# Evaluation of 14-day Concentration-time Curves of Vitamin D<sub>3</sub> and 25-Hydroxyvitamin D<sub>3</sub> in Healthy Adults With Varying Body Mass Index

NIPITH CHAROENNGAM<sup>1,2,3</sup>, PETER M. MUELLER<sup>4</sup> and MICHAEL F. HOLICK<sup>1</sup>

 <sup>1</sup>Department of Medicine, Section of Endocrinology, Nutrition, and Diabetes, Vitamin D, Skin and Bone Research Laboratory, Boston University Medical Center, Boston, MA, U.S.A.;
<sup>2</sup>Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Cambridge, MA, U.S.A.;
<sup>3</sup>Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand;
<sup>4</sup>Carbogen Amcis AG, Bubendorf, Switzerland

Abstract. Background/Aim: To analyze the concentration-time curves of single-dose oral  $25(OH)D_3$  in comparison with vitamin  $D_3$  in healthy adults. Patients and Methods: The pharmacokinetics observed over two weeks after orally administering single 900  $\mu$ g doses of vitamin D<sub>3</sub> and 25(OH)D<sub>3</sub> to six otherwise healthy vitamin D insufficient/deficient adults participating in a broader randomized, double-blind, crossover, single center trial was analyzed. The study protocol was approved by the institutional review board (H-37167). Results: Individual concentration-time curves revealed that vitamin  $D_3$ took longer than  $25(OH)D_3$  to reach its maximal concentration after ingestion in five participants. After 25(OH)D<sub>3</sub> ingestion,  $25(OH)D_3$  reached its maximal concentration, dropped rapidly, and plateaued before starting to decrease slowly. There were observable inter-individual variations in the bioavailability of vitamin  $D_3$  and  $25(OH)D_3$  and the pattern of changes in  $25(OH)D_3$  concentration after their ingestion. Conclusion: Pharmacokinetics of  $25(OH)D_3$  in comparison with vitamin  $D_3$ was illustrated and described in this study.

Vitamin D plays a crucial role in regulating calcium and phosphate metabolism (1). Vitamin D exists in two forms, vitamin  $D_3$  (cholecalciferol) and vitamin  $D_2$  (ergocalciferol). Vitamin  $D_3$  is synthesized by the skin and found naturally in cod liver oil and oily fish. Vitamin  $D_2$  is synthesized from

*Correspondence to:* Michael F. Holick, Ph.D., MD, 85 E Newton St., M-1013, Boston, MA 02118, U.S.A. Tel: +1 6173586139, e-mail: mfholick@bu.edu

*Key Words:* Vitamin D, 25-hydroxyivitamin D, pharmacokinetics, clinical trial, intestinal absorption.



This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC-ND) 4.0 international license (https://creativecommons.org/licenses/by-nc-nd/4.0).

ergosterol and found in yeast and mushrooms exposed to ultraviolet B radiation from sunlight or an artificial source. Once vitamin  $D_2$  and vitamin  $D_3$  enters the circulation, they are converted by the enzyme vitamin D-25-hydroxylase in the liver to 25-hydroxyvitamin  $D_2$  [25(OH) $D_2$ ] and 25hydroxyvitamin  $D_3$  [25(OH) $D_3$ ], which are the major circulating metabolites of vitamin D that are clinically measured for determining vitamin D status (1, 2).

Vitamin D is a non-polar and highly lipophilic substance that is easily incorporated into lipid bilayers. Due to its lipophilic character, the gastrointestinal absorption of vitamin D takes place predominantly via the lymphatic pathway. Thus, vitamin D gets packed into micelles and chylomicrons and enters the lymph before being delivered to the bloodstream. It is estimated that 60% of the absorbed vitamin D binds with vitamin D-binding protein, while the rest 40% is cleared in the lipoprotein bound fraction (3). Once entering the circulation, vitamin D either binds with the vitamin D-binding protein, gets distributed mostly into the fat tissue, or gets metabolized by the liver to become the more hydrophilic form of 25(OH)D. It has been suggested that if one ingests 25(OH)D, its absorption takes place predominantly via the enterohepatic pathway, and, in addition, 25(OH)D is distributed more evenly throughout the body in fat, muscle, serum and other tissues (4).

