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Abstract

A growing number of studies suggest that climate may impact the spread of COVID-19. This

hypothesis is supported by data from similar viral contagions, such as SARS and the 1918

Flu Pandemic, and corroborated by US influenza data. However, the extent to which climate

may affect COVID-19 transmission rates and help modeling COVID-19 risk is still not well

understood. This study demonstrates that such an understanding is attainable through the

development of regression models that verify how climate contributes to modeling COVID-

19 transmission, and the use of feature importance techniques that assess the relative

weight of meteorological variables compared to epidemiological, socioeconomic, environ-

mental, and global health factors. The ensuing results show that meteorological factors play

a key role in regression models of COVID-19 risk, with ultraviolet radiation (UV) as the main

driver. These results are corroborated by statistical correlation analyses and a panel data

fixed-effect model confirming that UV radiation coefficients are significantly negatively corre-

lated with COVID-19 transmission rates.

Introduction

The COVID-19 pandemic has triggered an extensive amount of research across different

fields, from epidemiology to the social sciences. One of the issues under investigation pertains

to the heterogeneous character of COVID-19 diffusion across diverse geographic areas. The

debate on this matter has given rise to two main approaches. The first is primarily based on

the epidemiological explanation of contagion dynamics in terms of factors such as frequency

and intensity of physical contact among people and their viral charge. According to this

approach, the only variables capturing the viral spread are contagion dynamics factors and the

ability of policymakers to reduce the contagion rate by restricting population mobility. The

second approach evaluates the possibility that contagion dynamics result from multiple fac-

tors, including meteorological and environmental variables.

Since the early stages of the COVID-19 pandemic, climate has provided an important refer-

ence point to explain the spread of the virus. Just three months after the first outbreak in
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Wuhan, China, Bukhari and Jameel [1] reported that 90% of COVID-19 cases were recorded

through 22 March 2020 in world areas with colder and less humid late winters and early

springs (temperatures of 3–17˚C, and absolute humidity of 4–9 g/m3). As recognized by the

authors, these early data were likely to be biased by minimal testing per capita in tropical coun-

tries. After over two years into the pandemic, 226 countries across the globe have reported a

total of over 500 million confirmed COVID-19 cases [2]. We now have a clearer picture of the

global distribution of this disease. There are numerous examples indicating that the cooler sea-

son in the northern hemisphere may have favored the spread of the disease, while warmer and

more humid weather in late spring and summer has seen a substantial and rapid decline in

transmission numbers, once the different containment strategies adopted worldwide are taken

into consideration [3, 4].

Prior work on the betacoronavirus genus shows that viruses similar to SARS-CoV-2, such

as HCoV-HKU1 and HCoV-OC43, also display seasonal peak trends [5]. The spread of previ-

ous coronavirus epidemics, such as SARS-related and the Middle East respiratory syndrome

(MERS)-related coronaviruses, have also displayed correlations with seasonal weather changes

[6–9]. More specifically, outbreaks of respiratory virus infections are commonly associated

with seasonality, with peaks during the winter months. Data from the 1918–19 Flu Pandemic

support this correlation. Peak infection/mortality during the 1918–19 Flu Pandemic occurred

in the winter months and waned as solar radiation and absolute humidity increased from late

March onward. The resurgence of mortality in the winter of 1919 and its decline with the

arrival of spring confirm this trend. These observations are corroborated by US influenza data

relative to the last decade where the percentage of patient visits for influenza-like illness consis-

tently grows in the winter months.

Regression analyses correlating meteorological factors with the spread of SARS-CoV-2 have

reported contrasting results. A number of studies have found a negative correlation between

temperature and the spread of COVID-19 in China and the US [10–16], Italy [17, 18], Spain

[19], Mexico [20], Brazil [21], Latin America and the Caribbean [22], and worldwide [23–27].

By contrast, Xie and Zhu [28] suggest a positive relationship between temperature and the

spread of COVID-19 (up to 3˚C), and city-level data from Oslo, Jakarta and, five Brazilian cit-

ies show a positive correlation between COVID-19 transmission and higher temperatures, and

negative correlation with precipitations [29–31] which typically lead to lower temperatures.

Studies on the impact of humidity have also given conflicting results with reports of positive

correlation by Jiang et al. [10] for China, and the opposite in studies by Ward et al. [32] for

Australia, Qi et al. [11] and Wang et al. [12] for China, Yin et al. [21] in Brazil, and Jüni et al.

[33] and Aboura [34] worldwide. Several global analyses and reviews on the impact of climate

on COVID-19 spread [35–39] have also reported conflicting results.

Other meteorological factors investigated with reference to COVID-19 transmission

include wind and solar radiation. Most studies focusing on the impact of wind speed on the

incidence of COVID-19 cases have found a negative correlation [40–42]. Studies focusing on

solar radiation in Brazil [43], Australia [44], and worldwide [27, 45, 46] have found that high

exposure to solar radiation including UV is negatively correlated with the occurrence of

COVID-19 cases.

S1 Table provides a summary of the peer-reviewed research on the interrelationship

between COVID-19 and meteorological/climatic factors discussed in this section. Overall,

there is no conclusive evidence that climate plays a role in the spread of COVID-19 [47–50].

This is probably due to the fact that studies on the impact of climate on COVID-19 transmis-

sion have been piecemeal (e.g., limited to country or administrative division-level data), have

only taken into account a few climatic parameters, and have not considered the impact of

socioeconomic factor, as remarked in Mecenas et al. [4]. The present study addresses these
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impediments by investigating the contribution of meteorological factors to modeling COVID-

19 transmission at the global scale with reference to reported COVID-19 cases in 196 countries

over a 14-month period, using socioeconomic, environmental, and global health factors as

control variables. The study employs three complementary approaches to measure the correla-

tion between reported rates of COVID-19 transmission and selected meteorological, socioeco-

nomic, environmental, and global health factors. The first approach is based on the statistical

analysis of the rank correlation of every factor with the number of daily confirmed COVID-19

cases. Following is a feature importance analysis that uses Shapley Additive Explanations

(SHAP) to elucidate the COVID-19 rate predictions of a regression model by computing the

contribution of each feature in the model to the prediction task. The third and last approach is

based on econometric analysis with panel data fixed-effect regression models. The three

approaches supply independent analytic evidence of the relationship between confirmed

COVID-19 cases and meteorological factors. Of particular interest is the complementarity

between the machine learning analysis, which is intent on prediction, and the econometric

analysis, which focuses on explanation. As discussed in the literature, the use of a hybrid

approach where machine learning modeling is paired with econometric analysis can help

address relative weaknesses in the two methods by leveraging relative strengths. Further details

are provided in the Methodology subsection below.

