
Alzheimer disease (AD) is a debilitating neuro­
degenerative disorder that is characterized  
by progressive decline in cognitive function­
ing and ultimately leads to dementia and 
death. Pathogenetically, AD is triggered by 
the aberrant deposition of amyloid-β (Aβ) as 
amyloid plaques, leading to neurofibrillary 
tangle formation, neuroinflammation, synap­
tic dysfunction, neuronal loss and, ultimately, 
onset of cognitive decline. Importantly, the 
molecular events causing neuronal cell death 
precede the onset of cognitive symptoms 
by a decade or more1, which indicates that 
therapeutics targeting neuropathology, once 
available, will need to be administered before 
the onset of symptoms. The identification of 
predictive AD biomarkers and genetic risk 
factors will, therefore, be essential for an ‘early 
prediction–early detection–early intervention’ 
approach to preventing AD-related dementia.

Use of genetic linkage analysis followed by 
positional cloning led to the discovery of rare 
mutations in the three genes that encode the 
Aβ precursor protein (APP) and presenilins 1 
and 2 (PSEN1 and PSEN2), which cause fully 
penetrant monogenic forms of AD2. However, 
the vast majority of AD probably has a poly­
genic background driven by numerous 
genomic variants, the identification of which 
is the main aim of genome-wide association 
studies (GWAS). Until now, the last bona fide 
GWAS in AD was published over 5 years ago3.  
That study included ~75,000 individuals  
and enabled the identification of 20 AD 
risk loci, of which 11 were novel at the time.  
In January 2019, a new AD GWAS was published  
in Nature Genetics4 and included a sample size 

At baseline, UKB participants were aged 
between 49 years and 69 years, and were 
therefore mostly too young to have developed 
AD, incidence of which peaks after the age of 
65 years. To circumvent this problem, Jansen 
et  al.4 utilized a method based on ‘proxy 
phenotyping’, which makes use of parental  
AD status as recorded in UKB medical 
records. This approach was recently pro­
posed8 to be a valid approximation of future 
AD status in UKB individuals for whom geno­
type data were available but who had not (yet) 
developed AD themselves.

Second, Jansen et al.4 used an impressive 
array of computational tools with the aim of 
integrating high-resolution transcriptomics 
and epigenomics data to aid the molecular and  
functional interpretation of their results. 
These analyses revealed that most DNA 
variants associated with AD are located in 
non-coding portions of the genome, espe­
cially in regions that have effects on gene 
transcription. This finding is in line with 
GWAS results from other complex pheno­
types and has important bearings on the 
design of future genomic studies: if most of 
the functionally relevant variation occurs 
outside genes, technologies that focus on 
coding regions only (such as exon variant 
genotyping or whole-exome sequencing) are 
unlikely to be suitable for deciphering the 
genetic basis of AD and other conditions. 
Instead, more emphasis should be placed on 
the regions between genes (for example, by 
using whole-genome sequencing) and their 
functional implications and interactions (for 
example, by using epigenomic and transcrip­
tomic profiling). Furthermore, and in line 
with previous work, the in silico modelling 
performed by Jansen et al.4 emphasizes the 
role of the innate immune system and neuro­
inflammation as crucial components in the 
pathogenesis of AD. To this end, the authors 
used their data to establish DNA variant 
enrichments for immune system-related tis­
sues (whole blood, spleen and liver) and, per­
haps more importantly, for a key population 
of immune cells in the brain (microglia).

Third, although no direct association sig­
nals were observed for the genes that cause 
early-onset monogenic AD (APP, PSEN1 and 
PSEN2), the GWAS variants identified by 
Jansen et al.4 show highly significant enrich­
ment in other genes involved in the regu­
lation of APP catabolic processes. This is the 

more than eightfold greater than that of the 
2013 GWAS by accumulating the genetic data 
of ~635,000 individuals. This vast increase in 
number enabled the identification of nine 
novel AD risk loci, increasing the current total 
in the new AD GWAS to 29 (not counting the 
three monogenic genes) (Table 1).

As expected, the reported loci included 
many that had already been highlighted in 
2013 (REF.3), but the new GWAS data also 
failed to confirm several of those previously 
reported (for example, MEF2C, NME8, 
CELF1 and FERMT2). In addition, the analy­
ses by Jansen et al.4 confirmed that one locus 
(CD33; originally identified in a GWAS by our 
group more than 10 years ago5) is associated 
with AD risk at genome-wide significance 
(P < 5 × 10−8). Also new on the list is ADAM10, 
which encodes the key enzyme that cleaves 
APP to preclude Aβ generation and has previ­
ously been shown to contain rare variants seg­
regating with AD status in families6. Another 
newly identified locus was APH1B, which, 
along with the presenilins, is a component 
of the γ-secretase complex, responsible for  
cleaving APP to produce Aβ.