Previous clinical studies have shown that 25(OH)D is markedly superior to vitamin D in raising and maintaining serum levels of 25(OH)D when being orally administered as either single dose or continuous daily doses (4-13). Consequently, 25(OH)D has been proposed to be an alternative to vitamin D for management of vitamin D deficiency or insufficiency in patients with obesity or fat malabsorptive conditions who are unable to raise serum 25(OH)D efficiently after ingesting high-dose vitamin D supplement (4). However, little is known about absorption and distribution of oral 25(OH)D compared with vitamin D in

| ID | Sex    | Race  | Age |      | BMI900 μg vitamin D <sub>3</sub> arm |       |                  |                  |                  |                     | 900 $\mu$ g 25-hydroxyvitamin D <sub>3</sub> arm |       |                  |                  |                  |                     |
|----|--------|-------|-----|------|--------------------------------------|-------|------------------|------------------|------------------|---------------------|--------------------------------------------------|-------|------------------|------------------|------------------|---------------------|
|    |        |       |     |      | Baseline<br>25(OH)D                  | AUC   | C <sub>max</sub> | T <sub>max</sub> | T <sub>1/2</sub> | C <sub>trough</sub> | Baseline<br>25(OH)D                              | AUC   | C <sub>max</sub> | T <sub>max</sub> | T <sub>1/2</sub> | C <sub>trough</sub> |
| 1  | Female | White | 25  | 22.8 | 24                                   | 3,463 | 42               | 8                | 46               | 0                   | 20                                               | 3,357 | 25               | 6                | 44               | 14                  |
| 2  | Male   | White | 32  | 26.4 | 18                                   | 2,317 | 43               | 8                | 29               | 0                   | 13                                               | 3,222 | 22               | 8                | 84               | 5                   |
| 3  | Female | Asian | 27  | 28.2 | 17                                   | 3,708 | 64               | 8                | 32               | 0                   | 15                                               | 3,155 | 25               | 6                | 56               | 7                   |
| 4  | Female | White | 25  | 25.1 | 20                                   | 5,169 | 68               | 12               | 46               | 0                   | 23                                               | 2,575 | 19               | 8                | 51               | 3                   |
| 5  | Female | White | 29  | 26.3 | 19                                   | 4,125 | 62               | 12               | 29               | 3.13                | 22                                               | 2,276 | 9                | 6                | 113              | 4                   |
| 6  | Male   | White | 25  | 22.2 | 23                                   | 4,080 | 64               | 12               | 33               | 0                   | 18                                               | 6,172 | 42               | 8                | 68               | 11                  |

Table I. Characteristics of the studied participants and pharmacokinetic parameters of oral 900  $\mu$ g vitamin  $D_3$  and 900  $\mu$ g 25-hydroxyvitamin  $D_3$ .

AUC: Area under the concentration-time curve;  $C_{max}$ : maximal change in serum concentration from baseline;  $T_{max}$ : time to maximal concentration;  $T_{1/2}$ : elimination half-life;  $C_{trough}$ : trough level at day 14.

human, as no previous studies have evaluated concentrationtime curve of 25(OH)D at early hours after ingestion. Thus, the objective of this study was to qualitatively and quantitatively analyze the concentration-time curves of singledose orally administered  $25(OH)D_3$  in comparison with vitamin  $D_3$  in healthy adults with the aim to gain more insights into the pharmacokinetics of  $25(OH)D_3$ .

#### **Patients and Methods**

Data were selected from a randomized, double-blind, crossover, single center trial aiming to investigate the pharmacokinetics of healthy adults and patients with intestinal malabsorption. The study protocol was registered on ClinicalTrials.gov (NCT03401541) and approved by the Boston University Medical Campus Institutional Review Board (H-37167). We obtained written informed consent from all participants. This study was conducted at Boston University Medical Campus at a latitude of  $42.2^{\circ}$ N during November 2018 – March 2019, when endogenous vitamin D<sub>3</sub> production is absent or minimal.

