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SARS-CoV-2 infection can result in the development of a constellation of persistent sequelae 
following acute disease called post-acute sequelae of COVID-19 (PASC) or Long COVID1–3. 
Individuals diagnosed with Long COVID frequently report unremitting fatigue, post-exertional 
malaise, and a variety of cognitive and autonomic dysfunctions1–3; however, the basic biological 
mechanisms responsible for these debilitating symptoms are unclear. Here, 215 individuals were 
included in an exploratory, cross-sectional study to perform multi-dimensional immune 
phenotyping in conjunction with machine learning methods to identify key immunological features 
distinguishing Long COVID. Marked differences were noted in specific circulating myeloid and 
lymphocyte populations relative to matched control groups, as well as evidence of elevated humoral 
responses directed against SARS-CoV-2 among participants with Long COVID. Further, 
unexpected increases were observed in antibody responses directed against non-SARS-CoV-2 viral 
pathogens, particularly Epstein-Barr virus. Analysis of circulating immune mediators and various 
hormones also revealed pronounced differences, with levels of cortisol being uniformly lower 
among participants with Long COVID relative to matched control groups. Integration of immune 
phenotyping data into unbiased machine learning models identified significant distinguishing 
features critical in accurate classification of Long COVID, with decreased levels of cortisol being 
the most significant individual predictor. These findings will help guide additional studies into the 
pathobiology of Long COVID and may aid in the future development of objective biomarkers for 
Long COVID. 

Introduction 

Recovery from viral infections is heterogeneous and chronic symptoms may persist in a subset of 
convalescent individuals. Clinical sequelae can manifest following a variety of acute infections across a 
diverse range of viral families4–13. Moreover, post-acute infection syndromes (PAIS) following acute viral 
diseases have been described for more than a century14–17. Yet despite their ubiquity and historical record, 
the basic biology underlying the development of PAIS following viral infections remains unclear18. 

SARS-CoV-2 is a zoonotic betacoronavirus responsible for more than 6 million deaths since its initial 
detection in late 201919. The acute phase of COVID-19 has been studied extensively and in severe cases 
presents with extensive immunological and multi-organ system dysfunction20–24. Outcomes following 
COVID-19 are varied, ranging from complete recovery to a significantly increased risk of an assortment 
of adverse clinical events - even among those with initially mild disease2,25. Subsets of convalescent 
COVID-19 patients may also develop new or aggravated sequelae for months to years following 
resolution of acute COVID-19, comprising a nascent clinical syndrome known as post-acute sequelae of 
COVID-19 (PASC) or Long COVID. Clinically, Long COVID presents as a constellation of debilitating 
symptoms most commonly including unremitting fatigue, post-exertional malaise, cognitive impairment, 
and autonomic dysfunction among many others1,3,26–29. Estimates of the prevalence of Long COVID vary 
substantially30,31; however, even the most optimistic estimates of prevalence present an enormous burden 
on millions of people with significant clinical, social, and economic impacts given the global breadth of 
SARS-CoV-2 exposure. While the underlying pathogenesis of Long COVID remains unclear, current 
hypotheses include persistent virus or viral remnants, autoimmunity, dysbiosis, latent virus reactivation, 
and tissue damage caused by lingering inflammation18,32–38. 

To interrogate the biological underpinnings of Long COVID, an exploratory cross-sectional study was 
designed (Mount Sinai-Yale Long COVID or ‘MY-LC’) involving 215 participants composed of four 
groups: (1) healthy, uninfected controls (Healthy Controls or ‘HC’); (2) healthy, unvaccinated, previously 
SARS-CoV-2-infected historical controls (Healthcare Workers or ‘HCW’); (3) healthy, previously SARS-
CoV-2 infected controls without persistent symptoms (Convalescent Controls or ‘CC’); and (4) 
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individuals with persistent symptoms following acute SARS-CoV-2 infection (Long COVID or ‘LC’). 
Among the HCW, CC, and LC groups, enrolled participants were primarily non-hospitalized during acute 
COVID-19, and CC and LC groups were on average more than one year from the initial infection.  From 
each group, systematic, multi-dimensional immunophenotyping and unbiased machine learning of 
aggregated data was performed to identify potential biomarkers of Long COVID.  

Results 

Clinical characterization and demographic analysis of MY-LC groups 

The MY-LC Study enrolled a total of 220 participants (101 LC, 41 CC, 41 HC, and 37 HCW) at two 
study sites (HC, CC, and LC from Mount Sinai Hospital, New York City, New York, and HCW from 
Yale New Haven Hospital, New Haven, Connecticut). After initial enrollment and preliminary review of 
electronic medical records, two participants were excluded from the Long COVID group (n = 2 [1.98%] 
for pharmacologic immunosuppression secondary to primary immune deficiency and solid organ 
transplant), one from the healthy group (n = 1 [2.38%] for current pregnancy), and two from the 
convalescent group (n = 2 [4.76%] for current pregnancy and monogenic disorder). After exclusion, the 
final group sizes were 99 individuals in LC, 40 in HC, 39 in CC, and 37 in HCW for a total study size of 
215 individuals. (Fig. 1A). There were no significant differences in the proportion of excluded 
participants between groups (p = .6255 [Chi-square 𝛘𝛘: 0.9386, d.f. = 2]). 

Initial comparison of demographic factors demonstrated that the Long COVID and Convalescent groups 
were well-matched in age (mean 45.77 years old LC vs. mean 38.23 years old CC; Kruskal-Wallis post-
hoc p = 0.004), sex (68% female LC vs. 67% female CC, p = .9465 [𝛘𝛘: 0.1101, d.f. = 2]), and proportion 
of hospitalized acute COVID-19 (13.13% LC vs. 5.13% CC; Fisher’s Exact p = .2324 [OR: 2.797, 95% 
CI 0.66 – 12.90]) (Fig. 1B). For Long COVID and Convalescent groups, analysis of elapsed days since 
initial SARS-CoV-2 infection revealed no significant difference in median times from acute disease (432 
days LC vs. 344 days CC; Mann-Whitney p = .0572) (Fig. 1C), further enabling direct comparison of 
persistent symptom and convalescent groups. Additionally, the majority of acute SARS-CoV-2 infections 
within the Long COVID group (76%) occurred between epidemiological Weeks 7 and 17 of 2020, during 
which parental SARS-CoV-2 strains (WA-1) drove the majority of new cases. Importantly, there were 
also no baseline differences in the prevalence of anxiety (Fisher’s Exact p = 0.5978 (OR: 1.232 [0.6171 - 
2.425]) or depression (p = 0.8339 (OR: 1.192 [0.5394 - 2.607])) across aggregated participant medical 
histories. Complete demographic features and medical histories are reported in Extended Table 1. 

Across all surveyed health dimensions, participants in the Long COVID group demonstrated significant 
increases in the intensity of reported symptoms and dramatically worsened quality of life (Fig. 1D) 
(Extended Table 2). To address whether there was a pattern of responses associated with Long COVID, 
survey responses were aggregated into a single classification metric (Long COVID Propensity Score or 
LCPS) using a parsimonious logistic regression model (Long COVID vs. Other) which demonstrated both 
significant diagnostic potential (.939 AUC, bootstrap CI 0.89-0.97) (Fig. 1E-F, Extended Table 3) and 
enabled subsequent analysis of specific immunological features mediating Long COVID propensity.  

Analysis of the prevalence of self-reported symptoms among the Long COVID group revealed frequent 
reports of fatigue (87%), brain fog (78%), memory difficulty (62%), and confusion (55%) (Fig. 1G), 
consistent with symptom prevalence reported in numerous prior reports of Long COVID. The prevalence 
of Postural Orthostatic Tachycardia Syndrome (POTS) was also frequent within the Long COVID group, 
with 37.6% of individuals having objective clinical diagnoses (Fig. S1A). Negative impacts on 
employment status were also frequently reported by participants within the Long COVID group (51%) 
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(Fig. S1B). To further extend analyses of Long COVID symptomology, an agglomerative hierarchical 
clustering of binary symptom data was performed to identify clusters of participants with similar sets of 
self-reported symptoms. Three distinct Long COVID clusters were identified (bootstrapped mean cluster-
wise Jaccard similarity: Cluster 1: 0.751 [95% CI 0.542-1.00]; Cluster 2: 0.601 [95% CI 0.465-0.944]; 
Cluster 3: 0.747 [95% CI 0.561-1.00]). Comparison of LCPS across Long COVID clusters demonstrated 
a clear bifurcation, with Cluster 1 and 2 showing uniformly high propensity scores relative to more 
moderate LCPS values in Cluster 3 (Fig. S1C). 

Immune phenotyping of circulating cell populations from Long COVID participants demonstrated 
specific elevations in both inflammatory and anti-viral immune responses 

Analysis of peripheral blood mononuclear cell populations revealed a significant difference in circulating 
immune cell populations among MY-LC groups. Levels of non-classical monocytes (CD14loCD16hi), 
traditionally involved in mediating anti-inflammatory activity, as well as vascular homeostasis and viral 
immune responses 39–41, were significantly elevated among Long COVID participants (mean 1.14% LC 
vs. 0.74% CC vs. 0.86% HC) (Fig. 2A). Abundance of maturing (CD15+), MHC Class II (HLA-DR) 
expressing, non-classical monocytes were similarly elevated (HLA-DR+ mean 5.02% LC vs. 1.22% CC 
vs. 2.60% HC; CD15+ mean 30.16% LC vs. 22.45% CC vs. 17.59% HC) (Fig 2A). Significant decreases 
in circulating populations of cDC1 subsets, typically involved in cross-presentation to CD8+ T cells and 
Th1 response polarization42,43, were also noted among Long COVID participants (Fig. 2B). Levels of 
other circulating granulocyte populations (neutrophils, eosinophils, classical and intermediate monocytes, 
plasmacytoid dendritic and cDC2 populations) were not significantly different between groups, with 
significant heterogeneities noted among participants with Long COVID (Fig. S2A). 

