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Background: Hashimoto’s thyroiditis (HT) frequently occurs among

autoimmune diseases and may simultaneously appear with thyroid cancer.

However, it is difficult to diagnose HT at an early stage just by clinical

symptoms. Thus, it is urgent to integrate multiple clinical and laboratory

factors for the early diagnosis and risk prediction of HT.

Methods: We recruited 1,303 participants, including 866 non-HT controls and

437 diagnosed HT patients. 44 HT patients also had thyroid cancer. Firstly, we

compared the difference in thyroid goiter degrees between controls and

patients. Secondly, we collected 15 factors and analyzed their significant

differences between controls and HT patients, including age, body mass

index, gender, history of diabetes, degrees of thyroid goiter, UIC, 25-(OH)D,

FT3, FT4, TSH, TAG, TC, FPG, low-density lipoprotein cholesterol, and high-

density lipoprotein cholesterol. Thirdly, logistic regression analysis

demonstrated the risk factors for HT. For machine learning modeling of HT

and thyroid cancer, we conducted the establishment and evaluation of six

models in training and test sets.

Results: The degrees of thyroid goiter were significantly different among

controls, HT patients without cancer (HT-C), and HT patients with thyroid

cancer (HT+C). Most factors had significant differences between controls and

patients. Logistic regression analysis confirmed diabetes, UIC, FT3, and TSH as

important risk factors for HT. The AUC scores of XGBoost, LR, SVM, and MLP

models indicated appropriate predictive power for HT. The features were

arranged by their importance, among which, 25-(OH)D, FT4, and TSH were

the top three high-ranking factors.

Conclusions: We firstly analyzed comprehensive factors of HT patients. The

proposed machine learning modeling, combined with multiple factors, are
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efficient for thyroid diagnosis. These discoveries will extensively promote

precise diagnosis, personalized therapies, and reduce unnecessary cost for

thyroid diseases.
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Introduction

Hashimoto’s thyroiditis (HT) is a chronic disease of

autoimmune thyroid disorder (AITD) with high incidence,

which is a common cause of hypothyroidism. It is mainly

manifested by thyroid lymphocytic infiltration and fibrosis, as

well as positive thyroid-specific antibodies in peripheral blood

(1). Targeting the imaging diagnosis of the thyroid, the Thyroid

Imaging Reporting and Data System (TIRADS) was established

in many countries (2–4), including China (5). The best imaging

method for diagnosing thyroid diseases is ultrasonography

which provides precise dimensions of thyroid goiters (6). HT

is the most frequent cause of goiters which are initially firm,

bumpy, symmetric, and painless (7). However, HT is usually not

recognized and diagnosed in the early stage and therefore, HT is

more likely to deteriorate into papillary thyroid carcinoma

(PTC) than nodular goiter (8, 9). Thus, it is necessary to

establish prediction models for HT diagnosis at an early stage.

According to numerous reports, the development of thyroid

diseases, especially thyroid cancer, is correlated with many risk

factors, among which the main factors may optimize diagnostic

techniques and treatment methods. For instance, iodine is an

essential raw material for the synthesis of thyroid hormones

(10). Studies have shown that the harm of iodine deficiency to

individuals is significantly more serious than the harm caused by

excessive iodine consumption (11). Insufficient iodine intake can
C, papillary thyroid
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cause elevated thyroid stimulating hormone (TSH) levels,

leading to clinical hypothyroidism by the regulation through

intact hypothalamus-pituitary-thyroid axis (12, 13). The long-

term iodine deficiency can lead to HT and even thyroid cancer.

However, thyroid cancer is seemingly more prevalent in areas

with excessive iodine intake which will induce the reduction of

thyroid hormone synthesis. Susceptible population with

excessive iodine intake may either induce hypothyroidism,

such as HT, or cause hyperthyroidism, such as Grave’s disease

(GD) (14, 15), which suggests a complex relationship between

iodine levels with AITD (16). The iodine uptakes of HT patients

are usually low and can be tested by urinary iodine

concentration (UIC) (17). Moreover, vitamin D is usually

lacking in patients suffering from HT (18). It is reported that

the risk of developing HT and thyroid cancer will increase with

low 25-hydroxy vitamin D (25-(OH)D) levels, which can be

improved by the supplementation of vitamin D (19).