*Participants*. Among the participants enrolled in the study, we selected healthy adults who met the following inclusion criteria: age  $\geq$ 18 years; healthy adults without any history of fat malabsorption; body mass index (BMI) 18.5-30 kg/m<sup>2</sup>; and being vitamin D deficient or insufficient defined by serum total 25(OH)D <30 ng/ml. We excluded participants with the following conditions: conditions known to affect calcium and vitamin D, which include history of primary or tertiary hyperparathyroidism, hypercalcemia, chronic kidney disease, chronic liver disease, use of certain medications such as corticosteroids, antiretroviral medications, anticonvulsants, and use of tanning bed within one week before study enrollment; and history of allergy or adverse reaction to oral 25(OH)D or vitamin D.

Study intervention. We randomized all participants in a doubleblinded manner (to the investigators and participants) to receive two oral doses of 450  $\mu$ g of soft gel capsules (taken together) of either vitamin D<sub>3</sub> or 25(OH)D<sub>3</sub>. The capsules for both vitamin D<sub>3</sub> and 25(OH)D<sub>3</sub> were formulated identically. After oral administration of each form of vitamin D, all participants underwent a cycle of pharmacokinetic evaluation. For each cycle, we collected blood samples of 15 ml at baseline and at 2, 4, 6, 8, 12 h and days 1, 2, 3, 7, and 14 for evaluation of serum vitamin D (D<sub>2</sub> and D<sub>3</sub>) and 25(OH)D [25(OH)D<sub>2</sub> and 25(OH)D<sub>3</sub>] using liquid chromatographytandem mass spectrometry by Quest Diagnostics (San Juan Capistrano, CA, USA). After at least 14 days of wash-out period (28 days after the first administration), we invited each participant to return to take either 900  $\mu$ g of 25(OH)D<sub>3</sub> or 900  $\mu$ g vitamin D<sub>3</sub> (depending on the randomization) and undergo another cycle of pharmacokinetic evaluation.

Pharmacokinetic analysis. Changes from baseline in serum vitamin D<sub>3</sub> and serum 25(OH)D<sub>3</sub> concentration were plotted to obtain concentration-time curve for each participant. Trapezoidal method was applied to calculate area under the concentration-time curve (AUC) from 0 to 336 h (14 days). Maximum observed changes in serum vitamin  $D_3$  ( $\Delta D_3$ ) and 25(OH) $D_3$  ( $\Delta 25$ (OH) $D_3$ ) ( $C_{max}$ ), time to  $C_{max}(T_{max})$ , elimination half-life  $(T_{1/2})$ , and trough levels of  $\Delta D_3$ and  $\Delta 25(OH)D_3$  at day 14 ( $C_{trough}$ ) were determined. Collective data including age, BMI, and pharmacokinetic parameters AUC,  $C_{max}$ ,  $T_{max}$ ,  $T_{1/2}$ , and  $C_{trough}$  were summarized using arithmetic means, standard deviation (SD) and range. The Wilcoxon signedrank test was applied to compare means of  $T_{max}$  and  $T_{1/2}$  for vitamin  $D_3$  and 25(OH) $D_3$ . Statistical significance was defined as p < 0.05. Statistical analysis was performed using the SPSS version 23 (SPSS Inc., Chicago, IL, USA). Data illustrations were generated using the GraphPad Prism software 9.4.0 (GraphPad, La Jolla, CA, USA).

#### Results

We included a total of six participants into this study. Characteristics of the studied participants and pharmacokinetic variables of oral 900 µg vitamin D<sub>3</sub> and 900 µg 25(OH)D<sub>3</sub> are shown in Table I. The mean±SD (range) age and BMI were 27.2±2.6 (25-32) years and 25.2±2.1 (22.2-28.0) kg/m<sup>2</sup>, respectively. The mean±SD (range) baseline serum 25(OH)D levels before ingestion of vitamin D<sub>3</sub> and 25(OH)D<sub>3</sub> were 21.3±3.2 (17-26) and 18.5±3.6 (13-23) ng/ml, respectively.