Materials and methods

Data sources and pre-processing

The data used in this study include epidemiological, socioeconomic, environmental, global

health indicators, and meteorological variables–see S2 Table. All population-related variables

are converted to percentages of the total population per country. Parameters that behave as

time-invariant variables during the period of focus for this study, e.g., socioeconomic variables,

are used as control variables.

Epidemiological data on the cumulative number of confirmed COVID-19 cases were

retrieved for the period from 23 January 2020 to 21 March 2021 from two main sources: the

data repository from the Johns Hopkins Center for Systems Science and Engineering [51], and

the Corona Data Scraper online data service that retrieves COVID-19 Coronavirus cases data

from verified sources worldwide and adds population data on a daily basis (coronadatascraper.

com). Data from these two sources were merged to create the first dataset. In addition to coun-

try-level records, data at the regional or state level were included when available. We derived

the number of daily registered COVID-19 cases by differencing entries in the initial dataset.

Data points characterized by a modified Z-score> 3.5 and with values above the third quartile

or below the first quartile and 1.5 times greater than the interquartile range were discarded as

outliers together with other inconsistent data points (e.g., negative values) [52]. From the daily

values, we retrieved 3-day and 7-day moving averages as features to incorporate an auto-

regressive component in the learning model. Only records reporting more than 10 daily cases

were included in the analysis. The time of exposure to the pandemic for each country was also

calculated as the cumulative temporal distance from the first registered case in the country.

We selected data through March 2021, when most countries began their vaccination cam-

paigns, to avoid including vaccination as an additional impact on COVID-19 transmission

rates. Such inclusion would have created discrepancies with earlier data and introduced incon-

sistencies emerging from the adoption of diverse vaccination strategies worldwide.

We used several socioeconomic time-invariant data sources including demographic infor-

mation, technology adoption rates, and Gross Domestic Product per-capita (GDPP) as control

factors in the cross-sectional fixed effect analysis. Demographic, population density, and
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population age data were derived from the 2019 Population Division dataset compiled by the

Department of Economic and Social Affairs of the United Nation (UNDESA) [53] and the

World Bank indicators database [54]. Information for geographical locations not included in

the UNDESA dataset was retrieved online from national official sources. Rates of internet

users, subscribers to mobile telephony services, and the number of secure Internet servers

were retrieved from the World Bank indicators database. These technology adoption variables

are used as proxies for the capacity of different countries to provide smart-work environments

under lockdown, create awareness and keep the population updated about the development of

the pandemic, and support effective contact tracing applications. GDPP data at constant price

purchasing-power-parity were sourced from the International Monetary Fund’s World Eco-

nomic Outlook Database [55].

Environmental indicators retrieved from the World Bank database include population-

weighted exposure to ambient PM2.5 pollution, carbon dioxide, methane, nitrous oxide emis-

sions, and greenhouse gas emissions. These time-invariant variables were used as control indi-

cators of the degree of pollution in each country, on the assumption that long-term exposure

to pollutants may increase the risk of contracting COVID-19 given that outdoor air pollution

has been positively correlated with respiratory diseases.

Health indicators included time-invariant variables such as the general Global Health Secu-

rity (GHS) index, the GHS detect and prevent scores, diabetes prevalence, and the number of

hospital beds for both acute and chronic care. GHS provides a country-level score of health

security and was used as a proxy variable for a country’s capability to prevent and mitigate

infectious diseases. For the purpose of this study, only the “detect” and “prevent” GHS catego-

ries were used, which focus on a country’s readiness to promptly identify, report, and antici-

pate disease outbreaks of potential international concern [56]. Health indicators relative to

diabetes prevalence and the number of hospital beds for both acute and chronic care were

retrieved from the World Bank database. These variables serve as proxies for population health

status and public health preparedness.

Differences in intervention responses by governments to mitigate the pandemic were

accounted through a variety of indicators from the Oxford COVID-19 Government Response

Tracker (OxCGRT) project [57, 58]. The OxCGRT variables include policy information on

school closures (C1), workplace closures (C2), cancellation of public events (C3), restriction

on gatherings (C4), closure of public transports (C5), lockdowns (C6), and restriction on inter-

nal (C7) and international (C8) movements and travels. In addition, the OxCGRT database

provides health system policy data on the presence of public information campaigns (H1), test-

ing policy (H2), contact tracing (H3), and facial covering policies (H6). Finally, we used two

more variables that are calculated as a weighted aggregation of the single C and H indices: the

stringency and containment & health indices. The first variable reflects the strictness of “lock-

down style” policies that primarily restrict people’s behavior. The second combines “lock-

down” restrictions with measures such as testing policy and contact tracing, short-term

investment in healthcare, and investments in vaccines. OxCGRT data are provided at a coun-

try-level, with subnational data available for Canadian provinces, US states, and UK regions

(New England, Northern Ireland, Scotland, and Wales).

Meteorological variables were obtained from two main sources: the Modern-Era Retrospec-

tive analysis for Research and Applications, Version 2 (MERRA-2), a gridded reanalysis data-

set produced by NASA’s Global Modeling and Assimilation Office (GMAO), and the

Copernicus Atmosphere Monitoring Service (CAMS) with specific reference to the McClear

Clear-Sky Irradiation model. The MERRA-2 data include daily averages of the original hourly

data at a spatial resolution of approximately 50 km, temperature in ˚C, relative humidity at 2

m above ground in %, short-wave solar irradiation (total of the day) in Wh/m2, pressure at 2
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m from ground level (station pressure) in hPa, wind speed at 10 m above ground in m/s, and

rainfall in mm. Temperature is combined with relative humidity to derive measures of absolute

humidity in g/m3 [59]. Data obtained from CAMS include downward UV Radiation at the

Surface (UV) in J/m2, and Particulate Matter (PM) concentrations (PM2.5 and PM10) for

3-hour periods at a spatial resolution of 40 km. UV exposure can have a sterilizing effect [60]

and ultraviolet B light (UVB), which is present in small amounts in natural sunlight, is known

to rapidly inactivate SARS-CoV-2 on surfaces [61]. Data on particulate matter [62], originally

in kg/m3, is converted to micrograms/m3 and it can provide preliminary evidence on the rela-

tion between air quality and the chronicity of exposure to the viral infection. Coccia [63] and

Bloise and Tancioni [64] both suggest that air pollution may have accelerated the transmission

rate of COVID-19 in northern Italy, even though the viability of infectious viruses embedded

in suspended aerosol particles is still under debate [65].

Streaming access to MERRA-2 and CAMS was provided by Transvalor S.A. For each loca-

tion considered in the study, we derived the geographical centroids of the country’s most pop-

ulous cities [66]. For country-level locations, we considered the ten most populated cities,

while for admin-level locations (sub-country, i.e., states, territories, provinces, cantons, etc. as

appropriate per country) we considered the five most populous cities. We used the corre-

sponding latitude and longitude coordinates of each city to query the climatic information

from MERRA-2 and CAMS through Transvalor’s SoDa data service (http://www.soda-pro.

com/) and we finally derived the resulting time-variant meteorological data by averaging

across the different cities for each location.