In addition to malnutrition, the high levels of antibodies

against thyroid antigens have been positively correlated with the

clinical diagnosis of HT, especially for the thyroglobulin

antibody (TGAb) against thyroid peroxidase (TPO) and the

thyroid peroxidase antibody (TPOAb) against thyroglobulin

(TG) (20–22). Also, the proper levels of inherent hormone

metabolism, such as free thyroxine (FT4) and free

triiodothyronine (FT3), along with fatty acid intake play

important roles in the course of HT and thyroid cancer (19,

23). It is reported that other endocrine diseases, such as diabetes

and hyperlipemia, are often concurrent in HT patients whose

fasting plasma glucose (FPG) may be disordered (24, 25), while

triglyceride (TAG), total cholesterol (TC) and low-density

lipoprotein cholesterol (LDL-C) may be significantly lower

than in healthy people (26).

In recent years, the applications of novel computer-aided

diagnosis based on bioinformatic engineering has increasingly

played appealing roles in the clinical diagnoses of multiple

disorders. Many research studies on computer-aided diagnoses

of disorders, including thyroid diseases, have been carried out. It

is reported that computer-aided diagnosis can offer efficient

dataset processing, accurate diagnosis, clinical decision-making

support, and even potential treatment options for thyroid

diagnosis (27–30). Computer-aided diagnosis of HT has been
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carried out since 2009 (31). However, current computer-aided

studies basically focus on thyroid imaging and only a few

research studies involve molecular levels. According to a 2019

study, thyroid antibodies and hormones were involved in

establishing a machine learning model for the quantitative and

convenient diagnosis of HT distinguished from the Graves’

disease (32), but these factors were not comprehensive enough.

Recent studies on HT found that mathematical modeling

highlighted T helper lymphocytes TH1, TH17, and the

bacterial balance of the gut microbiota activities as risk factors

for HT development (33).

In this study, we collected fifteen clinical characteristics and

laboratory data to study their significant correlations with HT

and thyroid cancer. Furthermore, we established machine

learning models of HT development and thyroid cancer based

on twelve factors. The study may offer reference in the diagnosis

and prevention of HT, which also effectively reduces the

e conomic bu rden on pa t i en t s and s ave l im i t ed

medical resources.
Methods

Recruitment and examination
of participants

From July 2018 to January 2021, total 1,344 participants

were recruited from Xuchang Central Hospital, Kaifeng Central

Hospital, and Jincheng People’s Hospital. This total included 885

non-HT controls and 459 diagnosed HT patients. All

participants signed informed consents. The exclusion criteria

in this study were incomplete clinical information, controls with

thyroid cancer, and abnormal values. After screening, the cases

of controls and HT patients were 866 and 437, respectively. The

total factors were collected as follows: age, body mass index

(BMI), gender, history of diabetes, degrees of thyroid goiter,

thyroid cancer, UIC, 25-(OH)D, FT3, FT4, TSH, TAG, TC, FPG,

LDL-C, and high-density lipoprotein cholesterol (HDL-C).
Inclusion criteria of HT patients
and controls

The clinical criteria of HT are diffuse thyroid goiter, tough

tissue, hypoechoic, disordered echoes on the thyroid, nodular

changes with regular borders diagnosed by B-mode ultrasound

imaging, along with increased TPOAb and/or TGAb in sera (34–

36). The controls had none or merely part of those changes in

the thyroid gland. By means of clinical inspection and palpation,

thyroid goiter was divided into three degrees (I, II, III) according

to their sizes (Degree I: touchable but invisible; Degree II:

touchable and visible, limited to posterior margin of

sternocleidomastoid muscle; Degree III: touchable and visible,
Frontiers in Endocrinology 03
greater than posterior margin of sternocleidomastoid muscle).