Individual concentration-time curves of orally administered single dose of 900 µg of vitamin D<sub>3</sub> are shown in Figure 1 [AUC: 3,810±854 (2,317-5,169) ng×h/ml;  $C_{max}$ : 57.4±10.7 (41.9-68.4) ng/ml;  $T_{max}$ : 10.0±2.0 (8-12) h;  $T_{1/2}$ :



Figure 1. Changes in serum vitamin  $D_3$  after oral administration of single-dose 900  $\mu g$  of vitamin  $D_3$ .

35.8±7.3 (29-46) h; C<sub>trough</sub>: 0.52±1.17 (0-3.13)]. Individual changes in serum 25(OH)D<sub>3</sub> levels after vitamin D<sub>3</sub> are shown in Figure 2. Individual concentration-time curves of orally administered single dose of 900 µg of 25(OH)D<sub>3</sub> are shown in Figure 3 [AUC: 3,460±1,272 (2,276-6,172) ng×h/ml;  $C_{max}$ : 23.7±9.8 (9-42) ng/ml;  $T_{max}$ : 7.0±1.0 (6-8) h;  $T_{1/2}$ : 69.3±23.4 (44-113) h;  $C_{trough}$ : 7.3±3.9 (4-14)]. Serum 25(OH)D<sub>3</sub> reached C<sub>max</sub> more rapidly after ingestion of  $25(OH)D_3$  compared with vitamin  $D_3$  (p<0.05). In addition, the  $T_{1/2}$  of 25(OH)D<sub>3</sub> was significantly higher than that of vitamin  $D_3$  (p<0.05). According to Figure 3, participants 1, 2, 4, 6 had a small increase in serum 25(OH)D<sub>3</sub> after an initial peak at 48 h, whereas participants 3 and 5 had slight elevation of serum 25(OH)D<sub>3</sub> at 72 and 168 h, respectively. No serum vitamin D<sub>3</sub> was detectable in any of the participants after given oral 25(OH)D<sub>3</sub>.

#### Discussion

We reported concentration-time curves of orally administered single dose of 900  $\mu$ g vitamin D<sub>3</sub> and 25(OH)D<sub>3</sub> at early hours in healthy adults with normal BMI, aiming to evaluate the pharmacokinetics of vitamin D<sub>3</sub> and 25(OH)D<sub>3</sub>. According to the results, there are some observations that are worth noting. First, we observed in five of six participants that vitamin  $D_3$  takes longer than  $25(OH)D_3$  to reach its maximal concentration after ingestion. This is in line with the notion that, unlike vitamin  $D_3$  that is absorbed slowly into the lymphatic system,  $25(OH)D_3$  is absorbed *via* the enterohepatic system. Moreover, the finding that oral administration of  $25(OH)D_3$  raised serum  $25(OH)D_3$  rapidly within 8-12 h while vitamin  $D_3$  took 1-3 days to increase serum  $25(OH)D_3$  to a concentration above 30 ng/ml, suggests that oral  $25(OH)D_3$  or the combination of  $25(OH)D_3$  and vitamin  $D_3$  may be treatment of choice in conditions that may require rapid correction of vitamin D deficiency such as symptomatic osteomalacia, hypocalcemia, or severe proximal muscle weakness due to severe vitamin D deficiency (1).

Second, after reaching its maximal concentration,  $25(OH)D_3$  level drops rapidly and reaches a plateau within approximately 16 h. before it starts to decrease very slowly (essentially with the  $T_{1/2}$  of the DBP complex) (14). This supports that once entering the circulation,  $25(OH)D_3$  is likely equilibrated into different tissues such as the fat, muscles, breast, colon, prostate, and skin, which have the ability to convert  $25(OH)D_3$  into  $1,25(OH)_2D_3$  (15). Then, it slowly gets catabolized by the enzyme 25-hydroxyvitamin D-24-hydroxylase (CYP24A1), which exists in multiple tissues



Figure 2. Changes in serum 25-hydroxyvitamin  $D_3$  after oral administration of single-dose 900 µg of vitamin  $D_3$ .