B lymphocyte populations showed increases in both activated populations (CD86hiHLA-DRhi) (mean 
21.09% LC vs. 12.48% vs. 12.87%) and double-negative (IgD-/CD27-/CD24-/CD38-) (mean 6.68% LC 
vs. 2.59% CC vs. 2.53% HC) subsets (Fig. 2C). Circulating levels of naïve B cells and various other B 
cell subsets were not significantly different across groups (Fig. S2B). Flow cytometry analyses of 
circulating T lymphocyte populations revealed no difference in naïve T cells or effector memory subsets 
(TEM; CD45RA-/CD127-/CCR7-) (Fig. S2C) but significant decreases in circulating CD4+ central memory 
(TCM; CD45RA-/CD127+/CCR7-) (mean 27.49% LC vs. 33.79% CC vs. 33.51% HC) and significant 
increases exhausted CD4+ and CD8+ subsets (TEX; PD-1+/Tim-3+) (CD4Ex mean 0.96% LC vs. 0.77% CC 
vs. 0.76% HC; CD8Ex average 0.84% LC vs. 0.65% CC vs. 0.62% HC) (Fig. 2D). Analysis of 
intracellular cytokine production following PMA and ionomycin stimulation showed significant increases 
in CD4+ and CD8+ T cell production of IL-2 (CD4 IL-2 mean 19.44% LC vs. 14.20% CC, vs. 13.73% 
HC; CD8 IL-2 mean 5.86% LC vs. 2.83% CC vs. 2.94% HC) and IL-6 (CD4 IL-6 mean 3.54% LC vs. 
1.75% CC, vs. 1.79% HC; CD8 IL-6 mean 5.45% LC vs. 0.82% CC vs. 0.82% HC), and CD4+-specific 
increases in IL-4 production (CD4 IL-4 mean 15.56% LC vs. 8.08% CC, vs. 8.47% HC) (Fig. 2E, Fig. 
S2C). Intracellular levels of TNF-α, IFN-γ, IL-17 (CD4+), and GMZB (CD8+) were not significantly 
different across groups (Fig. S2D-E). To confirm whether Long COVID status was significantly 
associated with levels of IL-2, IL-4, and IL-6 after accounting for demographic differences among 
participants, generalized linear models were constructed incorporating age, sex, Long COVID status 
(binary), and body mass index (BMI). Both age44–46 and Long COVID status were significant predictors 
of intracellular production of IL-4 and IL-6, but not IL-2 (Fig. 2F, Extended Table 4). Manifold 
embedding of flow cytometry data from individual participants revealed populations of IL-4+/IL-6+ 
double-positive CD4+ and CD8+ T lymphocytes (Fig. 2G). Subsequent group-wide analysis of IL-4+/IL-6+ 
cells in CD4+ and CD8+ T cell populations revealed significant increases among participants with Long 
COVID (CD4 IL-4+/IL-6+ mean 1.75% LC vs. 0.21% CC vs. 0.23% HC; CD8 IL-4+/IL-6+ mean 3.74% 
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LC vs. 0.29% CC vs. 0.31% HC), with a significant number of outliers that had upwards of 20-30% 
double-positive CD4 and CD8 lymphocytes (Fig. 2H). Hierarchical clustering of flow cytometry data 
within the Long COVID group revealed blocks of co-varying immune effectors (notably Tex and IL-2, IL-
4, and IL-6 producing CD4+ and CD8+ T cells) absent from convalescent controls and consistent with 
evidence of aberrant, chronic immune engagement among Long COVID participants (Fig. 2I). 

Long COVID participants demonstrated elevated SARS-CoV-2 specific humoral responses 

Among participants with two doses of SARS-CoV-2 vaccines and prior infection, there was a significant 
increase in anti-S1 IgG levels (Fig. 3A). The levels of anti-S and anti-RBD IgG were elevated in LC, but 
not significantly different from CC (Fig. 3A). Comparison of historical, unvaccinated controls previously 
infected with SARS-CoV-2 and unvaccinated Long COVID participants demonstrated significant 
increases in anti-N IgG, while levels of anti-S, anti-S1, and anti-RBD were not significantly different 
(Fig. S3A). To more fully account for differences in demographic factors and differential vaccination 
status across study groups, statistical modeling accounting for differential number of vaccines at blood 
draw (Fig. 3B, Fig. S3B) and time from most recent vaccination (Fig. S3C) revealed that Long COVID 
status was a significant positive predictor of anti-Spike humoral responses (Extended Table 5). Linear 
peptide profiling of anti-SARS-CoV-2 IgG responses to Spike revealed elevated levels of binding at 
known sites conferring increased neutralization potential (amino acid residues (a.a.) 556-572 (1.24x LC 
vs. CC) & a.a. 572-586 (1.27x))47,48. In addition, enhanced binding was detected at sites enriched in the 
Long COVID group (a.a. 625-638 (1.65x), a.a. 660-672 (1.38x) (a SARS-CoV-2 infection motif), and a.a. 
682-690 (3.05x) (furin cleavage site)) and sites across various S2 residues were enriched in the CC group 
(a.a. 1149-1161 (1.43x CC vs. LC) & a.a. 1256-1266 (2.65x)) (Fig. 3C). Multiple differentially expressed 
SARS-CoV-2 Spike binding motifs were mapped onto publicly available structural models of trimeric 
Spike (PDB 6VXX) and were found to be highly surface exposed in natural conformational states nearby 
receptor binding domain (RBD) in S1 (RDPQTLE and KFLPQQ), as well as near the S1/S2 cleavage site 
(RSVAS, YECDIPIGAGICA, and YMSLG), consistent with results of enhanced anti-Spike immune 
responses among Long COVID participants (Fig. 3D). Specific analysis of individual peptide enrichment 
for Spike motifs revealed significant increases in the magnitude of humoral responses directed against 
RDPQTLE (Kruskal-Wallis p = 0.0041) (Fig. 3E). 

Long COVID participants displayed significant perturbations in glucocorticoids and soluble immune 
mediators 

Parallel multiplex analysis of circulating hormones and immune mediators from 99 LC, 15 CC, and 25 
HC participant plasma samples revealed significant differences in cortisol (Kruskal-Wallis p = 2.62E-13), 
IL-8 (Kruskal-Wallis p = 0.000642), CCL4 (Kruskal-Wallis p = 0.00586), CCL23 (Kruskal-Wallis p = 
0.0103), LCN2 (Kruskal-Wallis p = 0.0181), CCL20 (Kruskal-Wallis p = 0.0206), CCL19 (Kruskal-
Wallis p =  0.0206), C4b (Kruskal-Wallis p = 0.0206), Galectin-1 (Kruskal-Wallis p = 0.0206), IL-6 
(Kruskal-Wallis p = 0.0207) and various other soluble factors (Fig. 3F). Post-hoc comparisons of IL-8, 
CCL4, and other mediators demonstrated significant increases among Long COVID participants (Fig. 
S4A-K). Post-hoc comparison of cortisol concentrations revealed that Long COVID participants had 
approximately 50% lower circulating levels (median levels 47.01 ng/mL LC vs. 90.32 ng/mL HC vs. 
82.67 ng/mL). Evaluation of paired ACTH levels revealed no significant differences across groups 
(Kruskal-Wallis p = 0.677) (Fig. 3G). Additional analysis of sample collection times revealed no 
significant differences in collection time (Kruskal-Wallis p = 0.12) (Fig. 3H) and statistical modeling 
revealed that Long COVID status was a significant predictor of reduced cortisol levels after accounting 
for individual differences in age, sex, sample collection time, and BMI (Fig. 3I, Extended Table 6). 
Biplot analysis of p-values resulting from Kruskal-Wallis analysis of circulating concentrations against 
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significant correlations with Long COVID Propensity Scores (LCPS) demonstrated that cortisol was 
significantly different across MY-LC study groups and negatively correlated with LCPS, whereas levels 
of galectin-1, CCL19, CCL20, LCN2, CCL4, and IL-8 were significantly different across groups and 
positively correlated with LCPS (Fig. 3J). 

Long COVID participants did not exhibit increased autoantibodies to the extracellular proteome 

Next, antibody reactivity against extracellular human proteins was assessed using Rapid Extracellular 
Antigen Profiling (REAP), a high throughput method that allows for the measurement of antibody 
reactivity against >6,000 extracellular and secreted human proteins21,49. Though participants with Long 
COVID demonstrated a variety of private reactivities against diverse human autoantigens (Fig. 4A), there 
were no significant differences in the total number of autoantibody reactivities per participant across 
groups (Fig. 4B), nor was there a significant correlation between the number of reactivities and Long 
COVID cluster (as assessed by LCPS scores) (Fig. 4C). Additionally, there was also no correlation 
between number of autoantibody reactivities and double-negative B cell populations or days from acute 
symptom onset (Fig. S5A-B). Given previous findings of elevated functional autoantibodies in severe 
acute COVID-19 21, autoantibody reactivities were aggregated into clusters using a manually curated GO 
Process list relevant to Long COVID. There were no significant differences in the magnitude of reactivity 
between Long COVID and controls across any of the categories (Fig. 4D). 

Although total levels of autoreactivity were not elevated within the Long COVID group, individual 
participants could potentially share patterns of autoreactivity that may explain specific disease features. 
Thus, unbiased analysis of differential antigen targeting in Long COVID and control groups was 
performed using PANTHER, which revealed unique enrichment in several biological processes related to 
cation transport, including “sodium ion transport” (GO: 0006814) (Fig. 4E), while both control and Long 
COVID reactivity lists were enriched for “GPCR signaling pathways” (GO: 0007186) (Fig. S5C). To 
further explore the unique enrichment in sodium ion transport reactivities, differences were assessed in 
both the number and magnitude of reactivities against proteins belonging to this GO Process between 
MY-LC study groups. While the total number (Fig. 4F) and magnitude (Fig. S5D) of reactivities were not 
significantly different across groups, autoantibody reactivities were notably elevated in a subset of 
participants with Long COVID who displayed reactivities against 6, 7 or even 9 different proteins of this 
family. Although there was no difference in sodium channel reactivity magnitude between Long COVID 
clusters (Fig. S5E), binarization of Long COVID groups into quantile extremes (95th percentile or greater) 
for each analyzed GO Process revealed significantly increased incidence of tinnitus (GO Process “sodium 
ion transport”, p = 0.025) and nausea (GO Process: “digestive system process”, p = 0.034) (Fig. 4G). The 
individual reactivities driving the sodium ion transporter magnitude were diverse, but most commonly 
included SLC6A6, sodium-dependent taurine and beta-alanine transporter, ATP1A2, the catalytic 
component of an Na+/K+ ATPase enriched in the central nervous system and heart, and SLC9A3, a 
Na+/H+ exchanger. In contrast, differences in Digestive System Process were largely driven by 
reactivities against Cholecystokinin B receptor (CCKBR), a receptor for Gastrin and Cholecystokinin 
present in the CNS and GI tract. 

Long COVID participants displayed altered humoral responses to distinct herpesviruses 

Given the emerging evidence for a role of latent virus reactivation in Long COVID37,50, anti-viral 
reactivity patterns were examined in the MY-LC groups. To accomplish this, two complementary 
approaches were undertaken. Initial analysis of participants’ global anti-viral responses was assessed by 
Rapid Extracellular Antigen Profiling (REAP), which also measures antibody reactivity to 225 
exogeneous viral proteins (Supplementary Table 1). Reactivity against 36 different viral conformational 
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epitopes was detected amongst 99 Long COVID and 40 control participants (Fig. S6A). For comparison 
of SARS-CoV-2 protein reactivities, analysis was confined to participants with 2 doses of SARS-CoV-2 
vaccine. Participants in Long COVID group had significantly elevated mean differences in REAP 
reactivities against almost all non-Omicron SARS-CoV-2 variant RBD sequences tested relative to 
healthy and convalescent controls (LC vs. controls mean net-difference: Delta: +2.51 (p = .056); Beta: 
+2.46 (p = .056); Gamma: +2.33 (p = .014); Alpha: +2.13 (p = .0167; and Epsilon: +1.97 (p = .0298)), in 
agreement with the ELISA analysis (Fig. 5A, 3A). 

Differences in mean viral reactivities against non-SARS-CoV2 antigens were also striking (Fig. 5B), with 
participants in the Long COVID group displaying elevated mean REAP scores against several herpesvirus 
antigens including the Epstein-Barr Virus (EBV) minor viral capsid antigen gp23 (Fig. 5C), the EBV 
fusion receptor component gp42 (S6B), the EBV acute phase antigen EAD (Fig. S6C), and the VZV 
glycoprotein E (Fig. 5D). To orthogonally validate the REAP findings, ELISAs for EBV p23 (Fig. S6D) 
and EBV EAD (Fig. S6E) were performed, finding a significant correlation between REAP scores and 
corresponding ELISA reactivities.  