After data screening, 1,303 non-HT controls and HT patients

were enrolled in the cohort from the initial 1,344 participants.
Ultrasound examination of thyroid glands

Ultrasound examinations were performed and pictured with

the Vinno E30 scanner (Vinno Technology, Jiangsu, China). The

frequency bandwidth of broadband linear array transducer (X6-

16L) is 10 ~ 14 MHz. In comparison with the controls,

ultrasound features of HT patients were diffusely hypoechoic

nodules on thyroid glands, visible sheet-like hypoechoic areas,

and fibrous hyperechoic areas (Additional file 1). Ultrasound

features of PTC differentiated from benign goiter, including

irregular and rough borders, aspect ratios of nodules,

microcalcification, increased blood flow, disordered and

hypoechoic appearance on fibrous hyperplasia (37).
Microscopic examination of
cytopathological sections

Microscopic examinations were only available for HT

patients who potentially had thyroid cancer. The specimens of

patients’ thyroid glands were taken from biopsy or surgery and

made into intraoperative cytology smears. The histopathological

specimens were fixed in formalin solution and observed by

Hematoxylin-Eosin staining. By means of microscope (Leica,

DM 2000) examination, the postoperative diagnostic results

were classified into normal, HT-type inflamed, and cancerous

cells by their cytological appearance (Additional file 2). The

pathological photographs were taken under magnification of

200. The pathological features of specimens taken from HT

patients are thyroid follicles with Hürthle-cell metaplasia,

lymphoid follicles with germinal centers, minimal colloid in

follicles, and polymorphic lymphoid cells (38). The typical

cytological recognition of PTC is an extensive papillary

pattern, lymphoplasmacytic infiltrate, follicular variant, tall cell

variant, and psammoma bodies. The typical nuclear

characteristics of PTC are ground-glass nuclei, nuclear

grooves, and round intranuclear pseudoinclusions (39, 40).
Collection and detection of urine and
blood samples

Urine and blood samples were collected and detected from

all participants at the time of initial diagnosis. The UIC in urine

samples were detected by inductively coupled plasma-mass

spectrometry (ICP-MS) (Agilent Technologies, Inc., Tokyo,

Japan) (41). The vitamin D detection includes vitamin D3

(cholecalciferol) and vitamin D2 (ergocalciferol) levels, which
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were measured by 25-(OH)D in serum. The 25-(OH)D levels

were measured using Ultrahigh Performance Liquid

Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS;

UPLC-MS/MS ACQUITY UPLC I-class Xevo TQD, Waters

Corporation) on the basis of the manufacturer’s protocol.

Serum was separated from fasting blood samples by spinning

at 3,000 rpm for 15 min in 4°C. The laboratory data of 25-(OH)

D, FT3, FT4, TSH, FPG, and lipid profiles were detected using an

automatic biochemical analyzer (Beckman Coulter, Inc., CA,

USA). TPOAb, TGAb and TG were detected using an automatic

biochemical analyzer (Roche Ltd., Switzerland). All the

laboratory data were measured in serum, except for UIC. All

the factors mentioned above are summarized in Table 1.
Machine learning modeling of HT

A total of 275 controls and 361 HT patients were recruited to

construct the HT machine learning model with Python Software

(version 3.8). Multiple factors were selected including gender,

age, BMI, diabetes, 25-(OH)D, UIC, FT3, FT4, TSH, FPG, TC,

and TAG.

Six machine learning models, including K-nearest neighbor

classifier (KNN), logistic regression (LR), support vector

machine (SVM), decision tree model (DT), multilayer

perceptron network (MLP), and eXtreme Gradient Boosting

(XGBoost) models were utilized. StratifiedKFold (k= 5) was

used to divide samples into the training set and the test set.

After the training, the six models were evaluated in the test set.

The accuracy, precision, recall (sensitivity), F1 scores, and area

under curve (AUC) scores of each model were calculated,

respectively. The selected features were ranked in sequence of

their importance for the XGBoost model. The receiver operating
Frontiers in Endocrinology 04
characteristic curve (ROC) of each model displayed the

judgment ability of the model.
Statistical analysis

Statistical analyses were performed using SPSS 27.0 and

Graphpad Prism 8.0 software. Significant difference analysis of

unordered variables and rank variables in distribution between

independent groups were separately assessed with the Chi-

square test and the Ridit test. Significant difference analysis of

continuous variables between the two groups were separately

compared by the Mann–Whitney U test for large sample sizes

and the Kolmogorov-Smirnov test for small sample sizes.