Figure 3. Changes in serum 25-hydroxyvitamin  $D_3$  after oral administration of single-dose 900 µg of 25-hydroxyvitamin  $D_3$ .

expressing the vitamin D receptor (16). Interestingly, the second increase in 25(OH)D level was observed at 48 h in four participants (participants 1, 2, 4, 6) and later in the other two participants. Although the explanation for this observation is still undetermined, it is possible that this small increase is due to the delayed release of  $25(OH)D_3$  from tissues to the serum after the initial rapid uptake. However, after reaching its maximum, the tissue concentration of vitamin D<sub>3</sub> decreases in essence continuously until undetectable whereas serum  $25(OH)D_3$  increases. This together with the significantly longer  $T_{1/2}$  of  $25(OH)D_3$  than vitamin D<sub>3</sub> suggests that the conversion of vitamin D<sub>3</sub> into  $25(OH)D_3$  by the liver 25-hydroxylase is at a significantly higher kinetic activity than CYP24A1.

It is of particular interest that there is some interindividual difference in the bioavailability of  $25(OH)D_3$ despite relatively similar ability to absorb vitamin  $D_3$ . For example, participants 5 and 6 had similar pharmacokinetic curves for vitamin  $D_3$ . However, after ingestion of  $25(OH)D_3$  participant 5 had approximately 2.7 times higher AUC and 4.7 times higher  $C_{max}$  than participant 6. This finding supports the inter-individual difference in response to vitamin D supplementation reported by previous studies, which may be in part explained by genetic variations in the vitamin D metabolic pathway (17, 18). Additionally, it strengthens the hypothesis that absorption of vitamin D and 25(OH)D may depend on different mechanisms.

It is also worth noting that there was variation in serum vitamin  $D_3$  concentration as participants 1 and 2 had approximately 40% lower maximal change concentration than the others. The exact explanation of this variation is unknown but could be due to variation in the ability to absorb vitamin D or silent malabsorptive conditions such as celiac disease (19, 20).

This study has a number of strengths including the frequent measurements of serum 25(OH)D<sub>3</sub> and vitamin D<sub>3</sub> that allow demonstration of concentration-time curves and the randomized crossover design, which enables comparison of the two interventions within the same individual. However, it carries certain limitations one should be aware of. First, the sample size is relatively small, and therefore further studies with a larger number of participants are required to confirm our findings. Second, this study included only healthy nonobese adults. Thus, the results may not be generalizable in patients with obesity or those with different types of malabsorptive conditions. Still, it is noteworthy that the average serum 25(OH)D<sub>3</sub> levels 1 week and 2 weeks after administering vitamin D<sub>3</sub> increased by 1.8 ng/ml compared to a decrease by 2.0 ng/ml after administering 25(OH)D<sub>3</sub> arm. If one disregards the two individuals with the lowest BMI (participants 1 and 6), the respective differences become even more significant: an average increase by 2.4 ng/ml for the vitamin D<sub>3</sub> arm and an average decrease by 3.4 ng/ml for the  $25(OH)D_3$  arm. This points to accumulation of vitamin  $D_3$ , but not  $25(OH)D_3$ , in fatty tissues, an effect which is probably even more significant in obesity. Finally, serum  $25(OH)D_3$  levels beyond 14 days after  $25(OH)D_3$  were not measured. Further studies with longer follow-up time are warranted to determine the late elimination kinetics of  $25(OH)D_3$ .

#### Conclusion

We reported the concentration-time curves of orally administered single dose of 900 µg vitamin D<sub>3</sub> and  $25(OH)D_3$  in healthy adults. We found that oral  $25(OH)D_3$ was absorbed faster, stayed longer in the circulation, and caused a more rapid increase in serum 25(OH)D<sub>3</sub> than oral vitamin D<sub>3</sub>. These results imply that 25(OH)D is absorbed via the enterohepatic system unlike vitamin D that is absorbed via lymphatic system. Therefore, oral 25(OH)D may be a useful choice of treatment in conditions that benefit from rapid correction of vitamin D deficiency such as symptomatic osteomalacia, hypocalcemia, or proximal muscle weakness due to severe vitamin D deficiency. In the concentration-time curves of 25(OH)D<sub>3</sub>, there is a somewhat delayed increase in serum 25(OH)D<sub>3</sub> level after its rapid peak, which may represent tissue re-equilibration of 25(OH)D<sub>3</sub>. Finally, we observed some inter-individual difference in the bioavailability of 25(OH)D<sub>3</sub> in participants with otherwise similar bioavailability of vitamin D<sub>3</sub>.

