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France, 5 Department of Analytical and Food Chemistry, Faculty of Pharmacy, Al-Andalus University for Medical Sciences,
Tartous, Syria, 6 Department of Pharmacy, University of Pisa, Pisa, Italy, 7 Interdepartmental Research Centre for Biology and
Pathology of Aging, University of Pisa, Pisa, Italy, 8 Institute of Human Nutrition Sciences, Warsaw University of Life Sciences,
Warszawa, Poland, 9 Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran, 10 Student
Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran, 11 Aromatic Plant Research Center,
Lehi, UT, United States, 12 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, United States,
13 Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran, 14 Department of
Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran,
15 Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile, 16 Unidad de
Desarrollo Tecnológico, UDT, Universidad de Concepción, Concepción, Chile, 17 Medical Illustration, Kendall College of Art and
Design, Ferris State University, Grand Rapids, MI, United States, 18 Department of Agriculture and Food Systems, The University
of Melbourne, Melbourne, VIC, Australia, 19 Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong,
20 Department of Botany, University of Fort Hare, Alice, South Africa, 21 Faculty of Medicine, University of Porto, Porto, Portugal,
22 Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal

Curcumin, a yellow polyphenolic pigment from the Curcuma longa L. (turmeric) rhizome,
has been used for centuries for culinary and food coloring purposes, and as an ingredient
for various medicinal preparations, widely used in Ayurveda and Chinese medicine. In
recent decades, their biological activities have been extensively studied. Thus, this review
aims to offer an in-depth discussion of curcumin applications for food and
biotechnological industries, and on health promotion and disease prevention, with
particular emphasis on its antioxidant, anti-inflammatory, neuroprotective, anticancer,
hepatoprotective, and cardioprotective effects. Bioavailability, bioefficacy and safety
features, side effects, and quality parameters of curcumin are also addressed. Finally,
curcumin’s multidimensional applications, food attractiveness optimization, agro-
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industrial procedures to offset its instability and low bioavailability, health concerns, and
upcoming strategies for clinical application are also covered.

Keywords: Curcuma longa L., curcuma, turmeric, spice, curcuminoids, pharmacological effects,
biotechnological applications

INTRODUCTION

A Brief Overview of Curcuma Species
The Curcuma genus has a long history of medicinal applications
(Akarchariya et al., 2017; Dosoky and Setzer, 2018), being
composed of approximately 120 species. Among the Curcuma
species, Curcuma longa L. (Curcuma; Turmeric) is the most
widely recognized; a cultivated plant, grown in a warm climate, in
many regions of the world (Wu, 2015). However, the taxonomic
identity of this genus is very difficult because of its extremely short
period offlowering and herbarium preparation due to the flashiness
of tubers, rhizomes, and inflorescence (Jadhao and Bhuktar, 2018).
Rhizomes are the most commonly used plant part (Lakshmi et al.,
2011), composed of a wide variety of compounds, including the
bioactive non-volatile curcuminoids (curcumin, dimethoxy-, and
bisdemethoxy-curcumin) and the compounds present in volatile oil
(mono and sesquiterpenoids) (Itokawa et al., 2008; Lobo et al., 2009).

A multitude of beneficial pharmacological properties have been
granted to the Curcuma species, including antiproliferative, anti-
inflammatory, anticancer, antidiabetic, hypocholesterolemic, anti-
thrombotic, antihepatotoxic, anti-diarrheal, carminative, diuretic,
antirheumatic, hypotensive, antimicrobial, antiviral, antioxidant,
larvicidal, insecticidal, antivenomous, and antityrosinase effects,
among others (Wilson et al., 2005; Reanmongkol et al., 2006; Lin
et al., 2010; Angel et al., 2014). About 31 Curcuma species have been
studied, at which the most studied and relevant are turmeric (C.
longa) and zedoary (Curcuma zedoaria (Christm.) Roscoe) (Dosoky
and Setzer, 2018).

Curcumin: A Historical Perspective
The historic background of the Curcuma species begins in Far
Eastern medicine and dates back 5,000 (Ayurveda) and 2,000
(Atharveda) years ago, respectively. C. longa contains different
curcuminoids, although curcumin was found to be the most
active one, first isolated in 1815 (Vogel and Pelletier, 1815), and
the purified crystalline compound described in 1870 (Daube,
1870). The curcumin structure was first proposed by Polish
scientists in 1910 (Figure 1) (Miłobę ędzka et al., 1910).