Significant difference analysis of continuous variables among

triple groups were compared by the Kruskal–Wallis H test. The

quantitative data were displayed as mean ± standard deviation.

Binary logistic regression analysis was performed to investigate

the risk factors for HT development by SPSS software with the

Hosmer-Lemeshow test. The odds ratio (OR) corresponded to the

correlation between factors and HT development. OR > 1

represented the risk factor triggering HT, while OR < 1

represented the protective factor restricting HT. The analysis

results were adjusted for each factor and considered statistically

significant when P-values of tests were less than 0.05.
Results

Cohorts of participants

Among total 1,344 participants, 1,303 non-HT controls and

first-visit HT patients were enrolled after screening. According
TABLE 1 Clinical characteristics of controls and HT patients.

Character Control (n=866) HT-C (n=393) HT+C (n=44) P-value

Goiter degree <0.0001

None 859 (99.19%) 36 (9.16%) ↓ 1 (2.27%) ↓

I 3 (0.35%) 183 (46.56%) ↑ 13 (29.55%) ↑

II 2 (0.23%) 165 (41.98%) ↑ 29 (65.91%) ↑

III 2 (0.23%) 9 (2.29%) ↑ 1 (2.27%) ↑

Age (years) 54.06 ± 13.50 47.66 ± 13.09 ↓ 51.45 ± 11.86 ↓ <0.0001

BMI (kg/m2) 24.49 ± 3.31 23.15 ± 3.55 ↓ 24.64 ± 3.31 ↑ <0.0001

Gender <0.0001

Male 508 (58. 66%) 49 (12.47%) ↓ 8 (18.18%) ↓

Female 358 (41.34%) 344 (87.53%) ↑ 36 (81.82%) ↑

Diabetes 0.0433

Yes 28 (3.23%) 24 (6.11%) ↑ 3 (6.82%) ↑

No 838 (96.77%) 369 (93.89%) ↓ 41 (93.18%) ↓
front
The table shows the statistics of clinical characteristics and laboratory results of controls, HT patients and patients with thyroid cancer. There were significant differences in most factors
between controls and HT patients. BMI, body mass index. P-values were calculated by Kruskal–Wallis H test or Chi-square test among the triple groups.
Symbols "↓ and ↑" represent “reduced and increased” change in mean values compared to corresponding controls.
iersin.org
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to ultrasound imaging and cytopathological examinations, they

were divided into 866 controls and 437 patients. The 437

diagnosed HT patients were divided into 393 HT patients

without cancer (HT-C) and 44 HT patients with thyroid

cancer (HT+C). Then, multiple clinical characteristics and

laboratory test data were collected as shown in Figure 1.
Clinical characteristics of participants

Compared to controls, the significant differences in goiter

degrees between HT-C and HT+C patients are shown in Table 1.

It indicates that 357 HT-C patients (90.83%) and 43 HT+C

patients (97.73%) developed goiter while only 7 controls (0.81%)

had goiter. Specifically, Degree I of goiter mostly appeared in 183
Frontiers in Endocrinology 05
HT-C patients (46.56%), Degree II of goiter mostly appeared in

29 HT+C patients (65.91%), Degree III of goiter mostly appeared

in 9 HT-C patients (2.29%). In contrast, Degrees I to III of goiter

among controls were 3, 2, and 2, which all accounted for the least

(0.35%, 0.23%, and 0.23%, respectively). Therefore, the

proportions of goiter degrees were significantly different

between the HT-C and HT+C patients compared to the controls.