To further interrogate herpesvirus-specific antibody responses among each of the groups, the Serum 
Epitope Repertoire Analysis (SERA) platform was used. SERA is a commercially available random 
bacterial display library which encompasses linear epitope panels representing 45 different pathogens and 
disease markers, previously validated leveraging a database of thousands of controls51. Importantly, this 
analysis revealed no significant difference in the estimated seroprevalence of EBV across study groups 
(91% EBV seropositive Long COVID participants vs. 98% seropositive controls, Fisher’s Exact Test p = 
.1682) (Fig. 5E) or any other viral pathogens (Fig. S6F). By linear peptide screening, reactivity against 
EBV-associated epitopes was similar within the MY-LC study groups, though Long COVID participants 
had higher seropositivity for two linear motifs mapping to two envelope glycoproteins, gp42 and gp350, 
both essential for lytic infection of B-cells by EBV (Fig. S6G). Moreover, the Long COVID group had a 
higher degree of reactivity against the gp42 linear peptide, PVXF[ND]K (Fig. 5F). This motif was 
mapped onto publicly available structural models of gp42 in complex with EBV gH/gL (PDB 5T1D) and 
the identified residues were found to be highly surface exposed in its natural conformational state on the 
surface of EBV virions (pink residues, Fig. 5G).  

Aggregating the initial results of REAP and SERA, Long COVID individuals had higher titers of anti-
EBV antibodies, even though overall seroprevalence is not different from healthy or convalescent 
controls. 

Additional analysis revealed no statistically significant differences between LCPS and humoral reactivity 
directed against EBV p23 or gp42 PVXF[ND]K antigens (Fig. S6H, S6I). In contrast, the reactivity to 
both of these herpesvirus antigens correlated with populations of activated T-cells, including IL4/IL6 
producing CD4+ T cells in Long COVID participants (EBV p23: r = 0.34, gp42 PVXF[ND]K: p = 1.1E-
3; r = 0.28, p = 4.6E-3) (Fig. 5H, 5I). Furthermore, additional significant correlations were observed 
between EBV p23 reactivity and terminally differentiated effector memory (TEMRA) CD4 T cells (r = 0.45, 
p = 7.4E-6) (Fig. S6J), a subset of cells previously implicated in protection from CMV72,73 and Dengue 
virus74. In contrast, there was no correlation between anti-SARS-CoV-2 antibody levels and IL-4/IL-6 
double-positive CD4 T cells (Fig. S7). 

Unsupervised and supervised machine learning approaches identified unique biological markers of Long 
COVID 

UMAP embedding of study participants with all collected immunological features demonstrated a clear 
visual separation between people with Long COVID and those without (Fig. 6A).  Consistent with this, k-
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nearest neighbors classification on the normalized features demonstrated efficient discriminative 
performance, with an AUC=0.96 (95% CI: 0.92-0.99, Fig. 6B). Principal components regression of 
collated immunological data identified flow cytometry (pseudo-R2 = 73.0%) and plasma proteomics 
(pseudo-R2 = 64.6%) as the most informative individual data blocks contributing to efficient separation of 
groups, whereas autoantibodies against human exoproteome (aAb) contributed the least. A final 
parsimonious LASSO model similarly achieved good fit (pseudo-R2 = 91.3%) (Fig. 6C).  Of the features 
selected for the final model, several features significantly distinguished Long COVID (elevated double 
negative B cells, serum galectin-1 concentration, various EBV epitopes) while others were negatively 
associated (reduced serum cortisol, PD-1+ CD4+ TCM, and HSV1 and HSV2 motifs) (Fig. 6D).   

Serum cortisol was the most significant individual predictor of Long COVID status in the model, and 
cortisol alone as a predictor achieved an AUC of 0.96 (95% CI: 0.92-0.99) in the data set (Fig. 6E). 
Notably, serum cortisol within the MY-LC study was highest in healthy (uninfected) controls, lower in 
convalescent controls, and lowest in participants with Long COVID (Fig. 6F). When tuning for accuracy, 
a threshold of 70.38 ng/mL obtained a maximum classification accuracy of 91.9% (Fig. 6F). Comparison 
of classification accuracies between LCPS models (Fig. 1 E-F) and machine learning (Fig. 6B) revealed 
substantial agreement (Cohen’s Kappa .865, 95% CI [0.83 - .90]), suggesting that both PROs and 
immunological features efficiently classify Long COVID (Extended Table 7). 

To assess the association between immune profiling and Long COVID propensity, the original UMAP of 
immunological features was used to visually assess separation of Long COVID participants according to 
LCPS (Fig. S8A). There was modest capacity for prediction of LCPS scores based on k-nearest neighbors 
(AUC = 0.68, 95% CI: 0.58-0.78) as compared to classification of Long COVID status (Fig. S8B). PCA 
regression model construction demonstrated moderate fit of the integrated model (pseudo-R2 = 71.9%) 
and once again identified flow cytometry (pseudo-R2 = 55.7%) and plasma proteomics (pseudo-R2 = 
71.3%) as the most informative data segments (Fig. S8C). Serum cortisol was again the principal 
significant factor negatively associated with LCPS in the model (Fig. S8D). 

Discussion 

Persistent sequelae are a prominent and debilitating consequence of infection with SARS-CoV-21,3,29. Our 
exploratory analyses identified key significant immunological differences relative to demographically 
matched control populations at >400 days post infection. A number of significant changes in circulating 
leukocytes, including increases in non-classical monocytes, activated B cells, double-negative B cells, 
exhausted T cells, and IL-4/IL-6 secreting CD4 T cells, and decreases in conventional DC1 and central 
memory CD4 T cells were identified. In addition, antibodies to SARS-CoV-2 antigens and herpesvirus 
lytic antigens were elevated in participants with Long COVID. In contrast, no significant differences were 
found for autoantibodies to human exoproteome. Most strikingly among participants with Long COVID, 
levels of plasma cortisol were roughly half of those found in healthy or convalescent controls. Based on 
machine learning, cortisol levels alone were the most significant predictor for Long COVID 
classification, as well as for estimation of Long COVID Propensity Score. Multiple hypotheses have been 
proposed for Long COVID pathogenesis, including persistent virus/virus remnants, autoimmunity, 
dysbiosis, latent viral reactivation and unrepaired tissue damage 18,32–38. Our data suggest the involvement 
of persistent antigen, reactivation of latent herpesviruses, and chronic inflammation, and are less 
consistent with the autoantibodies to extracellular antigens. 

Immune phenotyping of PBMC populations revealed notable elevations in circulating non-classical 
monocytes among the Long COVID group. Non-classical monocytes are frequently associated with anti-
inflammatory responses programs; however, they are also engaged in maintenance of vascular 
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homeostasis, Th1 anti-viral response polarization, regulation of immune complex deposition, and various 
chronic inflammatory and autoimmune conditions 39–41,52. Significant decreases in levels of circulating 
cDC1 populations were also observed among participants with Long COVID, which are classically 
associated with antigen presentation and cytotoxic T cell priming during viral infection 57,58. In parallel 
with perturbations in circulating myeloid populations, significant reductions in the CD4+ TCM cells and 
elevations in exhausted CD4+ and CD8+ T cells were observed. Analysis of intracellular cytokine 
production following stimulation displayed significant increases in the production of inflammatory IL-2 
and IL-6 among CD4+ and CD8+ T cells, and a specific elevation of IL-4 CD4+ T cells. Unexpectedly, 
subsets of Long COVID participants also had polyfunctional IL-4 / IL-6 co-expressing CD4+ T cells 
which correlated with antibody reactivity against EBV lytic antigens, but not SARS-CoV-2 antigens. In 
aggregate, these findings are consistent with chronic immune engagement against reservoirs of viral 
antigen among participants with Long COVID. 

With respect to humoral immunity, SARS-CoV-2 specific IgG against Spike and S1 were elevated in 
Long COVID participants as compared to vaccination-matched controls. Linear peptide profiling of 
antibody binding across SARS-CoV-2 Spike demonstrated both exaggerated magnitude and unique 
binding targets among participants with Long COVID, most notably at residues 682-690 comprising the 
furin cleavage site. These findings are consistent with results from analysis of PBMC populations, such as 
TEX increases suggesting chronic immune responses directed against viral antigens within the Long 
COVID group. Intriguingly, circulating Spike protein has also been observed in Long COVID 
participants, but not in convalescent controls 53. Furthermore, these findings are supported by prior reports 
of persistent viral antigen in intestinal biopsies of convalescent COVID-19 individuals, and suggest 
persistent antigen might drive the continuous elevation in antibody responses among people with Long 
COVID33–36.  

In parallel to the analysis of humoral responses and circulating immune effector populations, systematic 
profiling of soluble immune mediators found numerous significant differences among MY-LC study 
groups. Participants with Long COVID demonstrated striking decreases in systemic cortisol levels – 
decreases which remained significant after accounting for differences in individual demographic factors 
and sample collection times. This hypocortisolism was not associated with a significant perturbation in 
ACTH levels, suggesting an inappropriately blunted compensatory response by the hypothalamic-
pituitary axis. The significance of the magnitude and prevalence of hypocortisolism in individuals with 
Long COVID is highlighted in that low levels of cortisol were also the dominant feature driving the 
accurate separation of Long COVID participants in machine learning models. Prior reports have 
associated low cortisol levels during the early phase of COVID-19 in patients that develop respiratory 
Long COVID symptoms37. Thus, our current finding of persistently decreased cortisol production in 
participants with Long COVID more than a year following acute infection warrants expanded 
investigation. Importantly, cortisol plays a critical role in mediating homeostatic stress responses and 
hypocortisolism shares substantial clinical overlap with Long COVID symptoms54. Low levels of cortisol 
have also been reported for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)55 and 
treatment with hydrocortisone is reported to elicit modest improvement in symptoms. However, adrenal 
suppression has ultimately precluded its widespread clinical use for this indication55 and additional 
clinical trials may be needed to optimize glucocorticoid replacement therapies for Long COVID and 
ME/CFS.  

The multi-dimensional immune profiling of Long COVID participants also revealed elevated humoral 
immune responses to non-SARS-CoV-2 viral antigens, particularly EBV. EBV viremia was previously 
reported during acute COVID-1937,56 in hospitalized patients and predicted the development of persistent 
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symptoms in the post-acute COVID-19 period 37. The observation of elevated IgG against EBV lytic 
antigens in this study suggests recent reactivation of latent herpesviruses (EBV and VZV) may be a 
common feature of Long COVID. Additionally, concordant analysis of EBV IgG responses by REAP and 
SERA found significant positive correlations between reactivity against EBV p23 and TEMRA and IL-
4+/IL-6+ CD4 T cell populations, as well as correlations between reactivity against EBV gp42 and IL-
4+/IL-6+ double positive CD4 T cell populations among participants with Long COVID. These results 
suggest that herpesvirus reactivation is not incidental following SARS-CoV-2 infection, and instead that 
non-SARS-CoV-2 viral pathogens may alternatively mediate, aggravate, or exploit the persistent changes 
observed in circulating immune effector populations. Whether EBV reactivation may also predispose 
people with Long COVID to the development or exacerbation of autoimmune pathologies, as has been 
recently reported for people with multiple sclerosis57,58, will require extensive longitudinal monitoring and 
surveillance of people with Long COVID. 

Extensive autoantibody profiling indicated that there were no stereotypical or shared extracellular 
autoantibodies that could differentiate participants with Long COVID from controls. Furthermore, there 
was no correlation between the degree of autoantibody reactivity and Long COVID propensity, nor was 
there any disproportionate targeting of functional pathways to distinguish Long COVID. In context of 
prior hypotheses suggesting that autoantibodies may contribute to the pathogenesis of Long COVID18,38, 
our results suggest they play a more limited role in disease pathology. However, the present results 
suggest autoantibodies may associate with particular features of Long COVID symptoms in subsets of 
affected individuals, such as tinnitus and nausea. Given the generally sparse, private nature of the detected 
autoreactivities, a prospective study with additional statistical power will be required to validate and 
detect more subtle patterns in autoantibody reactivity amongst participants with Long COVID that could 
play a disease-modifying role. Additionally, whether autoantibodies may be associated with other adverse 
clinical outcomes following COVID-19 merits future study. 