After merging all the various sources, the resulting dataset includes data on 196 countries

covering 96% of the world population and 97.6% of worldwide confirmed COVID-19 cases

(123,491,126 –at the period of the study). Data for 28 of these countries are detailed in the data-

set at a state or regional level (i.e., admin-level) for the available periods (see S1 File for a

detailed list). We only consider country-level epidemiological data for the remaining 152

countries, even though admin-level data are available from coronadatascraper.com, in order to

keep a certain level of minimum comparison between the locations under study in terms of

overall population size. S2 and S3 Tables provide detailed information on the variables used

for the study and their descriptive statistics.

The COVID-19 mean incubation period, defined as the time period ranging between expo-

sure to the virus and the onset of the illness, is estimated by WHO at 5–6 days (median 5.1

days, 95% Confidence Interval (CI): 4.5 to 5.8 days) [67]. According to Lauer et al. [67], 97.5%

of those who develop symptoms will do so within 11.5 days (CI: 8.2 to 15.6 days) from the day

of infection. Moreover, the results of a COVID-19 PCR test have been known to take up to an

average of 3–4 days (3.6 days according to Cereda et al. [68]), particularly during the initial

months of the pandemic. For these reasons, the number of new COVID-19 cases that are offi-

cially announced each day corresponds to a time window of infection that spans from a few

days up to potentially two weeks earlier. To account for this timeframe uncertainty and test the

robustness of our results, the analysis is carried out with moving averages for both the time-

variant meteorological and the policy variables of different duration: 5, 7, 10, 12, and 14 days

(minimum length of 3 days). In reporting results, the number of days determining the moving

average of time-variant variables is encoded as either a number suffix (e.g., Temperature_7),

or a suffix variable indexed to a specific numeric value (e.g., Temperature_T, . . . T = 7).

Limitations and assumptions

As for other data-driven studies on COVID-19 transmission, the present analysis relies on rec-

ords whose quality varies across sources, due to heterogeneous collection and reporting
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practices worldwide. Data quality, extensiveness, and uniformity are therefore subject to a cer-

tain degree of uncertainty. Moreover, reports of confirmed COVID-19 cases tend to underesti-

mate the actual number of infections because of asymptomatic patients and undetected

COVID-19 deaths. For ease of purpose, we will assume that the number of confirmed

COVID-19 cases is monotonically related to the true number of infections, recognizing that

this is a simplification that may limit the significance of this study’s results.

An additional but less impactful limitation emerges from the normalization of meteorologi-

cal variables across different points within each area of interest where exposure to the virus has

occurred. As previously described, weather conditions have been averaged across the ten most

populous cities for each country-level location and the five most populated cities for the

admin-level locations. This approach should provide a good approximation of the overall

weather conditions under which the viral spread has occurred. We reason that population den-

sity may have played a significant role in the spread of COVID-19. Furthermore, it is also likely

that the majority of testing was carried out in major urban areas. Finally, selecting up to ten

country-level and five admin-level cities can be expected to evenly spread the sampling across

the most populated areas, as such an approach provides an average coverage of 75% or more of

the entire population for most of the locations considered (S1 Fig).

Methodology

The method used in this study combines three approaches to capture dependencies between

confirmed COVID-19 cases and climate factors (see S2 Fig for a visual diagram summarizing

the approach):

• A statistical analysis based on Spearman’s and Kendall’s correlation coefficients

• A machine learning model based on the Gradient Boosted Regression Tree algorithm paired

with the Tree SHAP algorithm to perform feature importance analysis

• An econometric model based on fixed effect panel regression analysis.

The use of three distinct approaches is intended to provide independent analytic evidence.

Of particular interest is the complementarity between machine learning and econometric

approaches, where the first is intent on prediction while the latter focuses on explanation. As

discussed in the literature, the use of a hybrid approach where machine learning modeling is

paired with econometric analysis can help address relative weaknesses in the two methods by

leveraging relative strengths [69–73]. For example, machine learning is better equipped to take

advantage of structural heterogeneity in training data to make short-term predictions, whereas

econometric methods are better at capturing long-term trends [73]. We can therefore expect

that the results of machine learning and econometric analysis are not always going to coincide

[73]. This lack of overlap points to the areas of relative improvement that can be obtained

through a functional integration of the two methods. While appealing, such integration is chal-

lenging and largely remains a goal to be achieved, for which a better understanding of the dif-

ferences and relative strengths/weaknesses is required [71]. In this regard, the present study

contributes to advancing our understanding of the specific complementarities between

machine learning and econometrics in a new domain of inquiry. The statistical analysis in

turn provides the baseline due to its more basic analytic capacity in dealing with non-station-

ary processes compared to machine learning and accounting for long terms trends compared

to econometric analysis.
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Finally, the validity of the approach adopted in this study is corroborated by the research

framework for linking environmental and weather factors to the incidence of COVID-19 pro-

posed in a recent study published by Zaitchik et al. [74].

Statistical analysis

The statistical dependency of confirmed COVID-19 cases from environmental and meteoro-

logical regressors is first performed by calculating and comparing Spearman and Kendall

rank-order correlation coefficients. These coefficients provide a nonparametric measure of the

monotonicity (i.e. strength and direction) of the relation between the number of confirmed

COVID-19 cases (the output/dependent variable) and the input environmental and meteoro-

logical variables. Unlike the Pearson correlation, the Spearman and Kendall rank-order corre-

lations do not carry any assumptions about the normal distribution of the data and the

linearity between the variables. The statistical significance of the association between input

and output variables is determined using the two-sided p-value in order to measure both

decreasing and increasing departures from the null hypothesis. Spearman’s and Kendall’s cor-

relation coefficient values (ρ and τ) can range from +1 to -1. The sign of the coefficient indi-

cates the direction of the association of ranks (+ positive,—negative), while its absolute value

expresses magnitude. The closer the coefficient is to zero, the weaker the association between

the ranks: an absolute value between 0.5 and 1 is considered to provide a strong correlation,

0.3 to 0.5 a moderate correlation, 0.1 to 0.3 a weak correlation, and <0.1 no correlation.

Machine learning modeling

The aim of the machine learning analysis is to assess the relative feature impact of factors con-

tributing to COVID-19. Feature impact is computed by applying the Tree SHAP algorithm to

a Gradient Boosted Regression Tree (GBRT) model. GBRT is an additive stochastic model that

combines multiple sequentially connected weak learners (regression trees) in a way that each

new learner fits the residuals from the previous step to optimize the overall predictive perfor-

mance [75]. The resulting model can describe multiple nonlinear interactions and partial

dependency with sufficient flexibility, remarkably high predictive accuracy, and robustness to

missing data and outliers.