Among HT patients, 344 of 393 (87.53%) HT-C and 36 of 44

(81.82%) HT+C patients were women while 358 of 866 (41.34%)

controls were women. 24 of 393 (6.11%) HT-C and 3 of 44 (6.82%)

HT+C patients were incorporated with diabetes while 28 of 866

(3.23%) controls had diabetes. Statistics on significant tests

indicated that women (P < 0.0001) and diabetic patients (P =

0.0433) were more likely to develop HT disease. Besides, compared

to controls, the clinical characteristics, including age, BMI, gender,
FIGURE 1

Overview of the cohort study. The flow chart shows the participants selection and classification, statistical analysis and logistic regression
analysis on multiple factors of controls and patients, as well as machine learning modeling and evaluation of HT development.
frontiersin.org

https://doi.org/10.3389/fendo.2022.886953
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Li et al. 10.3389/fendo.2022.886953
and diabetes all played significant roles in HT-C patients. However,

only BMI had a statistical difference between HT-C and HT+C

patients. The average BMI of HT-C was significantly lower than

those in controls and HT+C patients. Significant difference in

continuous variables were compared by the Mann–Whitney U

test between the two groups and the Kruskal–Wallis H test among

the three groups. Significant difference in categorical variables were

compared by the Chi-square test.
Laboratory test data of participants

Compared to controls, the 437 HT patients significantly

had advantageous distributions in averages of the following

factors: UIC (162.13 ± 110.58) mg/L vs. (243.99 ± 203.27) mg/L,
FT3 (4.71 ± 1.01) nmol/L vs. (5.04 ± 2.01) nmol/L, TSH (2.86 ±

2.31) uIU/mL vs. (7.07 ± 14.69) uIU/mL, LDL-C (2.67 ± 0.80)

mmol/L vs. (2.81 ± 0.82) mmol/L, separately. On the contrary,

the significant inferior factors in HT patients were as follows:

age (54.06 ± 13.50) years vs. (48.04 ± 13.01) years, BMI (24.49

± 3.31) kg/m2 vs. (23.30 ± 3.55) kg/m2, 25-(OH)D (20.72 ±

7.35) ng/mL vs. (15.03 ± 10.37) ng/mL, FT4 (16.41 ± 2.35)

nmol/L vs. (16.36 ± 7.71) nmol/L, TAG (1.66 ± 1.09) mmol/L

vs. (1.36 ± 1.13) mmol/L, TC (4.70 ± 0.99) mmol/L vs. (4.44 ±

0.89) mmol/L and FPG (5.66 ± 1.34) mmol/L vs. (5.27 ± 1.13)

mmol/L. However, the HDL-C level of (1.35 ± 0.33) mmol/L in

controls had no statistical significance with (1.44 ± 0.97)

mmol/L in HT patients. Among laboratory data of HT-C

patients, UIC, TSH, and LDL-C are significantly higher while

25-(OH)D, TAG, TC, and FPG are significantly lower than

those of the controls. Nevertheless, only TSH was significant

different compared to HT+C patients (Figure 2). In conclusion,

apart from HDL-C, most clinical characteristics indeed have

diagnostic values for HT while they have no indicative meaning

for thyroid cancer.
Logistic regression analysis on risk
factors for HT development

The selected factors collected from 275 controls and 361 HT

patients were independently analyzed for the HT risk factors

with binary logistic regression. The OR corresponded to the

probability that factors may promote HT (OR > 1) or restrict HT

development (OR < 1). The adjusted result shows that diabetes

(OR = 6.617, P < 0.001), UIC (OR = 1.001, P = 0.005), FT3 (OR =

1.721, P < 0.001), and TSH (OR = 1.128, P < 0.001) significantly

have risk effects on HT development. In contrast, gender (OR =

0.264, P < 0.001), 25-(OH)D (OR = 0.945, P < 0.001) and FPG

(OR = 0.664, P < 0.001) may protect HT development. Thus,

diabetes, UIC, FT3, and TSH can be identified as important risk

factors for HT development (Table 2).
Frontiers in Endocrinology 06
Machine learning modeling of HT and
thyroid cancer development

A total 275 controls and 361 HT patients with complete

clinical characteristics and laboratory results were selected for

modeling. Six models were established by different machine

learning algorithms. The ROC curves of six models are

displayed in Figure 3B, among which the XGBoost model has

the highest AUC score (0.781673). Also, the AUC scores of LR

(0.767496), SVM (0.766069), and MLP (0.775333) models were

superior. However, the AUC scores of KNN and DT models

were lower than 0.75, which were not practicable for HT

prediction. The performance of six machine learning models

verifies that the XGBoost model is the best in accuracy

(0.729774) and precision (0.770717) (Table 3). The following

features were arranged according to their importance for the

XGboost model, including 25-(OH)D, FT4, TSH, FT3, TC, UIC,

FPG, gender, TAG, BMI, age, and diabetes (Figure 3A). Among

all features, 25-(OH)D played the most important role in HT

risk model construction.