In addition to merely increasing sample 
size (and along with it, statistical power), the 
new GWAS by Jansen et al.4 also breaks new 
ground on several other fronts. First, the larg­
est portion of the new data set — nearly 48,000 
individuals with AD and 330,000 controls  
without AD — consisted of genome-wide data 
from the UK Biobank (UKB) project. UKB is 
a prospective cohort study with deep genetic 
and phenotypic data collected from ~500,000 
individuals across the United Kingdom7.  
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first time that APP metabolism has emerged 
as a main functional category in genetic 
analyses of polygenic late-onset AD. Fourth, 
the new GWAS data provide important new 
clues about the phenotypic connections 
between AD and other traits. For instance, 
the authors used Mendelian randomization 
analyses to show that the previously observed 
protective effects of increased cognitive abil­
ity and higher educational attainment on AD 
risk are, indeed, causally related. Last but not 
least, the results of this study were published 
in preprint form (on the bioRxiv database) 
before entering the peer-review process. The 
authors should be commended for this deci­
sion, as it has effectively enabled the commu­
nity to work with their exciting new findings 
for almost a year before formal publication.

Despite its seminal scope and unique ana­
lytical angles, the study by Jansen et al.4 still 
leaves some important questions unanswered. 
For instance, even though our knowledge of 
the genomic basis of AD was vastly increased 

‘cognitive dysfunction’ (for example, via 
‘immune system dysfunction’) is still a work 
in progress and will require the development 
and application of novel methods effectively 
linking readouts from ‘omics’-based studies to 
cellular function in vivo.
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by their results, the new data were unable to 
markedly increase the proportion of phe­
notypic variance explained by genetics, a 
situation often described as the ‘missing herit­
ability problem’ in complex traits9. However, if 
the phenotypic variance cannot be sufficiently 
explained by ‘simple’ DNA variants of the type 
measured in this and other GWAS (for exam­
ple, single base changes and small insertion–
deletions), the elusive heritability must be 
hidden elsewhere, for instance in other types  
of genomic variants (necessitating other geno­
typing and sequencing methods) and/or in 
genetic interactions among loci (necessitat­
ing novel analytical approaches)9. These still 
elusive factors could also be the reason for a 
second conundrum not resolved by the study 
of Jansen et al.4, namely, that even their highly 
refined map of AD genomics did not appre­
ciably improve clinical predictive ability over 
previous, less informative sets of variants10.  
Last, delineating the precise molecular mech­
anisms linking ‘genomic dysfunction’ with 
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Table 1 | AD risk genes newly identified in GWAS by Jansen et al.

Chr Positiona lead SNP Nearest 
gene

P value AD effectb Potential link to 
AD pathogenesis

1 161155392 rs4575098 ADAMTS4 2.05 × 10−10 Risk Neuroprotection: 
extracellular 
matrix protease

3 57226150 rs184384746 HESX1 1.24 × 10−8 Risk Homeobox gene; 
development

4 11026028 rs6448453 CLNK 1.93 × 10−9 Risk Innate immunity ; 
neuroinflammation

7 145950029 rs114360492 CNTNAP2 2.10 × 10−9 Risk Neuronal 
development

15 59022615 rs442495 ADAM10 1.31 × 10−9 Protection Sheddase; APP 
processing

15 63569902 rs117618017 APH1B 3.35 × 10−8 Risk γ-Secretase; APP 
processing

16 31133100 rs59735493 KAT8 3.98 × 10−8 Protection Transcriptional 
regulation

18 56189459 rs76726049 ALPK2 3.30 × 10−8 Risk Signal transduction

19 46241841 rs76320948 AC074212.3 4.64 × 10−8 Risk Unknown

Data from Table 1 in REF.4 except the ‘Potential link to AD pathogenesis’ column, which represents a 
summary of the authors’ review (and interpretation) of the literature. AD, Alzheimer disease; APP, Aβ 
precursor protein; Chr, chromosome; GWAS, genome-wide association study; SNP, single-nucleotide 
polymorphism. aChromosomal position in base pairs (both hg19). bSummary of the predominant effect 
across data sets as provided in primary publication.
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