitamin D, a certain amount of fortified dietary 
intake is essential because the dietary intake of vitamin D generally is inadequate.[27] Although 
different countries and institutions proposed many recommended levels of dietary intakes, the 
differences in these standards generally can be omitted. In contrast, USA made out more compre-
hensive standards, including daily recommended dietary allowances (RDA) and tolerable upper intake 
levels (UL).[31] For instance, RDA of vitamin D is 400IU under 1 year old and 600 IU above 1 year old. 
UL is about 2–5 times over RDA. Serum levels of vitamin D (mainly 25-hydroxyvitamin D3) are often 
used to reflect the real-time status of vitamin D and are often used to indicate the disease 
occurrences.[32] However, the standards about levels of 25-hydroxyvitamin D3 deficiency were 
different. For example, National Academies of Sciences, Engineering, and Medicine concluded that 
serum 25-hydroxyvitamin D3 level less than 30 nmol/L (12 ng/mL) is deficiency.[15] In contrast, 
Endocrine Society stated that the threshold is 75 nmol/L (30 ng/mL).[33] The discrepancy may 
originate from multiple factors, such as age, [34] obesity [15] and skin reason, [35] which all disturb 
clinical diagnosis.

The deficiency and excess of vitamin D is closely related to some diseases. First, vitamin 
D deficiency not only causes well-known rickets and osteomalacia in the skeletal system, but also is 
associated with some extraskeletal actions (e.g. cell proliferation, immune and muscle function, skin, 
and reproduction, vascular and metabolic properties [36]), which accounting for high risks of diseases 
and pathologies stated above. In another hand, excessive vitamin D also causes toxicity, characterized 
by hypervitaminosis D, hypercalcemia, renal dysfunction and hypercalcemia-related pathologies 
(nausea, muscle weakness, neuropsychiatric disturbances, pain, loss of appetite, polyuria, excessive 
thirst, kidney stone, etc).[37,38] The intake under 4000IU/day (100 µg/day) is considered safe.[39] 

Therefore, vitamin D toxicity is infrequent in daily life.

Vitamin D and myocardial I/R injury

Ischemic heart disease is a prevalent human killer. Myocardial ischemia is decreased blood flow unable 
to meet the demand of heart for oxygen and nutrients. It resulted from coronary stenosis, thrombosis, 
and hyperconstriction of the coronary arteries.[40] Then, it causes many symptoms, such as angina, 
unstable angina, and shortness of breath. Even, more serious consequences often occurred, such as 
arrhythmias, myocardial infarction, sudden death.[41] The timely reperfusion of blood flow can reduce 
myocardial ischemia injury and is considered as the first-line therapeutic strategy.[42] However, the 
reperfusion of myocardial blood supply after ischemia causes further injury. Some independent factors 
(e.g. metabolic disorders, oxidative stress, calcium overload, inflammation, apoptosis, necrosis, 
autophagy, and pyroptosis [43,44]) may be responsible for the development of myocardial I/R injury. 
Recently, vitamin D deficiency was linked with the occurrence of myocardial I/R injury and it was 
supplemented for reducing myocardial I/R injury in clinical and animal studies.
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Clinical evidence for the role of vitamin D in myocardial I/R injury

Many clinical data associated vitamin D with the occurrence of cardiovascular diseases, such as 
myocardial infarction, coronary artery disease, hypertrophy, cardiomyopathy, cardiac fibrosis, heart 
failure, aneurysm, and atherosclerosis.[45,46] For example, there exist vitamin D deficiency and its 
function abnormalities in cardiovascular diseases.[47,48] Although it is not fully confirmed that 
vitamin D deficiency can directly induce cardiovascular diseases due to short of nutritional 
experimental studies about how vitamin D deficiency causing cardiovascular diseases according 
to present data, vitamin D supplements produced beneficial effects on them.[49,50] Consequently, its 
deficiency or declined function is usually considered as an important risk factor for coronary artery 
disease.[51]