For the purpose of further studying whether these risk

factors are also available for thyroid cancer developing from

HT, machine learning models were established between 318 HT-

C patients and 43 HT+C patients using the similar methods

above. However, the AUC score of the most optimal model in

the test set was lower than 0.65, which indicated that these

factors are not suitable for machine learning of thyroid

malignancy in our cohort (Additional file 3).
Discussion

Presently, HT is the most common chronic autoimmune

disease worldwide (42), which has the risk of occurring with

thyroid cancer or deteriorating into thyroid cancer, such as PTC

(43–45). Apart from thyroid cancer, HT may also lead to other

disorders (46, 47). However, some difficulties still exist in the

diagnosis of HT. For example, ultrasonography is an essential

and prevalent noninvasive tool for diagnosis of HT (48), but the

correct diagnosis of HT is based on the extensive clinical

experience of physicians. Besides, it is difficult for

ultrasonography to distinguish HT from other diseases when

HT coexists with other thyroid disorders (49). Conversely, the

diagnosis of HT based on an invasive cytological examination of

ultrasound-guided fine-needle biopsy or surgical samples should

also be optimized (49), since the examination process needs at

least three days and the recognition of marked cells needs more

time as well as specialized knowledge of cytology. Thus, it is

urgent to develop new precise diagnostic methods for early-

stage HT.

In our study, the cases of thyroid goiter accounted for 0.81%,

90.83%, and 97.73% of the 866 non-HT controls, 357 HT-C
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https://doi.org/10.3389/fendo.2022.886953
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Li et al. 10.3389/fendo.2022.886953
B C

D E F

G H I

J

A

FIGURE 2

Multiple comparative analysis testing of laboratory data among controls and HT patients. (A) UIC, (B) 25-(OH)D, (C) FT3, (D) FT4, (E) TSH, (F)
TAG, (G) TC, (H) LDL-C, (I) HDL-C, (J) FPG. *P < 0.05, ***P < 0.001, ****P < 0.0001. UIC, urinary iodine concentrations; 25-(OH)D, 25
hydroxyvitamin D; FT3, free triiodothyronine; FT4, free thyroxine; TSH, thyroid stimulating hormone; TAG, triglyceride; TC, total cholesterol;
LDL-C, low density lipoprotein cholesterol; HDL-C, high density lipoprotein cholesterol; FPG, fasting plasma glucose.
TABLE 2 Logistic regression analysis on risk factors for HT.

Characters Wald P-value OR 95% CI for OR

Lower Upper

Gender 33.053 <0.001 0.264 0.167 0.415

Diabetes 12.962 <0.001 6.617 2.365 18.512

UIC 7.804 0.005 1.001 1.000 1.003

25-(OH)D 19.761 <0.001 0.945 0.922 0.969

FT3 15.929 <0.001 1.721 1.318 2.246

TSH 11.203 <0.001 1.128 1.051 1.211

FPG 12.804 <0.001 0.664 0.531 0.831
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The adjusted quantification of relative risk relations between factors and HT. OR, odds ratio; UIC, urinary iodine concentrations; 25-(OH)D, 25 hydroxyvitamin D; FT3, free
triiodothyronine; TSH, thyroid stimulating hormone; FPG, fasting plasma glucose.
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patients, and 43 HT+C patients, respectively. Besides, 44 (9.59%)