## **Conflicts of Interest**

Michael F. Holick has served as a consultant for Biogena Inc., Ontometrics Inc. and Solius Inc, and has grants from Carbogen Amcis BV and Solius Inc. Peter M. Mueller has had high ranking positions in R&D and general management of Carbogen Amcis AG. He has no financial involvement with the company and is retired from all his managerial positions while still having a mail address with it and acting as scientific consultant for it and for a number of additional companies. The Authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

#### **Authors' Contributions**

Conceptualization: N. Charoenngam, P.M. MUELLER, M.F. Holick; Collecting data: N. Charoenngam, M.F. Holick: Data analysis: N. Charoenngam; Writing – original draft: N. Charoenngam; Visualization: N. Charoenngam; Writing - review & editing: N. Charoenngam, P.M. Mueller, M.F. Holick.

### Acknowledgements

The Authors thank CARBOGEN AMCIS BV, Netherlands, for the generous assistance and supply of vitamin  $D_3$  and 25-hydroxyvitamin  $D_3$ .

## References

- Holick MF: Vitamin D deficiency. N Engl J Med 357(3): 266-281, 2007. PMID: 17634462. DOI: 10.1056/NEJMra070553
- 2 Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM and Endocrine Society: Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 96(7): 1911-1930, 2011. PMID: 21646368. DOI: 10.1210/jc.2011-0385
- 3 Haddad JG, Matsuoka LY, Hollis BW, Hu YZ and Wortsman J: Human plasma transport of vitamin D after its endogenous synthesis. J Clin Invest *91(6)*: 2552-2555, 1993. PMID: 8390483. DOI: 10.1172/JCI116492
- 4 Charoenngam N, Kalajian TA, Shirvani A, Yoon GH, Desai S, McCarthy A, Apovian CM and Holick MF: A pilot-randomized, double-blind crossover trial to evaluate the pharmacokinetics of orally administered 25-hydroxyvitamin D3 and vitamin D3 in healthy adults with differing BMI and in adults with intestinal malabsorption. Am J Clin Nutr *114*(*3*): 1189-1199, 2021. PMID: 34008842. DOI: 10.1093/ajcn/nqab123
- 5 Barger-Lux MJ, Heaney RP, Dowell S, Chen TC and Holick MF: Vitamin D and its major metabolites: serum levels after graded oral dosing in healthy men. Osteoporos Int 8(3): 222-230, 1998. PMID: 9797906. DOI: 10.1007/s001980050058
- 6 Bischoff-Ferrari HA, Dawson-Hughes B, Stöcklin E, Sidelnikov E, Willett WC, Edel JO, Stähelin HB, Wolfram S, Jetter A, Schwager J, Henschkowski J, von Eckardstein A and Egli A: Oral supplementation with 25(OH)D3 versus vitamin D3: effects on 25(OH)D levels, lower extremity function, blood pressure, and markers of innate immunity. J Bone Miner Res 27(1): 160-169, 2012. PMID: 22028071. DOI: 10.1002/jbmr.551
- 7 Cashman KD, Seamans KM, Lucey AJ, Stöcklin E, Weber P, Kiely M and Hill TR: Relative effectiveness of oral 25hydroxyvitamin D3 and vitamin D3 in raising wintertime serum 25-hydroxyvitamin D in older adults. Am J Clin Nutr 95(6): 1350-1356, 2012. PMID: 22552038. DOI: 10.3945/ajcn.111.031427
- 8 Cesareo R, Falchetti A, Attanasio R, Tabacco G, Naciu AM and Palermo A: Hypovitaminosis D: Is it time to consider the use of calcifediol? Nutrients *11(5)*: 1016, 2019. PMID: 31064117. DOI: 10.3390/nu11051016
- 9 Jetter A, Egli A, Dawson-Hughes B, Staehelin HB, Stoecklin E, Goessl R, Henschkowski J and Bischoff-Ferrari HA: Pharmacokinetics of oral vitamin D(3) and calcifediol. Bone 59: 14-19, 2014. PMID: 24516879.
- 10 Navarro-Valverde C, Sosa-Henríquez M, Alhambra-Expósito MR and Quesada-Gómez JM: Vitamin D<sub>3</sub> and calcidiol are not equipotent. J Steroid Biochem Mol Biol *164*: 205-208, 2016. PMID: 26829558. DOI: 10.1016/j.jsbmb.2016.01.014
- 11 Shieh A, Ma C, Chun RF, Witzel S, Rafison B, Contreras HTM, Wittwer-Schegg J, Swinkels L, Huijs T, Hewison M and Adams JS: Effects of cholecalciferol vs calcifediol on total and free 25-Hydroxyvitamin D and parathyroid hormone. J Clin Endocrinol Metab 102(4): 1133-1140, 2017. PMID: 28187226. DOI: 10.1210/jc.2016-3919