Timely reperfusion after myocardial ischemia referred to acute spontaneous reperfusion (SR), or 
was carried out clinically via thrombolytic treatment and primary percutaneous coronary intervention 
(PCI).[52] However, myocardial reperfusion injury follows. Notably, the abnormal statuses of the 
vitamin D system in body also contributed a lot for the pathology of myocardial I/R injury according 
to a series of clinical investigations. A recent study [53] showed that various degrees of vitamin 
D deficiencies (25(OH)D: <12.7 ng/ml, n = 250; 12.7–21.59 ng/ml, n = 235; ≥21.6 ng/ml, n = 220) 
may predict different risks of myocardial I/R injury and less deficiency of vitamin D is associated with 
less necessity of coronary artery bypass grafting (CABG) (16.2%; 8.1%; 7.9%). Not only that, overall 
mortality (7.6%;2.9%; 0.4%) was significantly related to different degrees of vitamin D deficiencies at 
the 996.5 day of median follow-ups after PCI to the patients with coronary artery disease. However, the 
criterion of vitamin D insufficiency, which is defined as less than 30 ng/mL in blood[54] may be suitable 
for heart, in contrast with the standard of 25(OH)D insufficiency with the serum levels of 10–20 ng/ml, 
and 25(OH)D deficiency with serum levels under 10 ng/ml as a previous research [55] had defined. For 
instance, Fatih Sen et al. [56] (2015) found that higher vitamin D levels (averaging 36.2 ± 10.7 ng/mL) in 
blood increased the patency rate of saphenous vein grafts (SVGs) in patients. In contrast, patients with 
occlusion of SVGs only had 21.1 ± 10.4 ng/ml of mean blood vitamin D levels. On the other hand, high 
vitamin D levels was positively related with the improved 10-year survival time of patients [57] and 
decreased atherosclerosis occurrences in aorta of patients after CABG surgeries [58]). However, there 
were also few reports showing that exorbitant levels of vitamin D (e.g. ≥89 ng/ml) for a long time in 
human body also increased the risk of coronary artery disease.[59,60] And, there was higher prevalence 
in clinical patients with CABG surgery due to high levels of solar exposure or high diet intakes of 
vitamin D in some regions (e.g. Kerala [61]). Therefore, it is notable that vitamin D may own two-edge 
effects on myocardial I/R injury.

In view of the connection between vitamin D and myocardial I/R injury discussed above, some 
studies had carried out treatments with vitamin D to attenuate myocardial I/R injury. In 
a randomized, double-blind, placebo-controlled study, [62] vitamin D treatments (150,000 IU 
daily for 3 days) before cardiopulmonary bypass significantly attenuated myocardial apoptosis 
and the inflammatory status in patients with vitamin D deficiencies (< 20 ng/mL). However, 
treatments with different doses of vitamin D produced dose-dependent effects in protecting 
myocardial I/R injury. A study [63] had showed that vitamin D supplements (50,000 IU) at 
48 hours before CABG surgery can prevent postoperative atrial fibrillation occurrences (a common 
arrhythmia) of patients with the mild deficiency of vitamin D (20–29 ng/mL). However, the 
treatment did not significantly hold back the development of postoperative atrial fibrillations of 
patients with the severe deficiency of vitamin D (< 20 ng/mL). In contrast, another study [64] carried 
out different treatments for patients with different shortages of vitamin D (300,000 IU oral vitamin 
D for patients with vitamin D deficiency ( < 21 ng/mL) and 150,000 IU for those with vitamin 
D insufficiency (21–29 ng/mL) 48 h before CABG surgery. The both treatments significantly 
prevented postoperative atrial fibrillation occurrences. Therefore, appropriate doses of vitamin 
D should be considered in order to attenuate myocardial I/R injury for different degrees of vitamin 
D deficiencies.
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Animal tests investigating vitamin D attenuating myocardial I/R injury

In addition to clinical studies, some animal tests in vivo and in vitro showed the potential effects of 
vitamin D protecting heart from I/R injury. A study [65] showed that mRNA levels of myocardial VDR 
were unaltered after 30 minutes of myocardial ischemia in mice and upregulated following 24-hour 
reperfusion. The treatment of a VDR enhancer (paricalcitol at 1 μg/kg i.p at 15 min before reperfusion) 
restored myocardial VDR levels and reduced apoptosis through inhibiting autophagy dysfunction- 
mediated cell death. It had also been demonstrated in another study, [66] in which VDRs and the 
cardiac muscle cell apoptosis of myocardial I/R mice were increased under low free vitamin D level 
while vitamin D binding protein was overexpressed. However, in another model of myocardial I/R 
based on obstructive nephropathy, [67] paricalcitol pretreatments (at 30 ng/kg/d, i.p, for 15 days) 
improved heart remodeling and arrhythmias of rat myocardial I/R model. Meanwhile, the treatment 
restored reduced VDR levels, which may aggravate myocardial I/R injury. Even, the treatment with 
a vitamin D analog (22-oxacalcitriol, 20 µg/kg) after I/R (30 minute/3 hour) significantly inhibited 
inflammatory response in the myocardium of model rats.[68] In addition, a recent study found that 
vitamin D treatment attenuated myocardial I/R injury via rectifying VDR .[69] Another study [70] 

showed that vitamin D also attenuated myocardial I/R injury via inhibiting inflammations. And, 
vitamin D in vitro produced protective effects against myocardial I/R injury by protecting mitochon-
drial structural and functional integrity and mitophagy apart from inhibiting inflammation .[71]