out of 49 HT patients also had thyroid cancer. Thus, the thyroid

goiter significantly has a positive relationship with HT

development. The incidence of HT is clinically insidious and

sometimes asymptomatic and it has been reported that a number

of HT patients (38.80%) were significantly asymptomatic (50). If

the thyroid goiter is not adequately investigated or patients are

asymptomatic, it is likely to remain undiagnosed though being in

an early phase of HT. Therefore, correctly distinguishing benign

and malignant thyroid goiters is important for the treatment and

prognosis assessment of HT.
Frontiers in Endocrinology 08
There were multiple factors that significantly changed

between HT patients and controls in our study. Firstly, the

levels of TSH elevated likewise in HT patients compared to

controls. The FT4 level significantly reduced while the FT3 level

significantly elevated in HT patients compared to controls. In

order to diagnose HT more conveniently and quickly, it is

preferred to simultaneously inspect the thyroid functions,

hormones, and antibodies in the blood, including TSH, FT3,

and FT4. It was reported that in the HT patients, there may be a

clinical manifestation of elevated TSH, along with poor FT3 and

FT4 levels (12, 13, 19, 23, 32). Secondly, there has been much
B

A

FIGURE 3

Machine learning models of HT development. (A) The rank of feature importance in model construction, including clinical and laboratory
factors, as well as their corresponding F scores. (B) The ROC curves of six models.
TABLE 3 Performance summary of six machine learning models of HT.

Models Accuracy Precision Recall F1 Score AUC Score

KNN 0.681029 0.746247 0.681507 0.710569 0.728307

LR 0.701378 0.730701 0.780822 0.749290 0.767496

SVM 0.710839 0.720756 0.825304 0.766319 0.766069

DT 0.643135 0.680359 0.706202 0.691899 0.633101

MLP 0.721863 0.746918 0.797603 0.767313 0.775333

XGBoost 0.729774 0.770717 0.772755 0.767228 0.781673
f

AUC, area under curve; KNN, k-nearest neighbor classifier; LR, logistic regression; SVM, a support vector machine; DT, the decision tree model; MLP, the multilayer perceptron network;
XGBoost, eXtreme Gradient Boosting.
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research on the physiological changes in the blood and urine of

HT patients (18, 51, 52). For the HT patients we studied, the

average 25-(OH)D level was significantly reduced while UIC was

significantly elevated compared to controls. Micronutrients,

such as iodine and vitamin D, are often found to be deficient

in HT patients (17, 53). In our study, the levels of FPG, TAG,

and TC were all significantly decreased while LDL-C was

significantly increased in HT patients compared to controls.

Blood glucose and blood lipid, including FPG, TAG, TC, and

LDL-C are indeed found to be decreased in HT patients (24–26).

Thirdly, except for laboratory results, many clinical

characteristics are also associated with HT development. In

our study, we found that gender, age, and BMI were

significantly correlated with HT. Diabetes also had a

significant positive correlation with HT. According to previous

studies, middle-aged women are more likely to suffer from HT

than men (32). In general, the average BMI of HT patients tends

to be lower than controls (53). Also, patients with an endocrine

disorder, such as diabetes, also have a potential HT risk (25).

However, many other autoimmune disorders are associated to

HT, such as rheumatic disorders, autoimmune hemolytic

anemia, and immune thrombocytopenic purpura, which may

become potential risk factors for HT development (54–57).

As for thyroid cancer, in our study, only BMI and TSH had

significantly positive impacts on the development of thyroid

cancer compared to controls. Most thyroid cancer patients had

the same altered tendency as HT patients, except for BMI and

FT4. Previous studies show there are obvious elevated levels of

TG, TGAb, TPOAb, and disordered TSH in patients with

thyroid cancer (58–60), which were not analyzed in this study.

Besides, poor prognostic clinical characteristics of thyroid cancer

also include older age and large tumor size, which are usually

detected in middle-aged women (39). However, these factors had

no difference in our study.