Although curcumin generally refers to 1,7-bis(4-hydroxy-3-
methoxyphenyl)-1,6-heptadiene-3,5-dione, the compound is also
known as “curcumin I”. In brief, curcumin is a diferuloylmethane
with a crystalline yellow-orange colour, molecular weight of 368.39
g/mol, melting temperature of 183°C, and with the chemical
formula C21H20O6. Chemically, it exhibits keto-enol tautomerism,
i.e., it has a predominant keto form in neutral and acidic solutions,
whereas the predominant form in the solid state and in an alkaline
solution is its more stable enol form (Anand et al., 2007). There are
two additional compounds known as curcumin, which are
curcumin II [demethoxycurcumin, 1-(4-hydroxy-3-methoxyphenyl)-
7-(4-hydroxyphenyl)-1,6-heptadiene-3,5-dione] and curcumin III
[bisdemethoxycurcumin, 1,7-bis(4-hydroxyphenyl)-1,6-heptadiene-
3,5-dione] (Buckingham, 2018).

Interestingly, this natural polyphenol is universally known as the
“wonder drug of life” (Gera et al., 2017). In ancient times in the Far
East, turmeric was used to treat inflammatory conditions of various
organs, for liver and digestive tract problems, and onwound healing.
In the 1970s, the first research on curcumin’s health benefits was
carried out. In these and in later studies it was shown that curcumin
has multiple therapeutic potentialities (Di Mario et al., 2007;
Adhvaryu et al., 2008; Chandran and Goel, 2012; Yanpanitch
et al., 2015; Gera et al., 2017; Salehi et al., 2019a). Nonetheless,
turmeric was still not commercially considered as a therapeutic
agent (Gera et al., 2017), and its use in medical clinics is rare because
of its low bioavailability. The hydrophobic nature of curcumin after
oral administration triggers a poor absorption rate by the
gastrointestinal (GI) tract. On the other hand, curcumin seems to
offer a promising potential for the therapeutic development from
turmeric, categorized as a Generally Recognized As Safe (GRAS)
material, with a stable metabolism and low toxicity (Nelson et al.,
2017). Also worthy of note is the coloring attributes of curcumin for
industrial applications (Joshi et al., 2009; Buckingham, 2018).

In this sense, this review focus on curcumin for food and
biotechnological applications, health promotion, and disease
prevention. Aspects related to curcumin’s bioavailability, bioefficacy,
safety, side effects, and quality parameters are also addressed. A
special emphasis is also given to curcumin’s multidimensional
applications, food attractiveness optimization, agro-industrial
procedures to offset its instability and low bioavailability, health
concerns, and upcoming strategies for clinical application.

CURCUMIN FOR FOOD AND
BIOTECHNOLOGICAL APPLICATIONS

Drifting From Colorant to Organoleptic
Purposes (Organic Curcumin)
Turmeric has a long history of use as spice and food additive,
widely used to ameliorate foodstuffs’ palatability and storage

FIGURE 1 | Chemical structure of curcumin.
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stability through its specific yellow color, taste, and antioxidant
potential (Surojanametakul et al., 2010). The evaluation of the
turmeric rhizomes’ organoleptic features revealed that they are
yellowish in color, have an aromatic odor, and a slightly bitter
taste (Duraisankar and Ravindran, 2015).

Curcumin is an orange–yellow dye practically insoluble in
water and authorized by the European Union (EU) as a food
additive. Other names, such as CI 75300, Natural Yellow 3 or
diferuloylmethane, and the E code E100 are also used. Curcumin
stability in aqueous solution is pH-dependent, with an optimum
cut-off point ranging from pH 1–6. Its color turns to red in the
charged state (pH<1 or pH>7) (Goel et al., 2008) and sunlight
exposure accelerates curcumin degradation (Priyadarsini, 2009).

For nutritional purposes, curcumin is normally applied at a
dose of 5-500 mg/kg, depending on the food category. It is
mainly used in dairy products, beverages, cereals, mustard, food
concentrates, pickles, sausages, confectionery, ice cream, and
meat, fish, eggs, and bakery products (Lakshmi, 2014; Solymosi
et al., 2015). Mixed with annatto, it is also added to seasonal
sauces, mayonnaise sauces, and butter (Satyanarayana et al.,
2010). Curcumin is a good and cheap alternative to saffron,
although it cannot substitute the saffron taste, despite being
named “Indian saffron” in Europe (Scartezzini and Speroni,
2000). As an additive, curcumin is stable during thermal
treatment and in dry foods. It is relatively inert to reactions
with other ingredients, although may form salts with phthalates
and citrates, and it is inert in reactions with phosphates,
chlorides, and bicarbonates (Stankovic, 2004).