In addition, combining vitamin D in a lower dose (0.1 μg/kg/day) and other substances (e.g. 
resveratrol, 1 mg/kg/day) can produce synergistic effects in ameliorating ventricular ectopic beats in 
myocardial I/R injury via increasing antioxidase levels (e.g. catalase) .[72] In contrast, the single therapy 
of either vitamin D or resveratrol with the same doses did not decrease incidence of arrhythmias. 
Therefore, vitamin D had a potential prospective in preventing myocardial I/R injury.

Vitamin D and renal I/R injury

Renal I/R injury was induced by multiple conditions, such as renal transplantation, [73] shock and 
sepsis.[74] The damage of renal blood vessels and glomeruli further induced acute kidney injury, [75] 

leading to renal failure and increased deaths. Oxidative stress, inflammation and mitochondrial 
dysfunction mainly accounted for the pathological process .[76] Recent studies showed that vitamin 
D played a vital role in the process of renal I/R. It had been demonstrated that vitamin D synthesis 
(synthetic enzyme) in kidney was reduced while renal blood perfusion was decreased (as showed in 
patients with renovascular hypertension caused by unilateral renal artery stenosis [77]), though vitamin 
D levels were unchanged in acute kidney I/R (27 min/18 h). Further, the deficiency of vitamin D or the 
dysfunction of its receptor pathway aggregated renal I/R injury. In a 35-day experiment, [78] vitamin 
D-free treatment can further aggregate the vascular damage in arat model of renal I/R injury (45 min / 
7 d after the 28-day feeding). The numbers of activated CD4+ and CD8+ cells that infiltrated as well as 
h17/T-regulatory cell ratio were enhanced by vitamin D deficiency. It indicated that inflammation 
occurred. Another study [79] using the same animal model showed that vitamin D-free treatment also 
increased renal cell proliferation and cell injury (e.g. lower renal aquaporin 2 expression) in renal I/R 
injury. And, vitamin D deficiency can also reduce the protein levels of VDRs in kidneys of model rats, 
which further aggregated renal I/R injury. It was because the VDR pathways were a vital factor to 
protect renal I/R injury according to a latest research.[80] Conversely, renal I/R injury can damage 
VDR pathways (e.g. mRNA and protein levels of calcium ion transporter expressions) despite of 
unchanged vitamin D levels in plasma according to a research.[81] In chronic renal injury after renal I/ 
R in rats (45 min/62 d), vitamin D-free treatment (from 28 d before I/R to the end of the experiment) 
also contributed to renal pathologies (fibrosis, inflammatory reaction, tubular dilation, atrophy, 
etc).[82] Decreased Klotho protein expressions further aggregated chronic renal I/R injury possibly 
due to less vitamin D production because the protein helped the synthesis of vitamin D.[83] Therefore, 
supplementation with vitamin D would had double beneficial effects on improving renal I/R injury.
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Thus far, many studies had been carried out to explore the protectiverole of vitamin D or its 
analogs on renal I/R injury. Most focused on animal I/R and cell models (rat or mouse) (shown in 
Table 1) in addition to a clinical study that the high-dose administration of vitamin D improved 
the anti-inflammatory state and acute kidney injury induced by renal hypoperfusion before and 
after the cardiopulmonary bypass surgery.[99] Preconditioning with vitamin D and its analogs can 
reduce renal I/R injury and restore renal function regardless of bilateral and unilateral renal I/R 
models. These effects of vitamin D were related to increasing renal cell proliferation, reducing 
apoptosis, inhibiting inflammatory reactions, and inhibiting oxidative stress. In addition, the 
protective role of vitamin D on renal I/R injury required a certain dose (e.g. vitamin D at 
0.5 μg/kg dose affording the maximum protection [93]). Meanwhile, the pretreatment for a certain 
period of time is necessary. For instance, the pretreatment of vitamin D at 6 hours and 1 hour 
before renal I/R (60 min/7 d) had no effects in protection against renal I/R injury even at high dose 
(2 mg/kg).[100] Besides, vitamin D had also synergistic action with endogenous active substances 
(melatonin [86]) in attenuating renal I/R injury. However, more clinical studies needed to be carried 
out for future applications.