The study uses the open source xgboost Python library which offers a highly efficient, flexi-

ble, and portable implementation of GBRT [76]. The xgboost algorithm provides several ways

to control overfitting, i.e., when the model fits the training data so closely that it fails to provide

useful predictions when applied to new data. The first is to constrain the maximum depth of

individual trees used in the boosting process to modulate the degree of feature interactions

that the model can fit. The second is to control the number of samples that each tree leaf can

contain to avoid forming imbalanced leaves that have a single or too few data points. The third

and most important way is to control the learning rate. Overfitting is also reduced through the

use of randomization into the tree building process by subsampling the training set before

deriving each tree, and subsampling features before searching for the best node split. Finally,

xgboost provides a parameter that enables model regularization using "across trees"

information.

As a first step, we optimized the model hyperparameters using a grid-search method com-

bined with a cross-validation approach specifically designed for this study. We first selected

only the data records of geographical locations that presented at least 90 data points (about 3

months’ worth of data) filtering out about 12,000 observations from a total of 77,300. This

strategy is intended to select a time window size that presents sufficient seasonal variation for

each location. We then randomly selected 24 locations to be designated as a test set to measure
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the final unbiased performance of the optimized model. Each location in the filtered dataset

has on average 273 data points, thus resulting in an overall test set size of ~6,500 observations

(about 10% of the starting dataset) and a training set of 60,000 observations. We used a grid-

search approach to find the best model hyperparameters validated on a further 10% split share

of the training set. This validation set was derived by randomly selecting 22 locations for a

total of ~6,000 observations, thus leaving 54,000 data points for training the model with the

specific parameters under validation. For each parameter, we repeated this procedure 5 times

to assure that the resulting validation error score (in terms of symmetric mean absolute per-

centage error—SMAPE) would converge. During each reiteration, we re-selected a new ran-

dom set of 22 locations from the overall training set as the new validation set. This step led to a

measurable improvement in the prediction accuracy over the same algorithm initialized with

the default hyperparameters values (base model).

Fig 1 shows the performance gain in terms of lower SMAPE error of the optimized model

compared to the base model computed on the first randomized test set, which was never seen

by both models. On average this optimization procedure results in a ~5–10% lower SMAPE.

Table 1 summarizes the set of hyperparameters leading to the best evaluation results. Table 2

reports the training, validation, and test performance of the GBRT model (default and

Fig 1. Accuracy of the based model (left, blue) compared to the optimized model (right, orange) on the test set. We consider only locations with

more than 90 data records and records with more than 10 cases per day.

https://doi.org/10.1371/journal.pone.0273078.g001
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optimized) compared to two deterministic baselines: the prediction obtained by using a 7-day

moving average, and a persistence model, where the value of the predicted dependent variable

is assumed to be the same as the previous day. For comparison, we also report the performance

of other regression models such as Lasso, Elastic Net, and Random Forest after a cross-vali-

dated tuning of their hyperparameters. The optimized GBRT model outperforms all other

models on the test set with a mean SMAPE error of 7.5% lower than the base model, 2.4%

smaller than the Random Forest model, 11% better than the Lasso model, and 24% lower than

the Elastic Net model. High error values for Lasso and Elastic Net are likely related to their

lower model complexity that prevents the proper learning of data interrelationships. Random

Forest produces a comparable accuracy to xgboost, but it shows overfitting on the train set.

Finally, when compared to the two deterministic baselines the tuned xgboost model produces

predictions on the test set that are 20.5% and 4% more accurate than the 1-week moving aver-

age and persistence models respectively.

Fig 2 shows model accuracy distribution as a function of the daily cases grouped in different

intervals for all the locations considered in this study. The width of each boxplot is propor-

tional to the number of observations included in the specific range (n), which is also reported

below the label of each interval. The cross-sectional median error of the model decreases with

Table 1. Xgboost hyperparameter tuning result.

Hyperparameter Tuning range Best value

Learning rate (eta) 0.001–0.3 0.1

Maximum depth 3–10 10

Minimum sum of instance weight (hessian) 1–10 7–8�

Gamma 0–0.4 0.2�

Subsample ratio of the training instances 0.5–1 1�

Subsample ratio of columns when constructing each tree 0.3–1 1�

Lambda 1 1

Alpha 0 0

Number of boosting rounds (validated) ~30

Learning objective function (regression) Squared error

Custom evaluation metric (for training and validation) SMAPE

Early stopping rounds 10

�Irrelevant to the model performance.

https://doi.org/10.1371/journal.pone.0273078.t001

Table 2. Regression modeling performance comparison.

Model Mean SMAPE

Train Validation Test

GBRT (with hyperparameter optimization) 28.3% 30.6% 29.0%

GBRT (no optimization) 33.5% - 36.5%

Lasso� 45.7% 41.9% 40.1%

Elastic Net� 60.2% 60.5% 53.3%

Random Forest� 11.9% 31.2% 31.4%

1-week moving average - - 49.5%

Persistence (previous day) - - 34.9%

�With hyperparameter optimization

https://doi.org/10.1371/journal.pone.0273078.t002
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the increase of the values of the dependent variable, going from 35.1% when daily cases

are< 100 down to 17.5% with daily cases >500.

To obtain a more complete estimate of model accuracy we tested the performance of the

optimized GBRT model for each distinct location. We selected areas from different climatic

zones that presented high numbers of daily cases during one or several contagion waves

throughout the year. The results of this evaluation reveal error rates ranging from 12.9% to

26.8%, as shown in Fig 3.

Once the GBRT model is trained, the relative ranking of model parameters is obtained

through the SHAP method. Tree SHAP is an algorithm that computes SHAP values for Deci-

sion Trees models such as GBRT. SHAP (SHapley Additive exPlanation) [77, 78] uses a game

theoretic approach to explain the prediction for each instance as a sum of contributions from

its individual feature values. This type of analysis does not identify causal correlation, but it is

still a useful metric to capture relative feature importance.