Finally, machine learning models identified multiple significant predictors of Long COVID status relative 
to convalescent and healthy control populations. While cortisol was the most robust individua predictor of 
Long COVID status, maintaining its excellent specificity for Long COVID diagnoses outside of the MY-
LC study is unlikely given its known pleiotropic role in a variety of diverse disease processes. Instead, it 
is proposed that a minimal set of soluble biomarkers identified in this study (decreased cortisol, increased 
IL-8 and galectin-1) may serve as more specific diagnostic biomarkers for Long COVID. Additionally, 
classification accuracy using solely immunological data obtained from Long COVID participants strongly 
agreed with Long COVID classifications using LCPS scoring (Cohen’s Kappa – 0.865), demonstrating 
that both PROs and immunological analyses are highly concordant in diagnosing Long COVID. 

Importantly, this study has several limitations. Primary among these considerations is the relatively small 
number of participants that were extensively immunophenotyped. While broad in its coverage of diverse 
biological features, this study lacked the thousands of independent observations that traditional machine 
learning methods rely upon to robustly train and optimize classification models. Instead, this study 
leveraged machine learning to parse hundreds of individuals, each with tens of thousands of data points, 
to identify a suite of candidate immunological features important in the accurate classification of Long 
COVID. Naturally this approach limits broad applicability without external validation, and the reported 
observations should serve primarily to guide and inform future studies investigating mediators of Long 
COVID pathogenesis. Beyond sample size, this study also prioritized analysis of peripheral (circulating) 
immune factors from study participants. As Long COVID often presents with organ-system specific 
dysfunctions, a greater emphasis on analysis of local - as well as systemic - immune features would serve 
as a critical extension of the findings presented in the current study. Further, our analysis of 
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autoantibodies was restricted only to the exoproteome. Whether antibodies to intracellular autoantigens 
and non-protein autoantigens play a role in Long COVID pathogenesis was not tested. Lastly, analysis of 
cortisol levels among participants also displayed excellent specificity for a Long COVID diagnosis within 
the MY-LC study; however, the reported accuracies do not account for other disease processes that 
phenotypically resemble Long COVID or other disease processes where hypocortisolism is prominent. 

In summary, significant biological differences have been identified between participants with Long 
COVID and demographically and medically matched convalescent and healthy control groups, validating 
the extensive reports of persistent symptoms by various Long COVID advocacy groups. Unbiased 
machine learning models further identified both putative biomarkers of Long COVID, as well as potential 
mediators of Long COVID disease pathogenesis. Our study provides a basis for future investigations into 
the immunological underpinnings driving the genesis of Long COVID. 
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Figure 1. Demographic and clinical stratification of participants with Long COVID. (A) Schematic of 
MY-LC study design. Numbers in center of diagram indicate enrolled participants in each study group 
(clockwise, ‘HCW’ = historical, unvaccinated SARS-CoV-2 infected controls, ‘CC’ = convalescent SARS-
CoV-2 individuals without persistent symptoms; ‘LC’ = convalescent SARS-CoV-2 individuals with 
persistent symptoms; ‘HC’ = healthy controls with no prior-SARS-CoV-2 infection). Outer ring describes 
different assay modalities performed on samples from each group. (B) Demographic features of interest for 
LC (top row, purple) and CC (bottom row, yellow) displayed as ring charts. Center values in ‘Age’ column 
are group average ages in years. Statistical significance is reported by brackets as relevant post-hoc 
comparisons (‘Age’) or Chi-square tests (‘Sex’ and ‘Acute Disease Severity’) and are further detailed in 
Extended Table 2. (C) Box plots of days from acute symptom onset between CC and LC groups. Central 
lines indicate group medians, with top and bottom lines indicating 75th and 25th percentiles, respectively. 
Significance was assessed using Wilcoxon Rank-Sum testing. (D) Box plots of Min-Max, oriented and 
normalized survey responses for HC (orange), CC (yellow), and LC (purple) groups. Individual survey 
instruments are arranged in columns, with formal names displayed in bold text (top) and respective health 
dimensions reported along corresponding points of x-axis. Surveys marked in red were combined to 
generate Long COVID Propensity Scores (LCPS). Central lines of box plots indicate group medians, with 
top and bottom lines indicating 75th and 25th percentiles, respectively. Significance was assessed using 
Kruskal-Wallis tests with post-hoc comparisons using Dunn’s test reported along upper rows (top to 
bottom: (1) CC vs. LC (2) HC vs. LC (3) HC vs. CC) and are corrected for multiple comparisons using 
Tukey’s Method. Superscripts refer to ‘Reference’ entries for previously published, validated survey 
instruments. (E) Box plots of Long COVID Propensity Scores (LCPS). Central lines indicate group 
medians, with top and bottom lines indicating 75th and 25th percentiles, respectively. Significance was 
assessed using Kruskal-Wallis tests with post-hoc comparisons using Dunn’s test and are corrected for 
multiple comparisons using Tukey’s Method. (F) Receiver-Operator Curve (ROC) analysis of LCPS scores. 
Area under the curve (AUC) is reported with Bootstrap Bias-corrected 95% confidence intervals of AUC. 
(G) Prevalence of top 30 self-reported binary symptoms ranked from most prevalent (right) to least 
prevalent (left). Symptoms are colored according to investigator-assigned physiological systems: ‘Const. / 
Constitutional’ = light blue, ‘Neuro. / Neurological’ = red, ‘Pulm. / Pulmonary’ = green, ‘MSK / 
Musculoskeletal’ = blue, ‘GI / Gastrointestinal’ = tan, ‘Cardiac’ = light purple, ‘Endo. / Endocrine’ = light 
green, ‘ENT / Ear, Nose, Throat’ = pink, and ‘Sex Dys. / Sexual Dysfunction’ = orange. (H) Heatmap of 
self-reported binary symptoms bi-clustered by Hamming distances (rows and columns) and colored 
according to physiological system as previous (G, before). Columns are annotated by LCPS scores with 
bootstrapped cluster reproducibility scores reported in parentheses (bootstrapped Jaccard similarity). For 
all panels, only significant differences between groups are displayed. Abbreviations: EMR = electronic 
medical record; n.s. = not significant; Dys. = dysfunction; CI = confidence interval; Diff. = difficulty; UI 
= urination; Subj. = subjective; Decr. = decreased; Abd. = abdominal; Indig. = indigestion. 
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Figure 2. Immunological differences in myeloid and lymphocyte effectors among participants with 
Long COVID. (A-B) Violin plots of myeloid peripheral blood mononuclear populations (PBMCs) plotted 
as percentages of respective parent populations (gating schemes detailed in Extended Figure 9A). 
Significance was assessed using one-way ANOVA for differences in group means, with post-hoc analysis 
using t-tests corrected for multiple corrections using Tukey’s Method. (C-E) Violin plots of various 
lymphocyte peripheral blood mononuclear populations (PBMCs) plotted as percentages of respective 
parent populations (gating schemes detailed in Extended Figure 9B). Significance was assessed using one-
way ANOVA for differences in group means, with post-hoc analysis using t-tests corrected for multiple 
corrections using Tukey’s Method. (F) Model coefficients from generalized linear modeling are reported 
for various outcomes (top of panels). Significant predictors (p ≤ 0.05) are plotted in purple and non-
significant predictors are plotted in black. Detailed model results are reported in Extended Table 5. (G) 
Representative tSNE plots from a participant with Long COVID for various PBMC populations (CD4+, 
CD8+, IL-4, and IL-6). Individual dots represent single cells. (H) Violin plots of IL-4 and IL-6 double 
positive CD4+ and CD8+ T cells plotted as percentages of CD3+ cells. Significance was assessed using one-
way ANOVA for differences in group means, with post-hoc analysis using t-tests corrected for multiple 
corrections using Tukey’s Method. (I) Hierarchical clustering of Fisher-Z transformed Pearson correlations 
between various PBMC populations for LC group (upper right triangle) and CC group (lower left triangle). 
Distance metrics were first calculated using standardized Euclidean metrics with WPGMA linkage among 
the LC group and resulting dendrogram ordering applied to CC group for direct comparison. For all panels, 
only significant differences between groups are displayed. 
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Figure 3. Elevated SARS-CoV-2 specific humoral responses and altered circulating plasma factors 
among Long COVID participants. (A) Dot plots of various anti-SARS-CoV-2 IgG concentrations among 
vaccination-matched HC, CC, and LC groups (all with prior infection). Vaccination status for each group 
is indicated by the general form “x2” where digits indicate the total number of SARS-CoV-2 vaccine doses. 
Central bars indicate group means, and error bars represent 95% confidence interval estimates of group 
means. Significance for difference in group medians was assessed using Kruskal-Wallis with Dunn’s test 
for post-hoc comparison. Reported p-values are adjusted for multiple comparison using Tukey’s Method. 
(C) Model coefficients from generalized linear modeling are reported for various outcomes (top of panels). 
Significant predictors (p ≤ 0.05) are plotted in purple and non-significant predictors are plotted in black. 
Detailed model results are reported in Extended Table 6. (D) IWAS line profiles of IgG antibody binding 
plotted along SARS-CoV-2 Spike amino acid sequence. Various Spike protein domains are indicated by 
colored boxes (top). 95th percentile values are displayed for each group: LC (top, purple), HC (middle, 
orange) and CC (bottom, yellow) with peaks ≥ 2.5 IWAS value annotated by their consensus linear motif 
sequence (bold) and surrounding residues. (E) Three-dimensional mapping of LC-enriched motif sequences 
onto SARS-CoV-2 trimeric spike protein. (S1 = light grey; N terminal domain (NTD) = light blue; receptor-
binding domains (RBD) = red; and S2 = dark grey, with various LC-enriched motifs annotated. (F) Box 
plots of z-score enrichments for IgG binding to SARS-CoV-2 Spike sequence RDPQTLE. A z-score greater 
than or equal to 3 indicates significant binding relative to SERA control populations. Central lines indicate 
group medians, with top and bottom lines indicating 75th and 25th percentiles, respectively. Significance 
was assessed using Kruskal-Wallis with post-hoc comparisons using Dunn’s test corrected from multiple 
comparison (Tukey’s Method) (G) Negative Log10 transformed p-values from Kruskal-Wallis tests for 
various plasma factors are plotted. P-values are corrected for multiple comparison using FDR correction 
(Benjamini-Hochberg). Only the top 30 factors (ranked by Kruskal-Wallis p-values) are plotted for 
visualization. Plasma factors with significant differences in group medians are colored in red. “∆” indicates 
that participants with potentially confounding medical comorbidities (e.g. cortisol: pre-existing pituitary 
adenoma, adrenal insufficiency, oral steroid use) were removed prior to analysis for differences in group 
medians.  (H) Box-plots of post-hoc comparisons using Dunn’s test are reported, with correction for 
multiple comparison using Tukey’s Method. Central lines indicate group medians, with top and bottom 
lines indicating 75th and 25th percentiles, respectively. (I) Box-plots of sample collection times are 
reported. Significant differences in sample collection times were assessed using Kruskal-Wallis with post-
hoc comparisons with Dunn’s test. Correction for multiple comparison was performed using Tukey’s 
Method. Central lines indicate group medians, with top and bottom lines indicating 75th and 25th 
percentiles, respectively. (J) Model coefficients from generalized linear modeling of cortisol levels. 
Significant predictors (p ≤ 0.05) are plotted in purple and non-significant predictors are plotted in black. 
Detailed model results are reported in Extended Table 7. (K) Bi-plot of plasma factor p-values from 
Kruskal-Wallis analysis (y-axis) and Spearman correlations with LCPS scores. (x-axis). Horizontal line 
indicates significance threshold for Kruskal-Wallis analysis. Vertical lines represent the minimum 
significant correlation values for plasma factors correlating with LCPS scores. Plasma factors exceeding 
both thresholds are colored in red and labeled. 
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Figure 4. Long COVID participants showed limited but selective autoantibodies against the human 
exoproteome. (A) Heatmap depicting REAP reactivities across the MY-LC Study. Each column is one 
participant, with participants grouped by study group and LCPS. Column sub-clustering within groups 
performed by k-means clustering. Each row is one protein. Proteins grouped using Human Protein Atlas 
mRNA expression data. Reactivities depicted have at least one participant with a REAP score >= 3. (B) 
The number of autoantibody reactivities per individual by group (HC = healthy control; CC = convalescent 
control; LC = Long Covid). Significance assessed by Kruskal-Wallis. Each dot represents one individual. 
Boxplot colored box depicts 25th to 75th percentile of the data, with the middle line representing the 
median. (C) Correlation plot depicting the relationship between number of autoantibody reactivities per 
individual and LCPS. Statistical significance assessed by Spearman correlation. Black line depicts linear 
regression with 95% CI shaded. Colors depict Long COVID cluster (Cluster 1 = red; Cluster 2 = green; 
Cluster 3 = blue). Each dot represents one individual. (D) Grouped box plot depicting reactivity magnitude 
per individual in the listed GO Process domain. Reactivity magnitude is calculated as the sum of REAP 
scores for all reactivities per individual in a given GO Process domain. Statistical significance assessed by 
Kruskal-Wallis. Boxplot colored box depicts 25th to 75th percentile of the data, with the middle line 
representing the median, and outliers depicted as individual points. (E) Panther GO Biological Process 
overrepresentation analysis for reactivities unique to Long COVID relative to the background REAP library 
proteins. Statistical significance determined by Fisher’s exact test with correction for multiple hypotheses 
by Bonferroni. Red color indicates adjusted p-value <0.05. (F) Bar plot depicting the proportion of 
participants with n reactivities against proteins belonging to the GO Process “sodium ion transport”. 
Statistical significance assessed by Kruskal-Wallis. (G) Heatmap depicting the relationship between binary 
Long COVID symptoms and reactivity magnitude against a given GO Process domain. Color depicts the 
fold enrichment in symptom prevalence in individuals at or above the 95th percentile for a given GO 
Process domain relative to overall prevalence of a given symptom. Statistical significance is marked by 
asterisks and was assessed by Fisher’s exact test, with correction for multiple comparisons performed using 
Benjamini-Hochberg method.  
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Figure 5. Long COVID participants demonstrate elevated levels of antibody responses to 
herpesviruses. (A) Bar plot depicting the difference in average REAP score for SARS-CoV2 S1 RBD 
between participants with Long COVID (n = 99) and pooled healthy and convalescent controls (n = 40). 
Error bars depict the 95% confidence interval. Statistical significance assessed by unpaired Wilcoxon with 
correction for multiple hypotheses by Benjamini-Hochberg method. (B) Bar plot depicting the difference 
in average REAP score for a given viral antigen between Long COVID participants (n = 99) and pooled 
healthy and convalescent controls (n = 40). Error bars depict the 95% confidence interval. Statistical 
significance assessed by unpaired Wilcoxon with correction for multiple hypotheses by Benjamini-
Hochberg method. (C, D) REAP scores for EBV p23 (5C) and VZV gE (5D) by group (HC = healthy 
control; CC = convalescent control; LC = Long COVID). Statistical significance determined by Kruskal 
Wallis. Post-hoc tests performed using Dunn’s test with Holm’s method to adjust for multiple comparisons. 
Each dot represents one individual. Boxplot colored box depicts 25th to 75th percentile of the data, with 
the middle line representing the median. (E) Proportion of each group seropositive for three EBV disease 
panels (Chronic/Latent EBV, EBV Late Antigens, and Mononucleosis) as determined by SERA (LC = 
Long COVID). Statistical significance determined by Fisher’s Exact test. (F) SERA-derived z-scores for 
EBV gp42 motif PVXF[ND]K plotted by group (HC = healthy control; CC = convalescent control; LC = 
Long Covid). Statistical significance determined by Kruskal Wallis. Post-hoc tests performed using Dunn’s 
test with Holm’s method to adjust for multiple comparisons. Each dot represents one individual. Boxplot 
colored box depicts 25th to 75th percentile of the data, with the middle line representing the median. Dashed 
line represents z-score threshold for epitope positivity defined by SERA. (5G) Three-dimensional mapping 
of LC-enriched linear peptide sequence PVXF[ND]K (magenta) onto EBV gp42 (purple) in complex with 
gH (light grey) and gL (dark grey) (PDB: 5T1D). (H, I) Correlation plot depicting the relationship between 
EBV p23 REAP score (H) or EBV gp42 PVXF[ND]K z score (I) and %IL4+/IL6+ of CD4+. Statistical 
significance assessed by Pearson correlation. Black line depicts linear regression with 95% CI shaded. 
Colors depict Long COVID cluster (Cluster 1 = red; Cluster 2 = green; Cluster 3 = blue). Each dot represents 
one individual. 
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Figure 6. Biochemical factors differentiate participants with Long COVID from controls. (A) UMAP 
projection of participant data comprised of cytokine, flow cytometry, and various antibody responses 
(SARS-CoV-2-specific, non-SARS-CoV-2 viral antibodies, and autoantibodies).  Marginal histograms 
display data density along each UMAP dimension. (B) ROC curve analysis from unsupervised K-nearest 
neighbors (KNN) classification. AUC and 95% CI intervals (DeLong’s Method) are reported. (C) 
McFadden’s pseudo R-squared are reported as bar plot for each data segment. An integrated, parsimonious 
McFadden’s pseudo R-squared is reported for the final classification model (‘All’). (D) LASSO regression 
identifies minimal set of immunologic features differentiating participants with Long COVID from others. 
Unlabeled dots are significant predictors not included in the final LASSO regression model. Dots are 
colored according to individual data segments: orange = Flow cytometry, blue = Plasma cytokines, pink = 
viral epitopes, green = SARS-CoV-2 specific antibodies, yellow = autoantibodies to human exoproteome 
(aAb). (E) ROC curve analysis using cortisol levels as an individual classifier of Long COVID status. AUC 
and 95% CI intervals (DeLong’s Method) are reported. (F) Kernel-density smoothed histograms of cortisol 
for HC, CC and LC groups. Vertical line depicts threshold values of cortisol with maximal discriminatory 
accuracy. Abbreviations: LC = Long COVID; TPR = true positive rate; FPR = false positive rate; KNN = 
k-nearest neighbors; AUC = area under the curve; CI = confidence interval; aAb = autoantibodies to 
human exoproteome; α-SARS-CoV-2 = anti-SARS-CoV-2 antibodies; Flow = flow cytometry. 
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Methods 