Vitamin D and hepatic I/R injury

Hepatic I/R injury is caused by pathological and surgical factors (hemorrhage, [101] liver resections [102] 

and transplantation [103]). Severe hepatic I/R injury induces systematic dysfunctions of multiple organs 
and even deaths.[104] Therefore, attenuating hepatic I/R injury is always one of the hot study topics. 
The relationship of vitamin D with liver had been widely explored. Liver is not only one place in the 
process of vitamin D synthesis, but also the target of vitamin D action. First, vitamin D deficiency or 
dysfunctions aggregated occurrences of some liver diseases (e.g. liver cirrhosis, [105] non-alcoholic fatty 
liver disease, [106] liver transplant complications [107]). Recent studies shown that administering 
vitamin D or its analogs can attenuate hepatic I/R injury. Ansam and Doaa [108] (2014) found that 
the oral administration of vitamin D (500 IU/kg/d for 2 w before I/R) ameliorated oxidative injuries, 
inflammation and apoptosis in livers of a partial I/R rats (the left lateral and median lobes of the liver, 
70%, 45 min/1 h), and the mesenteric venous congestion was also avoided. Then, Jinghui Yang et al. 
[109] (2015) explored the effects of vitamin D pretreatment (500 IU/kg/d for 4 w) on the mouse hepatic 
I/R injury (60 min/6 h) at different time points after the ischemia treatment. The results showed that 
vitamin D protected hepatic function and reduced histological damage, oxidative stress, apoptosis, and 
inflammatory activation. And, the protective effect of vitamin D was best at 6 h after reperfusion. In 
another study, [110] the pretreatment with a vitamin D analog (paricalcitol) (20 μg/kg,i.p injection 24 h) 
also significantly attenuated hepatic I/R (60 min/6 h) injury and histological damage. However, this 
dose of vitamin D treatment caused the pro-inflammatory reaction in the paricalcitol + sham group. It 
reminded that the dose selection should be noticed in later investigations, though vitamin D was 
a prospective nutritional therapeutic agent for attenuating hepatic I/R injury.

Vitamin D and cerebral I/R injury

Cerebral I/R injury resulted from rapid reperfusion after cerebral ischemia. Ischemic stroke, cardiac 
arrest, trauma and perinatal hypoxic ischemic injury were the common reasons.[111] Cerebral I/R 
injury was presented with inflammatory activation, oxidative stress, blood–brain barrier destruction, 
and neuronal death.[112] In view of restoring blood supply or reperfusion being still the most effective 
treatment, ameliorating cerebral I/R injury was one of the most active research fields. Brain barrier is 
passable to vitamin D, [113] making the effects of vitamin D on brain got lots of attentions. It had been 
confirmed that vitamin D modulates multiple cerebral functions (e.g. neural stem cell proliferation 
and differentiation, neuroprotection, anti-inflammation, repairing brain barrier, etc.) [114] through 
genomic and non-genomic mechanisms. The role of vitamin D in cerebral I/R injury originated from 
the finding of the positive relationship between low vitamin D levels and high cerebral I/R injuries. 
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A study reported that blood–brain barrier dysfunction was significantly aggregated in middle cerebral 
artery I/R (90 min/72 h) rat model when vitamin D was in the insufficient status (15.56 ± 1.25 ng/mL 
in serum).[115] Another study showed that vitamin D deficiency in diet with one-fifth of normal plasma 
vitamin D levels for 8 weeks exacerbated the stroke severity in intracerebral transient I/R rats (16 h/ 
24 h, 3, 7 and 14 days) via dysregulating inflammatory response and suppressing neuroprotectant 
levels (insulin-like growth factor I).[116] In this condition, even acute injections of vitamin D (10 μg/kg 
every 24 h from 4 h after stroke) did not attenuate the injuries. Therefore, it should be noted that long- 
term higher levels of vitamin D as early as possible may be needed to decrease cerebral I/R injury while 
vitamin D in deficiency. In clinic cases, low 25(OH)D levels were associated with worse outcomes at 
3 months in patients treated with intravenous thrombolysis (using tissue plasminogen activators [117] 

and alteplases [118]) after acute ischemic stroke. And, low vitamin D had been associated with early 
adverse outcomes in hypoxic-ischemic encephalopathy [119] and the infarct severity in acute ischemic 
stroke.[120] Therefore, it promoted researchers to investigate different therapeutic strategies in supply-
ing vitamin D to attenuate cerebral I/R injury.