Econometric analysis

The econometric analysis of the association between confirmed COVID-19 infections and cli-

matic factors is carried out using the multivariate equation in (1) which implements a panel

data approach based on a fixed-effects model [79]. In this equation, the dependent variable

ln_daily_casesi,t expresses the number of daily cases of COVID-19 cases on a logarithmic scale

for location i and time index t. We use the log-transformed version of the dependent variable

on the assumption that by doing so the variable becomes log-normal conditional on all the

covariates and thus allows us to limit the heteroscedasticity of the estimated residuals. β0 is the

Fig 2. Boxplot of the SMAPE distribution as a function of intervals of number of COVID-19 daily cases.

https://doi.org/10.1371/journal.pone.0273078.g002
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regression intercept, while βn represents the regression slope coefficient of each respective

regressor. We include a vector of cross-sectional unit fixed effects ci to account for all time-

invariant factors across a location that affect the local growth rate of infections, such as differ-

ences in demographics, socioeconomic status, culture, and health systems. This is an impor-

tant feature since it allows to partial out heterogeneous omitted factors that might be

correlated with the dynamics of contagion and the daily cases. We also include a vector of

(daily) time fixed effects λt to absorb the autoregressive component specific to the COVID-19

spread growth and to account for the presence of any potential seasonal bias. Since the effect

of variables that behave as time-invariant factors for the period of focus (e.g., socioeconomic,

environmental, and some global health indicator variables) would be absorbed in the intercept

for collinearity due to the use of time fixed effect regression, these variables were omitted from

the analysis. Finally, we cluster the standard errors ui,t at the entity-level to account for error

correlation within each location.

ln daily casesi;t ¼ b0 þ

XN

n¼1

bn Explanatory variablesn;i;t þ ci þ lt þ ui;t ð1Þ

Fig 3. Examples of modeling performance for the optimized GBRT model.

https://doi.org/10.1371/journal.pone.0273078.g003
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Results

We designed a cross-national data-oriented study using global records of confirmed daily

cases of COVID-19 to examine the association between the pandemic growth and climatic

conditions, using several socioeconomic, environmental, and global health factors as control

variables. We first apply Spearman’s and Kendall’s rank-order correlation analysis to the

selected data to derive a first estimate of the statistical relationship between each explanatory

variable and COVID-19 transmission at each geographic location under study. We then use

machine learning techniques to model and understand the relative importance that climatic

and control variables have on the spread of COVID-19. We finally use panel data econometric

analysis to estimate the impact of climatic conditions on COVID-19 daily rates and test the

efficacy of different containment policies.

Statistical correlation analysis

Fig 4 provides the distribution of Spearman’s rank correlation coefficients (ρ) that model the

dependency of COVID-19 daily rates on the environmental and meteorological explanatory

Fig 4. Spearman’s coefficient.

https://doi.org/10.1371/journal.pone.0273078.g004
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variables used in this study. Correlation coefficients are calculated for each location and time

series. Results are clustered based on the specific location and consider only geographical areas

with at least 90 data records (at least 3 months of data). Correlation coefficients greater than

1.5 IQR (interquartile range) that are below the first quartile or above the third quartile are

considered outliers and reported in Fig 4 as scatter points. Only locations that showed statisti-

cal significance (P< 0.01) were considered and displayed in the descriptive analysis reported

in Fig 4 (see S2 and S3 Tables for variable description and statistics).

The Spearman’s rank correlation results suggest that solar irradiation and UV emission are

strongly negatively correlated with COVID-19 spread (median ρ equal to -0.55 and -0.56,

respectively). Temperature and absolute humidity also show a negative correlation, but with a

weaker amplitude (at median values of -0.42 and 0.39, respectively; moderately correlated).

The other meteorological and air-quality factors do not show a significant association with

COVID-19 transmission (low |ρ| and large IQR: high standard deviation). PM2.5 concentra-

tions and pressure register a positively weak correlation. All other variables present a weakly

negative correlation. These results are corroborated by Kendall’s rank correlation analysis

shown in Fig 5.

Fig 5. Kendall’s coefficient.

https://doi.org/10.1371/journal.pone.0273078.g005
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Feature importance analysis

Relative feature predictive value is computed by applying the Tree SHAP (SHapley Additive

explanation for tree-based machine learning models) algorithm to a Gradient Boosted Regres-

sion Tree (GBRT) model (see Methodology section for details). The GBRT model was trained

on the whole dataset including all geographical locations independently from the number of

its data records. Epidemiological, meteorological, socioeconomic, environmental, and global

health indicator indices were used as explanatory variables, while the number of Covid-19

daily cases served as the dependent variable. See the Methodology section for a detailed defini-

tion of the variables. S2 and S3 Tables present a brief description of the variables included in

the study and their summary statistics.

The results of feature importance analysis suggest that climate plays a meaningful role in

modulating the dynamics of the COVID-19 pandemic, as shown in Fig 6 where feature impor-

tance is ranked in terms of logarithmic mean absolute SHAP values. SHAP values relative to

the average number of previous COVID-19 cases as a predictor for the current number of

COVID-19 cases were computed but have been omitted in Figs 6 and 7 due to their obvious

relevance in order to focus on the other variables. All meteorological and air quality factors

score at similar levels of importance, showing that there is no dominant predictor. UV radia-

tion is the meteorological factor with the greatest SHAP value, confirming the results of the

statistical analysis where UV radiation was the most highly correlated factor with COVID-19

cases. Socioeconomic, environmental, and global health indicator variables all show minor

impacts other than population density, and the annual carbon dioxide emissions (a time-

invariant proxy for the country’s overall air quality). Intervention and health system policies,

described by the different OxCGRT indices, all score similar to or slightly lower than meteoro-

logical factors. Although not included in Fig 6, the average number of previous COVID-19

cases results having the greatest impact (i.e. highest SHAP value) in line with results reported

in the current literature on COVID-19 and other coronaviruses [80].

Fig 7 shows the intensity and polarity of specific SHAP variable values for each data point

(a dot in the plot) with reference to the dependent variable (daily COVID-19 cases). The red-

to-blue color scale indicates magnitude (high/red vs. low/blue). Position on the horizontal axis

signals polarity (negative vs. positive).

The resulting analysis suggests that higher UV radiation is significantly correlated with

lower occurrence of COVID-19 cases (the dependent variable), while the other meteorological

factors show a much weaker contribution. Temperature shows a weakly positive correlation,

but the results are not consistent. Absolute humidity also displays a weakly positive correla-

tion, despite the expected impact according to earlier studies. Rainfall appears to be negatively

correlated with the dependent variable, but there are too few observations for high rainfall val-

ues in the dataset to properly confirm this result. All the other meteorological factors do not

exhibit a distinct correlation directionality or significant impact.

Among the intervention policies, both the OxCGRT stringency and containment & health

indices display a weakly negative correlation suggesting that more stringent prevention mea-

sures have been beneficial in mitigating the spread of COVID-19, at least for a significant

number of countries. Policies on school closures, stay-at-home requirements, and testing

reveal a somewhat lower weakly negative correlation.

In order to provide a more detailed analysis, we have also compared feature importance

analysis results of locations in the northern and southern hemispheres. As the SHAP values in

S3 Fig show, the results for each hemisphere are in line with those of the global analysis (Fig 6).