Ethics Statement 

This study was approved by the Mount Sinai Program for the Protection of Human Subjects (IRB #20-
01758) and Yale Institutional Review Board (IRB #2000029451 for MY-LC; IRB #2000028924 for 
enrollment of pre-vaccinated Healthy Controls). Informed consent was obtained from all enrolled 
participants.  

MY-LC Study Design, Enrollment Strategy, and Inclusion / Exclusion Criteria  

MY-LC was a cross-sectional, multi-site study comprised of four different groups with differing SARS-
COV-2 exposure histories and varied Long COVID status. The HC, CC and LC groups had samples 
collected within the Mount Sinai Healthcare System. The HCW group had samples collected within the 
Yale New Haven Healthcare System. Participants enrolled in the Long COVID group previously 
underwent complete medical evaluations by physicians to rule out alternative medical etiologies for their 
persistent symptoms before study enrollment.  

Participants with persistent symptoms following acute COVID-19 were recruited from Long COVID 
clinics within the Mount Sinai Healthcare System and the Center for Post COVID care at Mount Sinai 
Hospital. Participants enrolled in healthy and convalescent study arms were recruited via IRB-approved 
advertisements delivered through email lists, study flyers located in hospital public spaces, and on social 
media platforms. Informed consent was provided by all participants at the time of enrollment. All 
participants provided peripheral blood samples and completed symptom surveys the day of sample 
collection (described below). Self-reported participant medical histories were also collected at study visits 
and corroborated via review of electronic medical records. Prevalence of specific medical conditions was 
estimated through synthesis of self-reports and retrospective review of EMR data, where either participant 
self-reports or the presence of the condition in the EMR constituted a positive result for the condition. 

Inclusion criteria for the Long COVID group were age ≥ 18 years; previous confirmed or probable 
COVID-19 infection (according to World Health Organization guidelines59); and persistent symptoms > 6 
weeks following initial COVID-19 infection. Inclusion criteria for enrollment of healthy controls were 
age ≥ 18 years, no prior COVID-19 infection, and completion of a brief, semi-structured verbal screening 
with research staff confirming no active symptomatology. Inclusion criteria for convalescent controls 
were age ≥ 18 years; previous confirmed or probable prior COVID-19 infection; and completion of a 
brief, semi-structured verbal screening with research staff confirming no active symptomatology. 

Pre-specified exclusion criteria for this study were inability to provide informed consent; and any 
condition preventing a blood test from being performed. Additionally, all participants had electronic 
health records reviewed by study clinicians following enrollment and were subsequently excluded prior to 
analyses for the following reasons: (1) current pregnancy, (2) immunosuppression equivalent to or 
exceeding prednisone 5 mg daily, (3) active malignancy or chemotherapy, and (4) any monogenic 
disorders. For specific immunological analyses, pre-existing medical conditions were additionally 
excluded prior to analyses due to high potential for confounding (e.g., participants with hypothyroidism 
were excluded prior to analysis of circulating T3/T4 levels; participants with pituitary adenomas were 
excluded prior to analysis of cortisol levels). Specific exclusions are marked by “∆” in figures and 
detailed in relevant legends. 

Participant Surveys 
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A comprehensive suite of surveys was administered to MY-LC study participants, combining validated 
patient-reported outcomes (PROs) with custom, purpose-developed tools by the MY-LC study team. 
Baseline demographic data collected from surveys included gender, age, body mass index (BMI), race, 
and medical comorbidities. Additionally, participants in the Long COVID and convalescent group were 
asked to provide COVID-19 clinical data including date of symptom onset and acute disease severity 
(non-hospitalized vs. hospitalized), any SARS-CoV-2 polymerase chain reaction (PCR) diagnostic testing 
results, and any SARS-CoV-2 antibody testing results, Finally, all participants were asked to report 
SARS-CoV-2 vaccination status including date of vaccinations and vaccine brand. 

At the time of blood collection, all participants completed patient-reported outcomes (PROs) for fatigue 
(Fatigue Severity Scale60, fatigue visual analogue scale [F-VAS]), post-exertional malaise (DePaul 
Symptom Questionnaire Post-Exertional Malaise Short Form [DSQ-PEM Short Form])61, breathlessness 
(Medical Research Council [MRC] Breathlessness Scale62), cognitive function (Neuro-QOL v2.0 
Cognitive Function Short Form63), health-related quality of life (HRQoL) (EuroQol EQ-5D-5L64), anxiety 
(GAD-765), depression (PHQ-266), pain (P-VAS), sleep (Single-Item Sleep Quality Scale67), and pre- and 
post-COVID-19 employment status (author-developed). Lastly, participants in the MY-LC study were 
asked to self-report any current persistent symptoms from a study provided list. 

All survey data were collected and securely stored using REDCap68,69 (Research Electronic Data Capture) 
electronic data capture tools hosted within the Mount Sinai Health System. 