Recently, increasing data had shown that vitamin D supplements can attenuate cerebral I/R injury 
and restore neuronal functions (in Table 2). Both pretreatments and administrations after I/R of 
vitamin D produced remarkable protective effects (maintaining blood–brain barrier, and attenuating 
neuronal functional damages) against cerebral I/R injuries in different animal models. Antioxidative 
actions, inhibiting apoptosis and promoting proliferation, and anti-inflammation were involved in 
these effects.

Moreover, some studies found that vitamin D together with other physiological substances played 
synergistic effects in attenuating cerebral I/R injury. For example, the co-treatment of vitamin D and 
other steroid hormones (e.g. progesterone [127]) remarkably produced the most synergical effects on 
attenuating cerebral I/R injury in functional outcomes and apoptosis preventions. It was made under 
the lower dose of vitamin D and normal doses of progesterone whenever in vivo and in vitro. In 
another study, [132] although both vitamin D and dehydroascorbic acid also produced significantly 
synergical effects on middle cerebral artery I/R injury (90 min/2 h) via preventing free radical 
generating, the monotherapy with vitamin D3 or dehydroascorbic acid had no effects on the I/R 
injury. It hinted that the summation effect via the antioxidative abilities partly contributed to the 
neurological protection. However, clinical investigations needed to be carried out for further 
applications.

Vitamin D and spinal I/R injury

Spinal I/R injury followed the unsuccessful surgery in the spinal cord (e.g. thoracoabdominal aortic 
intervention [133]). Nerve damages can cause dysfunctions of sensations and movements. The ther-
apeutic effects with previous measures (e.g. pharmacologic administrations, [134] hyperbaric oxygen, 
[135] ischemia [136] and stem cells [137]) were unsatisfied. Recently, vitamin D had been used to prevent 
spinal I/R injury. Calcitriol pretreatment (0.5 μg/kg, i.p) for 7 days before spinal I/R (20 min/24 h) of 
rabbits, remarkably improved histopathological, ultrastructural, and neurological scores.[138] Inhibited 
oxidative stress and neurotic apoptosis accounted for the effects. However, more investigations needed 
to be carried before clinic applications.

Vitamin D and ovarian I/R injury

Ovarian ischemia resulted from some conditions, such as surgery, pregnancy, ovarian diseases, etc. The 
symptom of acute pains needs the timely therapy for blood perfusions.[139] Still, ovary edema, bleeding 
and necrosis in females occurred after reperfusion.[140] Even, early reperfusion after ischemia cannot 
restore ovarian functions. Thus, other interventions attenuating ovarian I/R injury need constantly to be 
developed. It had been demonstrated that vitamin D was correlated with ovarian functions (ovarian 
reserve, polycystic ovarian syndrome, and endometriosis).[141] Thus far, limited data about the effects of 
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vitamin D on ovarian I/R (3 h/3 h) injury were presented. A single study [142] conducted with rat ovarian 
I/R model showed that the pretreatment with vitamin D at 30 min before I/R remarkably attenuated 
oxidative stress and histopathologic injury in ovarium. Further animal tests and clinical investigations 
were indispensable for clarify the potential protective effects of vitamin on ovarian I/R injury.

Vitamin D and ischemia infarction

Ischemia infarction in I/R is caused by prolonged ischemia (artery blockages, rupture, mechanical 
compression, or vasoconstriction).[143] It occurs in different organs (heart, [144] brain, [145] bowels, [146] 