Moreover, among the factors above, we found four factors

that can be considered risk factors for HT development by

adjusted logistic regression analysis: diabetes, UIC, FT3, and

TSH. Finally, we utilized multiple factors to conduct machine

learning modeling of HT. The verified risk factors inducing HT

were analyzed in this study. Six predictive models were

evaluated in the test set and the XGBoost model had the

highest accuracy, precision, and AUC score. Also, LR, SVM,

and MLP models also showed good performance. To date,

there have been few studies on machine learning modeling of

HT with multiple factors (32, 42). However, the machine

learning modeling was not available to distinguish HT+C

from HT with these factors. The arrangement of feature

importance showed that 25-(OH)D was the best risk factor

to indicate HT in comparison with the others. FT4 and TSH

were the next two important factors of HT. We thereby suggest

that deficient nutrition uptakes, including vitamin D and

iodine, along with multiple factors related to thyroid
Frontiers in Endocrinology 09
hormones and lipid profiles, have great significance in the

early diagnosis and risk prediction of HT. The usual diagnostic

procedure of HT is long and it is difficult to confirm HT at early

stage by ultrasound or cytological examinations. This study

was the first time comprehensive factors of HT were taken into

consideration. These factors made a superior contribution to

the reliable performance of our models. From the perspective

of the AUC score (0.781673), accuracy (0.729774), and

precision (0.770717) of the XGBoost model, it is relatively

valuable for the evaluation of HT risk and clinical decision. The

AUC scores of LR, SVM, and MLP models are all 0.77, which

indicate robust predictive performance of these multiple

factors. The previous diagnosis models of HT were based on

TPOAb and TGAb, which prompted AUC scores to 0.8 (32).

However, since TPOAb and TGAb are the diagnostic criteria

for HT, they were not suitable risk factors in our prediction

modeling of HT. Moreover, the research may help identify

novel preventative and therapeutic factors for HT patients and

even in patients presenting with asymptomatic euthyroidism

or subclinical hypothyroidism.

Nevertheless, there are still some further challenges to

address. Because of the limited cohort study, a more clinical

database in a larger cohort of HT patients should be collected

to verify and improve the performance of the proposed models

of machine diagnosis. In addition, for optimal machine

learning modeling that distinguishes thyroid cancer from

HT disease, other clinical characteristics and laboratory test

data should be taken into account. Considering that HT is

an autoimmune disease, lymphocytes and intestinal

microbiota should be meaningful risk factors for clinical

reference (33).
Conclusions

In summary, we collected clinical information of HT

patients and non-HT controls. Firstly, we found that the

counts of thyroid goiter were significantly different among

controls, patients with HT and thyroid cancer. Secondly,

comprehensive factors including age, BMI, gender, diabetes,

UIC, 25-(OH)D, FT3, FT4, TSH, TAG, TC, FPG, and LDL

had significant correlations with HT, among which diabetes,

UIC, FT3, and TSH were confirmed as important risk factors for

HT development. Besides, XGBoost, LR, SVM and MLP models

displayed appropriate predictive power in the machine learning

modeling of HT. Among all the features, 25-(OH)D, FT4, and

TSH played important roles in HT risk model construction. Our

study firstly demonstrates that comprehensive examinations

along with machine learning modeling can enhance the

precision and efficiency of thyroid diagnosis, which may also

enlighten better prevention and new therapeutic schemes for

thyroid disorders.
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ADDITIONAL FILE 1

Thyroid ultrasound images of HT and PTC patients compared to healthy
controls. (A) The normal thyroid ultrasound image of controls. (B) The
thyroid ultrasound image of HT patients. (C) The thyroid ultrasound image

of PTC patients.

ADDITIONAL FILE 2

Specimens from healthy controls, patients with HT and PTC (HE staining,

×200). (A) Control shows normal thyroid follicular epithelial cells (EC),
thyroid parafollicular cells (PC) and follicles filled with colloid (FC). (B)
Typical changes of HT, including thyroid follicles with Hürthle-cell
metaplasia (H), plasma cells (P) and lymphoid follicles with germinal

centers (G). (C) Typical changes of PTC, such as papillary areas (PA) and

follicular variant (FV).

ADDITIONAL FILE 3

Machine learning modeling of thyroid cancer deteriorated from HT. The

ROC curves of six models were shown with different colors. KNN, k-
nearest neighbor classifier; LR, logistic regression; SVM, a support vector

machine; DT, the decision tree model; MLP, the multilayer perceptron

network; XGBoost, eXtreme Gradient Boosting.
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