An important issue regarding storage is the likelihood of
microbial contamination that provokes foodstuffs’ deterioration
and poisoning by food-borne pathogens (Ebrahimabadi et al.,
2010), but many researchers have proven that curcumin exhibits
some antimicrobial effects (Gupta and Ravishankar, 2005; Naz et al.,
2010). For example, Liang et al. (2007) found that curcumin has
good preservative effects on bread, bean curd, and cooked mutton.
Gul and Bakht (2015) proved that chicken meal treated with
curcumin-rich turmeric extract oil (1% or 2%) were safe and free
from microbiological contamination over 90-day storage.
Abdeldaiem (2014) showed that curcumin led to an increased
oxidative stability of soy bean oil, and reduced total bacterial
molds and yeast count in chicken breast fillet samples. Thus,
curcumin suppressed lipid peroxidation and seemed to be useful
as a natural preservative (Abdeldaiem, 2014). Jayaprakasha et al.
(2006) also stated that linoleic acid oxidation was much lower in the
presence of curcumin, and the antioxidant effect was about 80%
when it was used as a dietary supplement. At the same dose,
curcumin was able to double the resveratrol antioxidant activity, due
to the double carboxyl and hydroxyl groups (Aftab and Vieira,
2010). To other foods, further studies are required to identify the
best conditions of curcumin without interfering on food
organoleptic properties.

Looking at Food Industry Goals
and Consumers’ Demands
Consumers’ concerns on the use of artificial additives in food
products have markedly increased. Indeed, various surveys have

indicated that people are requiring more data on the health
effects of food additives (Tarnavölgyi, 2003).

Food coloring agents are used at both commercial and
domestic levels, with an increasing amount of natural food
coloring agents being commercially produced as synthetic dye
alternatives in foods. This occurs partly due to consumers’
concerns about synthetic dyes, and on many regulatory bodies
that have banned the use of some synthetic coloring agents
(Jovičić et al., 2017). In addition, an increasing awareness among
consumers is further fueling demand for curcumin over the
forecast period, although it is also used in cosmetics and the
pharmaceutical industry, where curcumin can be found in
several forms, such as capsules, tablets, ointments, energy
drinks, soaps, and in cosmetic products (Gupta et al., 2013).

The pharmaceutical industry, specially areas focused on
anticancer drugs formulations, comprises the largest application
segment, accounting for over 50% of the global market, followed by
food and cosmetic industries (Figure 2). Modern cosmetology tries
to apply valuable raw plant materials in cosmetics products’
manufacturing, and ayurvedic skin care products are projected to
be a significant financial boost to the cosmetic market over the
coming years. Curcumin is, nowadays, used as an active compound
in skin care preparations due its remarkable antioxidant, anti-
inflammatory, and anti-aging effects (Plianbangchang et al., 2007).
Some of the significant cosmetic products include shampoos, oil
serums, foundations, masques, conditioning lip balms, elixirs, and
muscle gels. In addition, ultraviolet radiation exposure and rising
environmental pollution is expected to boost the demand for skin
care products containing curcumin.

According to a new study by Grand View Research, Inc., the
global curcumin market size was worth over USD 46.6 million in
2016, with North America being the largest regional market in
2016, while India was one of the largest manufacturers of
curcumin. Europe is expected to be the fastest growing region,
with the market estimated to rise at a revenue-based compound
annual growth rate (CAGR) of 14.8% over the forecast period,
and the global market is expected to surpass USD 130 million by
2024. Rising scientific proficiency coupled with a large network
of biotechnology and food chemistry applications is anticipated
to increase the quality and quantity of curcumin, improving the
future sales margins. Food applications will witness gains of

FIGURE 2 | Global curcumin market by application.
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12.2% up to 2024, however, the presence of cheaper synthetic
food products and substitutes may diminish the growth of the
curcumin market.