- 12 Sitrin MD, Pollack KL, Bolt MJ and Rosenberg IH: Comparison of vitamin D and 25-hydroxyvitamin D absorption in the rat. Am J Physiol 242(4): G326-G332, 1982. PMID: 6978078. DOI: 10.1152/ajpgi.1982.242.4.G326
- 13 Vaes AMM, Tieland M, de Regt MF, Wittwer J, van Loon LJC and de Groot LCPGM: Dose-response effects of supplementation with calcifediol on serum 25-hydroxyvitamin D status and its metabolites: A randomized controlled trial in older adults. Clin Nutr 37(3): 808-814, 2018. PMID: 28433267. DOI: 10.1016/j.clnu.2017.03.029
- 14 Jones KS, Assar S, Harnpanich D, Bouillon R, Lambrechts D, Prentice A and Schoenmakers I: 25(OH)D2 half-life is shorter than 25(OH)D3 half-life and is influenced by DBP concentration and genotype. J Clin Endocrinol Metab 99(9): 3373-3381, 2014. PMID: 24885631. DOI: 10.1210/jc.2014-1714
- 15 Charoenngam N, Shirvani A and Holick MF: Vitamin D for skeletal and non-skeletal health: What we should know. J Clin Orthop Trauma 10(6): 1082-1093, 2019. PMID: 31708633. DOI: 10.1016/j.jcot.2019.07.004
- 16 Azer SM, Vaughan LE, Tebben PJ and Sas DJ: 24-Hydroxylase deficiency due to *CYP24A1* sequence variants: comparison with other vitamin D-mediated hypercalcemia disorders. J Endocr Soc 5(9): bvab119, 2021. PMID: 34337279. DOI: 10.1210/jendso/ bvab119
- 17 Sollid ST, Hutchinson MY, Fuskevåg OM, Joakimsen RM and Jorde R: Large individual differences in serum 25-Hydroxyvitamin D response to vitamin D supplementation: Effects of genetic factors, body mass index, and baseline concentration. Results from a randomized controlled trial. Horm Metab Res 48(1): 27-34, 2016. PMID: 25702786. DOI: 10.1055/s-0034-1398617
- 18 Barry EL, Rees JR, Peacock JL, Mott LA, Amos CI, Bostick RM, Figueiredo JC, Ahnen DJ, Bresalier RS, Burke CA and Baron JA: Genetic variants in CYP2R1, CYP24A1, and VDR modify the efficacy of vitamin D3 supplementation for increasing serum 25-hydroxyvitamin D levels in a randomized controlled trial. J Clin Endocrinol Metab *99(10)*: E2133-E2137, 2014. PMID: 25070320. DOI: 10.1210/jc.2014-1389
- 19 Caio G, Volta U, Sapone A, Leffler DA, De Giorgio R, Catassi C and Fasano A: Celiac disease: a comprehensive current review. BMC Med *17(1)*: 142, 2019. PMID: 31331324. DOI: 10.1186/s12916-019-1380-z
- 20 Maurya VK and Aggarwal M: Factors influencing the absorption of vitamin D in GIT: an overview. J Food Sci Technol 54(12): 3753-3765, 2017. PMID: 29085118. DOI: 10.1007/s13197-017-2840-0

Received July 28, 2022 Revised August 12, 2022 Accepted August 22, 2022