etc.) and further aggregates I/R injury. Present studies of vitamin D affecting ischemia infarction 
mainly focused on heart and brain. For heart, clinical investigations showed that lower vitamin 
D levels in serum were associated with triggered initial phase or the outcome of myocardial ischemic 
infarction [51] and higher 25(OH)D3 levels in serums of patients with ST-elevation myocardial 
infarction were associated with decreased I/R injury as well as increased acute SR, early revasculariza-
tion, thrombolysis before PCI and PCI effects.[147] And, there were no significant fluctuations about 
vitamin D levels and (or) its functions within short term in myocardial ischemia (e.g. in the first 
48 hours after onset of acute myocardial infarction).[148,149] Therefore, the vitamin D deficiency before 
myocardial I/R is the key factor aggravating I/R injury. It was the same results under different degrees 
of vitamin D deficiencies (<10.2 ng/ml; 10.2–18.7 ng/ml; ≥18.8 ng/ml in serums).[150] It can be 
provided evidence in another study that pretreatments of vitamin D (300,000 IU orally 12 h before 
PCI) to patients significantly lowered hs-CRP levels (an inflammatory marker) in contrast to no effects 
while administering vitamin D to patients after elective PCI.[151]

Different from clinical data in the term of myocardial infarction, the effects of vitamin D on brain 
infarction were observed in animal model. Vitamin D treatments before and after brain ischemia 
infarction alleviated infarction and promoted proliferation of vascular endothelial cells in a rat model 
of middle cerebral artery I/R.[152,153] However, the role of vitamin D in ischemia infarctions of other 
organs needed further studies.

Mechanism of vitamin D attenuating I/R injury

Rectifying VDR dysfunctions in I/R injury

Vitamin D had been used to attenuate I/R injury for a long time in clinical investigations or animal 
studies. Related mechanisms are summarized in Figure 2. First, vitamin D treatments reduced I/R 
injury through rectifying VDR dysfunctions (e.g. rectifying the increase [66,67] or the decrease [69] of 
VDR levels in myocardial I/R). And, with the finding of lncRNA H19 [69] and Klotho [83] mediating 
VDR activation by vitamin D, it hinted that there may be more mechanisms of vitamin D regulating 
VDR needed to be revealed.

Attenuating oxidative stress, inflammation, autophagy, and necrosis in I/R injury

Oxidative stress and inflammatory reactions are vital factors damaging many organs in I/R, which 
can be decreased significantly by vitamin D administrations. In decreasing oxidative stress, sup-
pressed NADPH oxidases, heme oxygenase-1 (HO-1), glutathione peroxidase [94] and monocyte-
chemoattractant protein-1 (MCP-1) [96] are involved. Anti-inflammatory effects of vitamin D were 
performed via inhibiting Ras homolog family member A (RhoA)/ Rho kinase (ROCK)/nuclear 
factor kappa-B (NF-κB), [70] NF-κB/tumor necrosis factor-α (TNF-α), [68] toll-like receptors 4 
(TLR4)/NF-Κb [88] and increasing protein kinase B (Akt), [90] cyclooxygenase 2 (COX-2) and 
Prostaglandin E2 (PGE2) .[85] In addition, vitamin D can attenuate I/R injury through preventing 
apoptosis, inducing autophagy and promoting proliferation. Signal pathways related to anti- 
apoptosis include repressed TLR, interferon gamma, sodium–hydrogen exchanger-1 (NHE-1), [91] 
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heat shock protein 70 and microRNA-21.[97] And, vitamin D promotes proliferation by activating 
VDR/extracellular-regulated kinase 1/2 (ERK), [129] N-methyl-D-aspartate receptor subunit 3A 
(NR3A)/ERK kinase (MEK)/ ERK/ cyclic AMP responsive element-binding protein (CREB), [126] 

proliferating cell nuclear antigen, [84] renin–angiotensin system, wingless-related MMTV integration 
site 4 (Wnt4)/β-catenin, [95] peroxisome proliferator-activated receptor gamma (PPAR-γ), [93] brain- 
derived neurotrophic factor (BDNF), [130] glial derived neurotrophic factor (GDNF), [152] and 
inhibiting c-Jun N-terminal kinase.[84] Vitamin D also induces autophagy through activating mito-
gen-activated protein (MAP)/MEK/ERK and phosphatase and tensin homolog deleted on chromo-
some 10 (PTEN)/phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin 
(mTOR) .[109]

Conclusion

I/R injury haunted human health in multiple pathological and medical processes. Recently, vitamin 
D was connected with I/R injuries of different organs and tissues. Both pretreatments and adminis-
trations after I/R generally showed protective effects on I/R injury. Effects of the former were superior 
to those of the latter. On the other hand, different standard of vitamin D deficiency possibly affected 
next treatments. In addition, due to the studies about vitamin D improving I/R injuries mostly 
confined in animal models, further clinical investigations and mechanism explorations needed to be 
carried out before clinical recommendations.
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