Long COVID Propensity Scoring (LCPS) 

Evaluation of immunophenotyping results with an objectively derived propensity score was achieved 
through construction of a multivariable logistic regression model generated with Long COVID vs. others 
(Healthy Controls + Convalescent controls) as the outcome. Predictor variables included FSS60, F-VAS, 
DSQ-PEM Short Form, MRC Breathlessness Scale62, Neuro-QOL v2.0 Cognitive Function Short Form63, 
EQ-5D-5L64, GAD-765, PHQ-266, P-VAS, Single-Item Sleep Quality Scale67. Model selection using 
Akaike’s Information Criteria (AIC) was used to select the final, parsimonious model. Log odds values 
from the final model were normalized by dividing them by their respective standard error (SE) and 
rounding to the nearest integer. These integer values were considered the score items for these specific 
variables and a cumulative propensity score for each subject was calculated by summation (Equation 1, 
below). As the score did not significantly differ between healthy controls and convalescent controls, the 
two control groups were combined as a single group (“others”) for final analysis. A ROC curve analysis 
was performed to identify the optimal cutoff for the LCPS score using the maximum value of Youden’s 
index J for Long COVID vs others. A 10-fold cross-validation was used for internal validation and to 
obtain 95% confidence interval (CI) for the area under the curve (AUC). Data were analyzed using Stata 
version 16 (StataCorp, College Station, Texas). 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 1: 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 7 ∗�𝐺𝐺𝐺𝐺𝐺𝐺 + 1 ∗�𝑀𝑀𝑀𝑀𝑀𝑀 + 2 ∗�𝑃𝑃𝑃𝑃𝑃𝑃-2 + 3�𝐸𝐸𝐸𝐸-5D + 28 ∗�𝐹𝐹𝐹𝐹𝐹𝐹  
 
Blood Sample Processing 

Whole blood was collected in sodium-heparin-coated vacutainers (BD 367874, BD Biosciences) from 
participants at Mount Sinai Hospital in New York City, New York. Following blood draw, all participant 
samples were assigned unique MY-LC study identifiers and de-identified by research staff. Samples were 
couriered directly to Yale University in New Haven, CT the same day as the sample collection. Blood 
samples were processed the same day as collection. Plasma samples were collected after centrifugation of 
whole blood at 600×g for 10 minutes at room temperature (RT) without brake. Plasma was then 
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transferred to 15-mL polypropylene conical tubes, aliquoted, and stored at 80°C. The peripheral blood 
mononuclear cell (PBMC) layer was isolated according to the manufacturer’s instructions using SepMate 
tubes (StemCell). Cells were washed twice with phosphate-buffered saline (PBS) before counting. 
Pelleted cells were briefly treated with ACK lysis buffer (ThermoFisher) for 2 minutes and then counted. 
Viability was estimated using standard Trypan blue staining and a Countess II automated cell counter 
(ThermoFisher). PBMCs were stored at -80°C for cryopreservation or plated directly for flow cytometry 
studies.  

Flow cytometry 

Freshly isolated PBMCs were plated at 1–2 × 106 cells per well in a 96-well U-bottom plate. Cells were 
resuspended in Live/Dead Fixable Aqua (ThermoFisher) for 20 min at 4 °C. Cells were washed with PBS 
and followed by Human TruStain FcX (BioLegend) incubation for 10 min at RT. Cocktails of staining 
antibodies were added directly to this mixture for 30 minutes at RT. Prior to analysis, cells were washed 
and resuspended in 100 μl 4% PFA for 30 min at 4 °C. For intracellular cytokine staining following 
stimulation, the surface marker-stained cells were resuspended in 200 μl cRPMI (RPMI-1640 
supplemented with 10% FBS, 2 mM L-glutamine, 100 U/ml penicillin, and 100 mg/ml streptomycin, 1 
mM sodium pyruvate) and stored at 4 °C overnight. Subsequently, these cells were washed and stimulated 
with 1× Cell Stimulation Cocktail (eBioscience) in 200 μl cRPMI for 1 h at 37 °C. Fifty μl of 5× 
Stimulation Cocktail in cRPMI (plus protein transport 442 inhibitor, eBioscience) was added for an 
additional 4 hours of incubation at 37 °C. Following stimulation, cells were washed and resuspended in 
100 μl 4% paraformaldehyde for 30 min at 4 °C. To quantify intracellular cytokines, cells were 
permeabilized with 1× permeabilization buffer from the FOXP3/Transcription Factor Staining Buffer Set 
(eBioscience) for 10 min at 4 °C. All subsequent staining cocktails were made in this buffer. 
Permeabilized cells were then washed and resuspended in a cocktail containing Human TruStain FcX 
(BioLegend) for 10 min at 4 °C. Finally, intracellular staining cocktails were added directly to each 
sample for 1 h at 4 °C. Following this incubation, cells were washed and prepared for analysis on an 
Attune NXT (ThermoFisher). Data were analyzed using FlowJo software version 10.8 software (BD). 
Antibody information can be seen in Supplementary Table 2. T-distributed stochastic neighbor 
embedding (t-SNE) visualization of flow cytometry data was performed using FlowJo.  

SARS-CoV-2 antibody testing by ELISA 

ELISA assays were performed as previously described 22. Briefly, Triton X-100 and RNase A were added 
to plasma samples at final concentrations of 0.5% and 0.5 mg/ml, respectively, and incubated at room 
temperature for 30 minutes prior to use to reduce the risk of any potential infectious virus in plasma. 
MaxiSorp plates (96 wells; 442404, Thermo Scientific) were coated with 50 μl per well of recombinant 
SARS-CoV-2 Total ectodomain S trimer (SPN-C52H9-100 μg, ACROBiosystems), RBD (SPD-C52H3-
100 μg, ACROBiosystems) and the nucleocapsid protein (NUN-C5227-100 μg, ACROBiosystems) at a 
concentration of 2 μg/ml in PBS and were incubated overnight at 4 °C. The coating was removed and 
plates were incubated for 1 hour at room temperature with 200 μl of blocking solution (PBS with 0.1% 
Tween-20 and 3% milk powder). Plasma was diluted serially at 1:100, 1:200, 1:400 and 1:800 in dilution 
solution (PBS with 0.1% Tween-20 and 1% milk powder), and 100 μl of diluted serum was added for 2 
hours at room temperature. Human anti-spike (SARS-CoV-2 human anti-spike [AM006415; 91351, 
Active Motif]) and human anti-nucleocapsid (SARS-CoV-2 anti-nucleocapsid [1A6; MA5-35941, Active 
Motif]) were serially diluted to generate a standard curve. Plates were washed three times with PBS-
Tween (PBS with 0.1% Tween-20) and 50 μl of HRP anti-human IgG antibody (1:5,000; A00166, 
GenScript) added to each well in dilution solution. After 1 hour of incubation at room temperature, plates 
were washed six times with PBS-Tween. Plates were developed with 100 μl of TMB Substrate Reagent 
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Set (555214, BD Biosciences) and the reaction was stopped after 5 min by the addition of 2N sulfuric 
acid. Plates were then read at an excitation/emission wavelength of 450 nm and 570 nm. 

Multiplex proteomic analysis 

Participant plasma was isolated and stored at -80°C as described above. Plasma was shipped to Eve 
Technologies (Calgary, Alberta, Canada) on dry ice and analytes were measured using the following 
panels: Human Cytokine/Chemokine 71-plex Discovery Assay (HD71), Steroid/Thyroid 6plex Discovery 
Assay (STTHD), TGF-Beta 3-plex Discovery Assay (TGFβ1-3), Human Myokine Assay (HMYOMAG-
10), Human Neuropeptide Assay (HNPMAG-05), Human Pituitary Assay (HPTP1), Human Cytokine P3 
Assay (HCYP3-07), Human Cytokine Panel 4 Assay (HCYP4-19), Human Immunoglobulin Assay 
(HGAM301-06), Human Adipokine Panel 2 Assay (HADK2-03), Human Cardiovascular Disease Panel 
Assay (HDCVD9), Human CVD2 Assay (HCVD2-8), Human Complement Panel Assay (HDCMP1), 
Human Adipokine Assay (HDADK5).  

Linear Peptide Profiling (Serimmune) 

SERA serum screening 

A detailed description of the SERA assay has been published51. For this study, plasma was incubated with 
a fully random 12-mer bacterial display peptide library (1 × 1010 diversity, 10-fold oversampled) at a 1:25 
dilution in a 96-well, deep well plate format. Antibody-bound bacterial clones were selected with 50 µL 
Protein A/G Sera-Mag SpeedBeads (GE Life Sciences, #17152104010350) (IgG). The selected bacterial 
pools were resuspended in growth media and incubated at 37 °C shaking overnight at 300 RPM to 
propagate the bacteria. Plasmid purification, PCR amplification of peptide-encoding DNA and barcoding 
with well-specific indices was performed as described. Samples were normalized to a final concentration 
of 4 nM for each pool and run on the Illumina NextSeq500. Every 96-well plate of samples processed for 
this study contained healthy control run standards to assess and evaluate assay reproducibility and 
possible batch effects. 
 
PIWAS analysis 

The published PIWAS method70 was used to identify antigen and epitope signals against the Uniprot 
reference SARS-CoV-2 proteome (UP000464024). For each sample, approximately 1–3 million 12-mers 
are obtained from the SERA assay and these are decomposed into constituent 5- and 6-mers. Enrichment 
scores for each k-mer are calculated by dividing the number of unique 12-mers containing the k-mer 
divided by the number of expected k-mer reads for the sample, based on amino acid proportions in the 
sample. The PIWAS analysis was run on the IgG SERA data with a single sample per participant (versus 
1500 discovery pre-pandemic controls) and 1010 validation controls were used as the normalization 
group. 95th quantile bands were calculated based on each population separately. 
 
IMUNE-based motif discovery 

Peptide motifs representing epitopes or mimotopes of SARS CoV-2-specific antibodies were discovered 
using the IMUNE algorithm71. A total of 164 antibody repertoires from 98 hospitalized subjects from the 
Yale IMPACT study22 were used for motif discovery. The majority of subjects were confirmed SARS 
CoV-2 positive by NAT. IMUNE compared ~30 disease repertoires with ~30 pre-pandemic controls and 
identified peptide patterns that were statistically enriched (p-value ≤ 0.01) in ≥25% of disease and absent 
from 100% of controls. Multiple assessments were run with different subsets of cases and controls. 
Peptide patterns identified by IMUNE were clustered using a point accepted mutation 30 (PAM30) matrix 
and combined into motifs. The output of IMUNE included hundreds of candidate IgG and IgM motifs. A 
motif was classified as positive in a given sample if the enrichment was ≥3 times the standard deviation 
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above the mean of the training control set. The candidate motifs were further refined based on at least 
98% specificity. The final set of motifs was validated for sensitivity and specificity on an additional 1500 
pre-pandemic controls and 406 unique confirmed COVID-19 cases from four separate cohorts. 
 
Motif grouping by similarity.  
 
For SARS-CoV-2, motifs were grouped if they shared at least 3 of 5 amino acid identities, resulting in 76 
motifs being assigned into 24 groups. The motif within an epitope group with the greatest sensitivity and 
mean enrichment was included in the SARS-CoV-2 Infection IgG panel results. In some cases, two motifs 
were selected from the same group since their combination improved sensitivity. The remaining motifs 
that did not fall into a group were further down-selected based on a specificity of >99.5%, leaving 24 
additional motifs. 
 