Meteorological conditions are still the more crucial factors when compared to intervention

policies, with UV still among the most prominent features for both datasets. As shown in S4

PLOS ONE Does climate help modeling COVID-19 risk and to what extent?

PLOS ONE | https://doi.org/10.1371/journal.pone.0273078 September 7, 2022 14 / 27

https://doi.org/10.1371/journal.pone.0273078


Fig 6. Feature importance summary plot. Mean absolute SHAP value (in log scale) of each variable showing the average impact on the model

output magnitude.

https://doi.org/10.1371/journal.pone.0273078.g006
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Fig 7. Feature impact scatter plot. SHAP value of each variable for all the single observations as a function of their relative value. The color

transition on the vertical axis indicates value strength (red/high to blue/low).

https://doi.org/10.1371/journal.pone.0273078.g007
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Fig, the intensity and polarity of SHAP values for the explanatory variables in separate hemi-

sphere are also in line with those for the entire globe (Fig 7), although for some variables in the

southern hemisphere polarity this similarity is not as explicit as for the northern hemisphere.

For example, while UV still shows a negative association in both hemispheres, the distribution

of SHAP score for the southern hemisphere is less marked than in the northern hemisphere.

By contrast, rainfall displays a clear negative correlation in the southern hemisphere that is not

clearly visible in the northern hemisphere.

For completeness, we include the feature importance results for the Lasso, Elastic Net, and

random forest models at a global scale (S5 Fig). All point to UV as one of the most important

parameters. For Lasso and Elastic Net we report regression coefficients. For the random forest

tree, we use the Gini importance score.

Econometric analysis

The econometric analysis was carried out using a panel data fixed-effects model. Confirmed

daily cases of COVID-19 in log-scale were regressed against climate and air-quality factors,

with reference to cross-sectional and time fixed effects. We could not add in the regression the

moving averages of the dependent variable as we did for the machine learning analysis because

this inclusion would violate the assumptions underlying the fixed effects estimator. If the inde-

pendent variable is correlated with the error term in a regression model (endogeneity), then

the estimate of the regression coefficient would be inconsistent. Moreover, adding one or

more autocorrelated terms to the regression would remove most of the model variance, mak-

ing the effects of the other independent variables less significant (leading to smaller βn and

larger standard errors).

Note that the nominal magnitude of the regression coefficient of every single explanatory

variable is likely to be biased due to the undetermined confounding effects. For this reason, we

mainly focus our discussion of the results on the significance and polarity of the coefficients.

Before proceeding with the econometric analysis, we test our data for stationarity, since

non-stationary data may lead to spurious regression results thus falsely indicating the existence

of a relationship between two variables [81]. For each time series variable considered in the

econometric study, we run the Fisher-type unit-root test based on augmented Dickey-Fuller

tests at 0 and 1 lag. Table 3 provides a summary of the results for the variables with moving

averages at 7 days. We omit the test results for other window sizes for which we obtain the

same outcome. The four tests all strongly reject the null hypothesis that all the panels contain

unit roots for each variable under consideration and we can therefore proceed with the

analysis.

The statistical significance of the regression coefficients is computed by clustering the

regression standard error at the country/admin level, to account for error correlation within

the geographical areas where our unit of observation was collected. For each location, we select

days with a minimum of 10 confirmed COVID-19 cases, and we limit our analysis to the loca-

tions with at least 90 data records (3 months’ worth of data), in line with the other analyses.

The results are reported in Table 4 for all the T-day moving averages and time-variant regres-

sors (see Methodology section). The regression model has a R2 value of 0.73 over 65,369 obser-

vations, which shows that the independent and dependent variables are significantly

correlated. UV radiation shows strong negative correlation with COVID-19 spread, while tem-

perature has a positive association, in line with the statistical correlation and feature impor-

tance analyses discussed in the previous two sections. Both results are statistically significant

(P< 0.01). For other climatic factors, the econometric analysis is congruent with the feature

importance analysis, but either the coefficients are not statistically significant, or the
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magnitude of their regression coefficients is comparable to the standard error (e.g., PM2.5 and

PM10). Rainfall seems to have significance only at shorter moving averages (5 days). For the

remaining meteorological factors, different moving averages (5, 7, 10, 12, and 14 days), which

relate climatic variables to incubation periods of diverse duration, do not seem to influence the

overall result of the econometric analysis.

Testing for the added effect of intervention policies requires a more in-depth analysis. The

enactment of restrictions and the pandemic peak tend to vary from country to country due to

the diversity, severity, and enforcement ability of the containment policies implemented. For

this reason, we limit our analysis to the OxCGRT stringency and containment & health indices

which allow us to capture the general level of restriction without focusing on the intervention

policies of each government. Moreover, most countries have applied distinct levels of restric-

tions at a much deeper level of granularity than what the available data would allow us to test

for (city, province, or regional level). Therefore, we only present an analysis of the north Amer-

ican region including all the US states and Canadian territories, for which OxCGRT provides

the highest level of detail.

Table 5 provides the results of panel data analysis on the impact of stringency and contain-

ment levels for COVID-19 and climatic factors. To evaluate the impact of the stringency factor,

we created the two variables high_stringency and high_containment that take values equal to 1

when stringency and the containment & health are above 60% (median value) and 0 otherwise.

We separately test the lagged effect of these two factors at 7 and 14 days as expressed by the

numerical suffix associated with the two variables in Table 5. We find that high levels of clo-

sure-type restrictions show significant effects on limiting COVID-19 spread only after about

two weeks from their introduction (P < 0.01). Conversely, the containment & health index

presents a strong negative regression coefficient at both 7 and 14 days from introduction

(P< 0.01). This may be related to the added efficacy of combining different health and preven-

tion policies (public info campaigns, PCR testing, contact tracing, and facial coverings) to

Table 3. Results of the Fisher-type unit-root test analysis based on augmented Dickey-Fuller tests at 0 and 1 lag for each variable considered in the econometric

study.

I(0) 0 Lags I(1) 1 Lag

Inverse chi-

squared

Inverse

normal

Inverse

logit t

Modified inv. chi-

squared

Inverse chi-

squared

Inverse

normal

Inverse

logit t

Modified inv. chi-

squared

P Z L� Pm P Z L� Pm

Daily cases (log) 9101.3 -74.1 -106.8 171.2 5631.1 -53.5 -67.5 101.6

Temperature_7 1868.7 -14.4 -14.2 16.5 3157.1 -33.9 -35.7 47.0

Absolute Humidity_7 1912.3 -15.2 -14.8 17.4 3546.0 -36.7 -40.4 55.6

Pressure_7 3112.6 -29.9 -31.9 43.1 8835.9 -69.5 -106.1 172.4

Wind speed_7 4163.5 -40.5 -46.5 65.6 7312.3 -62.4 -87.8 138.8

Rainfall_7 4974.1 -43.9 -54.1 82.9 6797.6 -57.4 -80.1 127.4

Short-wave

irradiation_7

2599.7 -26.5 -26.9 32.2 3156.0 -34.0 -36.0 47.0

PM2P5_7 3763.2 -36.7 -40.9 57.1 8004.9 -65.7 -96.0 154.0

PM10_7 3765.8 -36.2 -40.9 57.1 7778.1 -63.4 -92.9 149.0

UV_7 2516.5 -25.4 -25.7 30.4 3184.9 -33.6 -36.2 47.7

High_stringency_7 3333.0 -40.3 -50.0 73.7 2805.7 -36.5 -43.6 62.9

High_containment_7 4123.7 -45.5 -59.62 90.4 3302.7 -39.9 -50.2 74.4

For each test, we report inverse chi-squared, inverse normal, inverse logit t, and modified

https://doi.org/10.1371/journal.pone.0273078.t003
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enable a faster control on the containment of viral transmission. The R2 coefficient of 0.73

over 19,289 observations indicates a high level of correlation for this regression model. The

robustness of our results is corroborated by the fact that both polarity and magnitude of the

regression coefficients for the climate variables are still in line with statistical correlation and

feature importance results, despite having developed the regression model with a smaller pool

of data and additional factors.

Results in Tables 4 and 5 are presented in tabular format by listing the values of the inter-

cept (constant) and the β coefficients with their standard error for each regressor under the

different hypotheses of duration relative to various moving average window sizes (T).

Discussion

Table 6 summarizes the results about the impact of climate factors on COVID-19 transmission

from the three types of analysis carried out in this study (statistical, machine learning, and

econometric analyses). Scores are color-coded to indicate the positive (red), negative (blue), or

Table 4. Panel data fixed-effects model.

Dependent variable: (1) (2) (3) (4) (5)

Daily cases (log) T = 5 T = 7 T = 10 T = 12 T = 14

Days_from_start 0.006��� 0.006��� 0.006��� 0.006��� 0.006���

(0.00) (0.00) (0.00) (0.00) (0.00)

Temperature_T 0.022��� 0.025��� 0.028��� 0.030��� 0.032���

(0.01) (0.01) (0.01) (0.01) (0.01)

Absolute Humidity_T -0.011 -0.012 -0.013 -0.015 -0.016

(0.02) (0.02) (0.02) (0.02) (0.02)

Pressure_T -0.004 -0.004 -0.005 -0.005 -0.005

(0.00) (0.00) (0.01) (0.01) (0.01)

Windspeed_T -0.031 -0.036 -0.040 -0.043 -0.046

(0.02) (0.02) (0.03) (0.03) (0.04)

Rainfall_T -0.010�� -0.009 -0.008 -0.007 -0.006

(0.00) (0.01) (0.01) (0.01) (0.01)

Shortwave Irradiation_T -0.000 -0.000 -0.000 -0.000 -0.000

(0.00) (0.00) (0.00) (0.00) (0.00)

PM 2.5_T -0.014��� -0.016��� -0.018��� -0.019��� -0.020���

(0.00) (0.00) (0.00) (0.00) (0.01)

PM 10_T 0.003��� 0.003��� 0.004��� 0.004��� 0.004���

(0.00) (0.00) (0.00) (0.00) (0.00)

UV_T -0.492��� -0.543��� -0.607��� -0.634��� -0.657���

(0.09) (0.11) (0.13) (0.14) (0.15)

Constant 7.283�� 7.648�� 8.128�� 8.473� 8.860��

(3.12) (3.51) (4.06) (4.37) (4.69)

Observations 65,369 65,369 65,369 65,369 65,369

R2 0.734 0.735 0.736 0.736 0.737

Adjusted R2 0.733 0.734 0.735 0.735 0.736

T-days moving average. Standard errors in parentheses are clustered at location (country/region) level,

� p < 0.10,

�� p < 0.05,

��� p < 0.01.

https://doi.org/10.1371/journal.pone.0273078.t004

PLOS ONE Does climate help modeling COVID-19 risk and to what extent?

PLOS ONE | https://doi.org/10.1371/journal.pone.0273078 September 7, 2022 19 / 27

https://doi.org/10.1371/journal.pone.0273078.t004
https://doi.org/10.1371/journal.pone.0273078


undetermined (black) polarity of variables correlated with COVID-19 transmission. Relative

ranking per analytic method is indicated by integers enclosed within parentheses. For the sta-

tistical analysis, we report the median magnitude of Spearman’s coefficient, and we rank the

results based on their absolute value. For the machine learning analysis, we relay feature

importance and its ranking as the mean absolute SHAP value. For the econometric analysis,

we look at the significance of each estimated regression coefficient and we rank them based on

their magnitude normalized with reference to their standard error. As discussed in the

Table 5. Panel data fixed-effects model—testing the effect of restrictions.

Dependent variable: (1) (2) (3) (4)

Daily cases (log)

days_from_start 0.006��� 0.006��� 0.006��� 0.006���

(0.00) (0.00) (0.00) (0.00)

Temperature_7 0.024��� 0.020��� 0.022��� 0.017���

(0.01) (0.01) (0.01) (0.01)

Absolute Humidity_7 -0.028 -0.023 -0.028 -0.021

(0.02) (0.02) (0.02) (0.02)

Pressure_7 -0.024��� -0.025��� -0.025��� -0.023���

(0.01) (0.00) (0.00) (0.00)

Wind speed_7 0.030 0.030 0.029 0.031

(0.02) (0.02) (0.02) (0.02)

Rainfall_7 -0.013 -0.010 -0.013 -0.013

(0.01) (0.01) (0.01) (0.01)

Short-wave irradiation_7 -0.000 -0.000 -0.000 -0.000

(0.00) (0.00) (0.00) (0.00)

PM2P5_7 0.002 0.004 0.001 0.001

(0.01) (0.01) (0.01) (0.01)

PM10_7 -0.003 -0.002 -0.004 -0.004

(0.01) (0.01) (0.01) (0.01)

UV_7 -0.376�� -0.374�� -0.372�� -0.362��

(0.17) (0.17) (0.17) (0.17)

High_stringency_7 -0.087

(0.07)

High_stringency_14 -0.273���

(0.07)

High_containment_7 -0.176���

(0.07)

High_containment_14 -0.388���

(0.07)

Constant 28.414��� 28.456��� 28.351��� 26.469���

(4.28) (4.23) (4.36) (4.20)

Observations 19,289 19,289 19,289 19,289

R2 0.733 0.736 0.734 0.741

Adjusted R2 0.732 0.736 0.733 0.740

Results only for the Canadian territories and the United States. Standard errors in parentheses are clustered at location (country/region) level,

� p < 0.10,

�� p < 0.05,

��� p < 0.01.

https://doi.org/10.1371/journal.pone.0273078.t005
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introduction, we include the statistical analysis as a baseline, leverage the machine learning

analysis for short-term prediction, and use the econometric results as an indication of long-

term trends.