Rapid Extracellular Antigen Profiling (REAP) 

REAP Library Expansion. The initial yeast library (Exo201) was generated as previously described21,49. 
In Exo201, only extracellular domains >49 amino acids in length were included in the library. This library 
was expanded by supplementing expression diversity with the addition of all extracellular domains of 
multi-pass membrane proteins greater than 15 amino acids and also added 225 diverse viral antigens. 
Larger antigens that were omitted in Exo201 were additionally backfilled into the library. DNA for new 
antigens was synthesized as either a Gene Fragment (for antigens over 300 nucleotides) or as an Oligo 
pool by TWIST Bioscience, containing a 5’ sequence (CTGTTATTGCTAGCGTTTTAGCA) and 3’ 
sequence (GCGGCCGCTTCTGGTGGC) for PCR amplification. The oligo pool was PCR amplified and 
transformed into yeast with barcode fragments, followed by barcode-antigen pairing identification as 
previously described21,49. This new yeast library was then pooled with the initial library (Exo201) in the 
ratio of 1:1 to generate the new version of the library (Exo205) which contained 6,452 unique antigens.  

REAP analysis. Participant IgG isolation and REAP selections were performed as previously 
described21,49. Briefly, IgG was purified from participant plasma using protein G magnetic beads followed 
by adsorption to yeast transformed with the pDD003 empty vector to remove yeast-reactive IgG. The 
Exo205 yeast library was induced in SGO-Ura medium and 108 induced yeast cells were washed with 
PBE and added to wells of a sterile 96-well plate. 10 μg of purified participant IgG was added to the yeast 
library in duplicate in 100 μL PBE and incubated for 1 hour at 4C. Yeast cells were washed with PBE and 
incubated with 1:100 biotin anti-human IgG Fc antibody (clone QA19A42, Biolegend) for 30 minutes. 
Yeast cells were washed with PBE and incubated with a 1:20 dilution of Streptavidin MicroBeads 
(Miltenyi Biotec) for 30 minutes. Yeast were resuspended in PBE and IgG-bound yeast were isolated by 
positive magnetic selection using the MultiMACS M96 Separator (Miltenyi Biotec) according to 
manufacturer instructions and as previously described21,49.  Selected yeast were resuspended in 1 mL SDO 
-Ura and incubated at 30 ⁰C for 24 hours and then harvested for NGS analysis. NGS library preparation 
was performed as previously described21,49. Briefly, DNA was extracted from yeast libraries using 
Zymoprep-96 Yeast Plasmid Miniprep kits or Zymoprep Yeast Plasmid Miniprep II kits (Zymo Research) 
according to standard manufacturer protocols. A first round of PCR was used to amplify a DNA sequence 
containing the protein display barcode on the yeast plasmid. A second round of PCR was performed on 1 
µL step 1 PCR product using Nextera i5 and i7 dual-index library primers (Illumina). PCR products were 
pooled, run on a 1% agarose gel, and DNA corresponding to the band at 257 base pairs was cut. DNA 
(NGS library) was extracted using a QIAquick Gel Extraction Kit (Qiagen) according to standard 
manufacturer protocols. NGS library was sequenced using an Illumina NextSeq550 and an NextSeq high 
output sequencing kit with 75 base pair single-end sequencing according to standard manufacturer 
protocols. Approximately 500,000 reads (on average) per sample was collected and the pre-selection 
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library was sampled at ten times greater read depth than other samples. Samples with less than 50,000 
reads were classified as a sequencing failure and removed from further analysis. 

Data analysis. REAP scores were calculated as previously described21,49. Briefly, barcode counts were 
extracted from raw NGS data using custom codes and counts from technical replicates were summed. 
Next, aggregate and clonal enrichment was calculated using edgeR72 and custom computer scripts. 
Aggregate enrichment is the log2 fold change of all barcodes associated with a particular protein summed 
in the post-library relative to the pre-library, with zeroes in the place of negative fold changes. Log2 fold 
change values for clonal enrichment were calculated in an identical manner, but barcode counts across all 
unique barcodes associated with a given protein were not summed. Clonal enrichment for a given 
reactivity was defined as the fraction of clones out of total clones that were enriched (log2 fold change ≥ 
2). Aggregate (Ea) and clonal enrichment (Ec) for a given protein, a scaling factor (βu) based on the 
number of unique yeast clones (yeast that have a unique DNA barcode) displaying a given protein, and a 
scaling factor (βf) based on the overall frequency of yeast in the library displaying a given protein were 
used as inputs to calculate the REAP score, which is defined as follows: 

Equation 2: REAP score = Ea × (Ec)2 × βu × βf 

βu and βf are logarithmic scaling factors that progressively penalize the REAP score of proteins with low 
numbers of unique barcodes or low frequencies in the library, and are described in detail in previous 
publications21,49

. 

Antigens with an average REAP score greater than 0.5 across all samples were defined as non-specific 
and excluded from further analysis. Autoantibody reactivities were defined as antigens with REAP score 
greater than or equal to 1. 

Statistical Analysis 

Study sample was not pre-determined through formal power analysis. Specific statistical methodology 
can be found in relevant figure legends and manuscript text. Generally, comparison of immunophenotypic 
features including systemic cytokine levels and antibody concentrations between study groups was 
performed using non-parametric Kruskal-Wallis tests. In cases where Kruskal-Wallis testing indicated 
significant differences, post-hoc testing using Dunn’s test was performed with Tukey’s correction for 
multiple comparison. All statistical tests were performed using R, PRISM, and MATLAB software. 

Hierarchical clustering of flow cytometry populations was initially performed among the Long COVID 
groups using Fisher-Z transformed Pearson R correlations (Z = atanh(R)) with standardized Euclidean 
distances and WPGMA linkages to generate PBMC population clusters. Dendrogram ordering derived 
from the Long COVID group was then applied to data from CC group and a composite matrix of 
transformed correlations generated for visualization. 

Machine Learning 

Data Preprocessing. All collected data for immune profiling were collated.  Features containing 
redundant information were manually removed from the dataset (e.g., nested flow cytometry populations 
include only the extant population). 

All features were linearly scaled to unit variance and zero-centered using the R programming language 
base libraries73,74.  Median absolute deviation was calculated for each feature across all samples, with 
missing values removed.  Features with a median absolute deviation equal to zero, or features where data 
was not available in at least half the samples were not included in downstream analysis. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 10, 2022. ; https://doi.org/10.1101/2022.08.09.22278592doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.09.22278592


 34 

Unsupervised Analysis. Principal component analysis, as well as uniform manifold approximation and 
projection (UMAP), were performed on the set of normalized features75. To assess how well participants 
were grouped by all features, a k-nearest neighbor classifier with k=10 was applied to two scenarios: (1) 
separating participants with Long COVID from those without (either convalescent participants or healthy 
controls), and (2) separating participants with extreme LCPS values from other individuals. In the second 
scenario, participants were classified as having extreme LCPS values if the participant had an LCPS equal 
to or above the 80th percentile for the dataset. Area under the receiver operating characteristic curve 
(AUC) and 95% confidence intervals were calculated using DeLong's method; p-values were calculated 
using the Mann-Whitney U statistic76,77.  

Supervised Analysis. Principal components regression was applied to each of a predefined set of data 
segments: autoantibodies, SARS-CoV-2 antibodies, non-SARS-CoV-2 viral antibodies, plasma 
proteomics, and flow cytometry readouts.  The precise definitions of these data segments are provided as 
metadata.  The first n principal components based on explained variance (see below for selection method) 
were selected from the normalized feature set and used to fit a generalized linear model with two 
configurations, either binomial with a logit link (equivalent to logistic regression) or gaussian with an 
identity link (equivalent to ordinary least squares regression).  A binomial model with a logit link function 
was used to determine factors driving classification of participants with Long COVID as compared to 
convalescent participants without long term symptoms and uninfected controls.  A gaussian model with 
an identity link function was used to determine factors associated with Long COVID Propensity scores 
(LCPS). 

To determine the optimal value for n (number of principal components), values were scanned and seven-
fold cross validation was performed on the data set.  The average mean squared error was calculated for 
each cross-validation iteration at a particular value of n.  For the binomial regression run using a logit link 
function, McFadden's pseudo-R2 was calculated and averaged across each of the cross-validation 
folds.  For the gaussian regression run using an identity link function, a standard R2 was calculated. 

Plots of explained variance and mean squared error across all scanned values for n were generated and 
visually inspected to choose an optimal value for n that maximized explained variance while minimizing 
overfitting as identified by increasing average mean squared error. 

In relating a model fitted on the first n principal components to each of the original features, each 
principal component may be considered as a weighted linear combination of the original features.  The 
principal component loading vectors were used to project the fitted beta values from the generalized 
linear model using the linearity of expectation, E(X + Y) = E(X) + E(Y), such that the estimated 
parameter for each variable was the weighted sum of the parameter estimates for the principal 
components to which it contributed.  The variance of fit for each of the original features was similarly 
projected from the fitted principal components as the variance of a sum of random variables Var(X + Y) = 
Var(X) + Var(Y) + 2Cov(X, Y).  P-values were calculated for each variable in the original feature space 
using z-scores.   

Following per-segment model construction and evaluation, features with a Bonferroni-corrected p-value 
of less than 0.05 were selected for inclusion in a final principal components regression.  These selected 
features were considered as a separate integrated data segment and processed in the same way as each 
individual data segment.  A least absolute shrinkage and selection operator (LASSO) regression was 
employed to select a subset of the features with p-values less than 0.05 as a minimal model, and 
McFadden’s pseudo-R2 was calculated. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 10, 2022. ; https://doi.org/10.1101/2022.08.09.22278592doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.09.22278592


 35 

An implementation has been made publicly accessible as an R library on GitHub at 
(https://github.com/rahuldhodapkar/puddlr). 

Symptom Bi-clustering. Participants with Long COVID were clustered based on binary self-reporting of 
Long COVID symptoms.  Hamming distance was used with complete linkage clustering as an 
agglomeration method.  Visualization of the bi-clustering was performed using the ComplexHeatmap 
package in R78. Cluster stability was assessed by bootstrapped resampling with 100 iterations using the 
fpc package in R79. 

Data availability 

All the background information on HCWs, clinical information for patients, and raw data used in this 
study are included in Supplementary Table 1. Additionally, all of the raw fcs files for the flow cytometry 
analysis are available at ImmPort (TBD). 