SHAP values for meteorological and environmental factors other than UV tend to cluster

very closely (see Fig 6), so their relative ranking points to relatively mild impact differences.

Also, only pressure, temperature, UV, stringency, and containment factors show sufficient sta-

tistical significance (p< 0.10) in the econometric results. Results for rainfall, absolute humid-

ity, wind speed, short-wave irradiation, PM2.5, and PM10 where p> 0.10 can only be seen as

weak indicators.

UV emerges as the most impactful meteorological factor in COVID-19 transmission across

all methods. More specifically, UV is negatively correlated with COVID-19 spread. This result

is corroborated by overwhelming evidence that UV light can effectively kill SARS-CoV-2 and

other coronaviruses [82–84].

Temperature is positively correlated with COVID-19 transmission in both the machine

learning and econometric analyses. As discussed in the introduction, there is contrasting evi-

dence about the role of temperature in the spread of COVID-19. The inverse correlation of

UV and temperature with COVID-19 spread emerging in our analysis suggests that the inhib-

iting factor in those studies where the temperature is negatively correlated with COVID-19

spread may not temperature per se, but rather the high UV that is often found in hotter cli-

mates. This is a hypothesis that requires further inspection.

Absolute humidity is positively correlated with COVID-19 spread in the machine learning

analysis and negatively correlated in the econometric analysis, though with insufficient statisti-

cal significance. This is an interesting contrast as there is conflicting evidence in the literature

about the role of absolute humidity in the spread of COVID-19, as discussed in the introduc-

tion (S1 Table). Perhaps, the two analyses point to a different role that absolute humidity may

play in the short and long term with reference to COVID-19 spread. This too is a hypothesis

that requires further inspection.

Table 6. Coefficients and relative rank describing the impact of climate factors on COVID-19 transmission across the three types of analysis carried out in this

study.

Statistical analysis (Spearman’s

coefficient)

Machine learning analysis (SHAP

values)

Econometric analysis (Panel data fixed effects

model)

Temperature � 0:42 3ð Þ 14:7 2ð Þ � � �p > 0:10 5ð Þ

Absolute Humidity � 0:39 4ð Þ 11:6 4ð Þ p > 0:10 7ð Þ

Pressure 0:19 8ð Þ 14.5 (3) � � �p < 0:001 3ð Þ

Wind speed 0:21 6ð Þ 10.4 (8) p > 0:10 6ð Þ

Rainfall � 0:21 7ð Þ 10:3 9ð Þ p < 0:10 8ð Þ

Short-wave

irradiation

� 0:55 2ð Þ 10:9 5ð Þ p > 0.10 (11)

PM2.5 0:24 5ð Þ 10.5 (7) p > 0:10 9ð Þ

PM10 0:17 9ð Þ 10:8 6ð Þ p > 0:10 10ð Þ

UV � 0:56 1ð Þ 18:1 1ð Þ � � p < 0:001 4ð Þ

Stringency 8; 8 10ð Þ � � �p < 0:001 2ð Þ

Containment 7:9 11ð Þ � � �p < 0:001 1ð Þ

Red fonts indicate negative correlations, blue positive correlations, and black undetermined polarity. The integers enclosed in parentheses describe relative rank

(1 = highest, 11 = lowest). Stringency and containment results are not available in the statistical analysis.

https://doi.org/10.1371/journal.pone.0273078.t006
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PM10, stringency, and containment all show the same polarity in the machine learning and

econometric analysis, though only for containment and stringency the econometric analysis

yields statistical relevance (p< 0.001).

Discrepancies between results in the statistical analysis and the machine learning and

econometric analyses emphasize the difficulty in statistical analysis to deal with non-stationary

processes and account for long terms trends. Perhaps, the most interesting discrepancies are

those between machine learning and econometric analysis. As discussed in the introduction,

machine learning is better equipped to take advantage of structural heterogeneity in training

data to make short-term predictions, whereas econometric methods are better at capturing

long-term trends [73]. Therefore, diverging results across the two methods may be indicative

of short-term vs. long-term impacts.

Conclusions

Overall, disease susceptibility is the main factor driving the pandemic growth. Compliance

with lockdown and restrictions policies and regulations and increased testing are the most

effective strategies for disease control and COVID-19 spread prevention. For example, various

studies have reported that interventions such as restrictions on mass gatherings, school clo-

sures, and social distancing measures are strongly associated with a decrease in the COVID-19

transmission growth rate [33, 38, 39, 64, 85–87]. The correlation of COVID-19 transmission

with climate factors provides a valuable complementary diagnostic that sheds light on the sea-

sonal characterization of the pandemic and helps refine measures to contain and prevent the

spread of COVID-19. More specifically, weather forecasts could help predict new cycles of the

pandemic and future outbreaks and thus contribute to the definition of ad-hoc measures that

limit the economic impact of complete lockdowns. This study also extends the reach of earlier

studies (S1 Table) on the relationship between COVID-19 transmission and climate factors by

assessing how climate helps modeling COVID-19 through systematic validation using statisti-

cal, feature importance, and econometric analyses. Such validation is crucial in proving which

are the contributing factors and their relative magnitude and direction of change.
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S1 File.

(DOCX)

S1 Fig. Statistical distribution of the share of population emerging from the sampling

approach of meteorological conditions adopted in this study. On the left is a frequency his-

togram of the population share covered by the sampling approach for each county. For most

of the countries the share is above 75% and for only few of them is less than 20%. On the right

side of the figure is a scatter plot of the share for each location considered in the study as a

function of the overall population size.

(TIF)

S2 Fig. Summary diagram of the methodological approach.

(TIF)

S3 Fig. Feature importance summary plot for the north and south hemispheres. Mean

absolute SHAP value (in log scale) of each variable showing the average impact on the model

output magnitude for the locations in the north (left) and south (left) hemispheres.

(TIF)
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each variable for all the single observations as a function of their relative value for the locations

in the north (left) and south (left) hemispheres. The color transition on the vertical axis indi-

cates value strength (red/high to blue/low).

(TIF)

S5 Fig. Feature importance analysis based on Lasso, Elastic Net, and Random Forest algo-

rithms. For Lasso and Elastic Net we report their regression coefficients (red for negative val-

ues and blue for positive). For the random forest tree, we use the Gini importance score.

(TIF)

S1 Table. Summary of peer-reviewed literature on research studies on the interrelationship

between COVID-19 and environmental/climatic factors.
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