Code availability 

All computer codes are available as indicated in Methods (e.g. github) or available upon request. 
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Extended Figures 
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Extended Figure S1. Additional demographic and clinical analysis of the MY-LC Long COVID 
group. (A) Ring plots of prevalence of Postural Orthostatic Tachycardia Syndrome (POTS) among Long 
COVID group. No diagnosis is represented by grey regions, positive diagnosis is represented by purple 
regions. Positive POTS diagnoses are further stratified by diagnostic modality: clinical = POTS diagnosed 
through clinical evaluation (light purple); Tilt-table = POTS diagnosed by Tilt-table (middle purple); Stand 
/ Lean = POTS diagnosed by Stand / LEAN test (dark purple). (B) Ring plots of prevalence of self-reported 
negative impacts on employment status among Long COVID group. Reports of “Not affected” are 
represented by grey region, reported positive for negative impact are indicated by purple region. (C) Box-
plots of LCPS across MY-LC study groups. Central colored lines represent group medians, top and bottom 
lines represent 75th and 25th percentiles respectively. Significance for difference in median LCPS was 
assessed using Kruskal-Wallis with Dunn’s test for post-hoc comparison. Reported p-vales are corrected 
using Tukey’s method. 
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Extended Figure S2. Circulating myeloid, B cell, naïve T cell, and cytokine producing immune cell 
populations among MY-LC participants. (A-B) Violin plots of various myeloid and B cell PBMC 
populations across healthy (HC), convalescent (CC), and Long COVID (LC) groups. Significance for 
difference in group averages was assessed using ANOVA with two-sample t-tests for post-hoc comparison 
and shown where significant. Reported p-vales are corrected using Tukey’s method. (C) Violin plots of 
naïve CD4 and CD8 T cell populations across healthy (HC), convalescent (CC), and Long COVID (LC) 
groups. Significance for difference in group averages was assessed using ANOVA with two-sample t-tests 
for post-hoc comparison and p-values shown between groups. Reported p-vales are corrected using Tukey’s 
method.  (D-E) Violin plots of intracellular cytokine production following PMA/Ionomycin stimulation 
across healthy (HC), convalescent (CC), and Long COVID (LC) groups. Significance for difference in 
group averages was assessed using ANOVA with two-sample t-tests for post-hoc comparison and p-values 
shown between groups. Reported p-vales are corrected using Tukey’s method. 
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Extended Figure S3. Analysis of SARS-CoV-2 specific antibodies. (A) Dot plots of IgG concentrations 
from historical, unvaccinated SARS-CoV-2 exposed controls (HCW+) and unvaccinated Long COVID 
participants. Vaccination status for each group is indicated by the form “x0” where the digit indicates the 
number of SARS-CoV-2 vaccine doses. Central bars indicate group means, and error bars represent 95% 
confidence interval estimates of group means. Significance for difference in group medians was assessed 
using Kruskal-Wallis with Dunn’s test for post-hoc comparison. Reported p-values are adjusted for multiple 
comparison using Tukey’s Method. (B-C) Results from generalized linear models of various SARS-CoV-
2 antibody responses. Black bars are non-significant model predictors. Purple bars are significant model 
predictors. Model predictors are reported along the x-axis and included age, sex (categorical), Long COVID 
status (categorical), body mass index (BMI), prior SARS-CoV-2 exposure (anti-N only), and days from 
most recent vaccine (among vaccinated participants only). P-values are reported over individual predictor 
bars. (D) Box-plots of antibody binding to various SARS-CoV-2 linear peptide sequences. Central bars 
represent groups medians, with top and bottom bars representing 75th and 25th percentiles respectively. 
Significance for difference in group medians was assessed using Kruskal-Wallis with Dunn’s test for post-
hoc comparison. Reported p-values are adjusted for multiple comparison using Tukey’s Method. 
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Extended Figure S4. Significantly different soluble plasma factors across MY-LC groups. Violin plots 
of various circulating plasma factors across healthy (HC), convalescent (CC), and Long COVID (LC) 
groups. Significance for differences in group medians was assessed using Kruskal-Wallis with Dunn’s test 
for post-hoc comparisons. P-values were adjusted using Tukey’s method and shown where significant. 
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Extended Figure S5. Analysis of private autoantibodies within the MY-LC Study. (A,B) Correlation 
plots depicting the relationship between number of autoantibody reactivities and % double negative (%DN) 
of B cells (A) or days from symptom onset (DFSO) and number of autoantibody reactivities (B). For all 
correlations, Spearman’s Rho is reported with corresponding p-values. Black line depicts linear regression 
with 95% CI shaded. Colors depict Long COVID cluster (Cluster 3= blue; Cluster 2 = green; Cluster 1 = 
red). Each dot represents one individual. (C) Panther GO Biological Process over-representation analysis 
for reactivities unique to controls relative to the background REAP library proteins. Statistical significance 
determined by Fisher’s exact test with correction for multiple hypotheses by Bonferroni. Red color indicates 
adjusted p value <0.05. (D) REAP score reactivity magnitude against proteins belonging to the Go Process 
“sodium ion transport”. Reactivity magnitude is calculated as the sum of REAP scores for all reactivities 
per individual in a given Go Process domain. Statistical significance assessed by Kruskal-Wallis. Each dot 
represents one individual. (E) REAP score reactivity magnitude against proteins belonging to the GO 
Process “sodium ion transport” by LCPS cluster. Significance assessed by Kruskal-Wallis. Each dot 
represents one individual. Middle values of box-plot indicate group medians, with top and bottom lines 
depicting 75th to 25th percentiles, respectively. 

 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 10, 2022. ; https://doi.org/10.1101/2022.08.09.22278592doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.09.22278592


 49 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 10, 2022. ; https://doi.org/10.1101/2022.08.09.22278592doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.09.22278592


 50 

Figure S6. Non-SARS-CoV-2 humoral responses among participants with Long COVID. (A) Heatmap 
depicting REAP reactivities to viral antigens across the MY-LC study. Each column is one participant, with 
participants grouped by study group and LCPS. Column clustering within groups performed by K-means 
clustering. Each row is one viral protein. Reactivities depicted have at least one patient with a REAP score 
>= 1. (B, C) REAP scores for EBV gp42 (B) and EBV EAD (C) by group (HC = healthy control; CC = 
convalescent control; LC = Long Covid). Statistical significance determined by Kruskal Wallis. Post-hoc 
tests performed using Dunn’s test with Holm’s method to adjust for multiple comparisons. Each dot 
represents one individual. Box-plot depicts 25th to 75th percentile of the data, with the middle line 
representing the median. (D, E) Correlation plot depicting the relationship between EBV p23 (D) or EBV 
EAD (E) REAP score and EBV p23 or EBV EAD ELISA O.D. 450 nm. Statistical significance assessed 
by Pearson correlation. Black line depicts linear regression with 95% CI shaded. Colors depict group (pink 
= LC, yellow = CC, orange = HC). Each dot represents one individual. (F) Proportion of each group 
seropositive for each of 30 common pathogen panels as determined by SERA, grouped by pathogen-type 
(LC = Long COVID). Statistical significance determined by Fisher’s Exact test. (G) Proportion of each 
group seropositive (z-score ≥ 3) for each of 46 conserved linear motifs comprising the EBV disease panels. 
Motifs with significantly different seropositivity between groups are highlighted. Statistical significance 
determined by Fisher’s Exact test. (H, I) EBV gp42 PVXF[ND]K (S11H) or EBV p23 REAP score (I) 
grouped by participant group (HC = healthy control; CC = convalescent control; LC = Long Covid). 
Statistical significance determined by Kruskal Wallis. Post-hoc tests performed using Dunn’s test with 
Holm’s method to adjust for multiple comparisons. Each dot represents one individual. Boxplot colored 
box depicts 25th to 75th percentile of the data, with the middle line representing the median. (J) Correlation 
plot depicting the relationship between EBV p23 and %CD4+ TEMRA of CD3+. Statistical significance 
assessed by Pearson correlation. Black line depicts linear regression with 95% CI shaded. Colors depict 
Long COVID Cluster (Cluster 1 = red; Cluster 2 = green; Cluster 3 = blue). Each dot represents one 
individual. 
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Extended Figure S7. Lack of significant correlations of IL-4 / IL-6 double positive immune effectors 
with SARS-CoV-2 antibody responses. Correlation plots depicting the relationship between IL-4/IL-6 
double positive T cells populations and various SARS-CoV-2 specific antibody responses. Black lines 
depict linear regression with 95% CI shaded. 
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Extended Figure S8. Principal components regression for prediction of LCPS scores. (A) UMAP 
projection of all collected immunological data of participants stratified by LCPS scores. (B) ROC curve 
analysis from unsupervised K-nearest neighbors (KNN) classification of individuals with high LCPS scores 
(> 80th percentile). AUC and 95% CI intervals (DeLong’s Method) are reported. (C) McFadden’s pseudo 
R-squared are reported as bar plot for each data dimension. An integrated, parsimonious McFadden’s 
pseudo R-squared is reported for the final classification model (‘All’). (D) Dot-plot of immunologic features 
differentiating participants with mild LCPS scores from those with high LCPS score. Dots are colored 
according to individual data segments: orange = Flow cytometry, blue = Plasma cytokines, pink = viral 
epitopes, green = SARS-CoV-2 specific antibodies, yellow = autoantibodies to human exoproteome (aAbs). 
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Extended Figure S9. Flow Cytometry gating schematics. (A-D). Various gating strategies for 
granulocyte and myeloid populations (A), T lymphocytes (B), intracellular cytokine staining (C), and B 
lymphocytes (D). A participant from the Long COVID group is shown as an example. 
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Extended Tables 
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Extended Table 1. Clinical Demographics of MY-LC Study. Summary demographic and clinical 
characteristics for the MY-LC Study (Mount Sinai Study Groups). Participants were stratified into three 
study arms at enrollment: (1) Long COVID (prior SARS-CoV-2 infection with persistent, unexplained 
symptoms); (2) healthy study site control group (no prior SARS-CoV-2 infection); or (3) convalescent 
COVID-19 group (prior SARS-CoV-2 infection without persistent symptoms). Various demographic 
features and clinical characteristics are reported by row for each study group (row measurement units are 
specified in parentheses). Within each cell, participant counts or clinical feature averages are reported, with 
sample standard deviations, relative group percentages, and total numbers reported where pertinent. Results 
from statistical tests are reported as p-values and accompanying test statistics: † Chi-square test p-value 
(Chi-square test statistic, degrees of freedom (df)); †† Kruskal-Wallis ANOVA p-value; ††† Fisher's Exact 
Test p-value (Odd's Ratio: [95% Confidence Interval (Baptista-Pike)]); ‡ Mann-Whitney U test p-value. 
Post-hoc comparisons were conducted using Dunn’s test with Tukey’s correction for multiple comparison 
(column comparison order left-right: 1-2, 1-3, 2-3). Participant medical histories were collected and collated 
from binary self-reports of prior medical history and review of electronic medical records by study staff 
(positive responses in either participant self-report or EMR review were considered an overall binary 
positive response). Abbreviations: n = number; M = male; F = female; BMI = body mass index; +PCR = 
positive result from SARS-CoV-2 nucleic acid test; +Ab = positive result from SARS-CoV-2 antibody test; 
Y= Yes; N = No. 
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Extended Table 2. Normalized survey responses across MY-LC study groups. Survey responses for 
participants are organized by individual instruments (columns) and MY-LC groups (rows). Participant 
responses for each survey instrument were summed and normalized using standard min-max normalization 
procedures such that a value of 1 equals the maximum possible aggregate score and 0 equals the minimum 
possible aggregate score. Additionally, individual survey elements were oriented through inversion such 
that higher normalized scores on each instrument indicate a higher or worsened intensity for survey 
prompts. For each group, median values are displayed. 
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Extended Table 3. Determinations of optimal LCPS threshold. Classification metrics across different 
LCPS thresholds (‘Cut-offs’) (Upper table). Summary area-under the curve (AUC) statistics and bootstrap 
confidence intervals for Receiver-Operator curve analysis (ROC) (lower table) 
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Extended Table 4. Statistical modeling of intracellular cytokine production. (A-C) Detailed 
generalized linear modeling results are reported for various cytokine producing T cell populations analyzed 
by flow cytometry. 
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Extended Table 5. Statistical modeling of anti-SARS-CoV-2 antibody responses. (A-D) Detailed 
generalized linear modeling results are reported for SARS-CoV-2 specific antibody responses with 
corresponding model formulations. 
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Extended Table 6. Statistical modeling of circulating plasma factors. (A,B) Detailed generalized linear 
modeling results are reported for soluble plasma factors. 
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Extended Table 7. Cohen’s Kappa calculation for LCPS and Machine Learning classifications of 
Long COVID status. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 10, 2022. ; https://doi.org/10.1101/2022.08.09.22278592doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.09.22278592


 65 

Supplementary Information 

 

Supplementary Table 1. Viral antigens included in REAP analysis. 
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Supplementary Table 2. Antibody clones and dilutions used for flow cytometry analysis of PBMC 
populations. 
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