Current Legislation Practices
In 1975, curcumin was assessed by the Scientific Committee for
Food (SCF) and its use as a food coloring was accepted without
the need for further investigations, departing in this respect from
the JECFA decision of a temporary acceptable daily intake (ADI)
of 0-0.1 mg/kg B.W. (Commission of the European
Communities, 1975). This temporary ADI was established
based on existing ADI for turmeric oleoresin (0–2.5 mg/kg
B.W.) and an average dose of 3% curcuminoids was assumed
in turmeric. JECFA has also repeatedly evaluated the use of
curcumin in 1974, 1978, 1980, 1982, 1987, 1990, 1992, 1995,
2000, 2002, and 2004. At its 44th meeting in 1995, JECFA
increased the temporary ADI to 0–1 mg/kg b.w. based on the
no-observed-effect levels (NOEL) of 220 mg/kg b.w/day for
hepatomegaly in the carcinogenicity study in mice, and a safety
factor of 200 (Forty-fourth report of the joint FAO/WHO Expert
Committee on Food Additives, 1995). The new ADI was
extended, pending submission of reproductive toxicity results
with curcumin. The results of the multigeneration study in rats
fed with curcumin for 24 weeks were available to the Committee
for evaluation at its 61st meeting in 2004 (Sixty-first report of the
joint FAO/WHO Expert Committee on Food Additives, 1995).
The Committee highlighted that the previous temporary ADI
came from a study on turmeric oleoresin (79-85% curcuminoids)
and allocated a new ADI of 0-3 mg/kg b.w. for curcumin based
on the NOEL of 250-320 mg/kg b.w/day in the multigenerational
study in rats, and application of a safety factor of 100 (Sixty-first
report of the joint FAO/WHO Expert Committee on Food
Additives, 1995). Ethyl acetate with a residual limit of 50 mg/
kg and carbon dioxide as a supercritical fluid were added as
alternative solvents (Sixty-first report of the joint FAO/WHO
Expert Committee on Food Additives, 1995). At last, the
Committee established that there was no adequate data available
to assess exposure, and an addendum with a toxicological
monograph and a chemical and technical assessment (CTA)
were thus prepared (Sixty-first report of the joint FAO/WHO
Expert Committee on Food Additives, 1995).

In 2010, the Panel on Food Additives and Nutrient Sources
agreed with JECFA that curcumin is neither carcinogenic nor
genotoxic (EFSA Panel on Food Additives and Nutrient Sources
added to Food (ANS), 2010). The Panel concluded that, in eleven
European countries, the intake estimates for children (1-10-year
old) are above the ADI from both naturally-occurring curcumin
in foods and through the form of dye (EFSA Panel on Food
Additives and Nutrient Sources added to Food (ANS), 2010).
The Panel also noted that curcumin intake in foods (as spice and
in curry powder) amounts to <7% of the ADI of 3 mg/kg b.w./
day for adults and older individuals (EFSA Panel on Food
Additives and Nutrient Sources added to Food (ANS), 2010).
A refined exposure assessment was then performed by the
European Food Safety Authority (EFSA) using new usage data
from the industry, and concluded that for adolescents, adults,
and older individuals, the exposure estimates were lower than

those reported by the ANS Panel in 2010 at both mean and high
levels (95th percentile) of exposure (European Food Safety
Authority, 2014). Using the refined estimated exposure scenarios,
low exposure estimates at mean levels of exposure were found in
toddlers and children, while these levels exceeded the ADI at the
high level (95th percentile) of exposure, with the main contributing
food categories for all scenarios being flavored drinks and fine
bakery wares (European Food Safety Authority, 2014).

Regarding curcumin purity, it was established as not less than
90% total coloring matters. The residual 10% was specified
according to the Commission Directive 2008/128/EC and
JECFA. The maximum allowed lead concentration is given as
≤2 mg/kg and, with regard to other metals, in 2008, EFSA
established a Tolerable Weekly Intake (TWI) of 1 mg
aluminum/kg b.w/week (European Food Safety Authority, 2008).

Six turmeric-related monographs appeared in USP35–NF30
Pharmacopeial Forum (PF) 33(6), Nov-Dec, 2007. These
monographs contain validated and specific analytical methods
to ensure article identity, and to protect consumers and industries
from low-quality and adulterated products. Rhizoma Curcumae
Longae appeared in the WHOMonographs on Selected Medicinal
Plants, Volume 1 (WHO, 1999); it is used in the European market
as listed in the European Pharmacopoeia monograph #2543, and
the European Scientific Cooperative on Phytotherapy (ESCOP)
included it in its 2nd Edition Supplement monographs, 2009
(ESCOP, 2009).

Finally, it should be noted that while turmeric essential oils
and oleoresins have a GRAS status, curcumin is not on any
readily accessible U.S. Food and Drug Administration (FDA)
GRAS list (2016). The FDA concluded that curcuminoids used as
antioxidant and flavoring agents at maximum levels of >20 mg/
serving in specific foods are safe. However, the agency “has not,
however, made its own determination regarding the GRAS status
of the subject use of curcuminoids” (2013).

CURCUMIN ON HEALTH PROMOTION
AND DISEASE PREVENTION

Multiple biological effects on both health promotion and disease
prevention have been recognized in curcumin and its derivatives
(Figure 3). Indeed, a bibliometric analysis performed by Yeung
et al. (2019) revealed that the United States, China, India, Japan,
and South Korea are the main contributors to the scientific
advances found on curcumin bioactive effects, with the most
focused being their anticancer, inflammatory, and antioxidant
potential, as already stated by Xu et al. (2018). In the following
sections, the pre-clinical and clinical data related to curcumin
bioactive effects is briefly discussed and the respective mode of
action cleared.

Antioxidant Activity
Curcumin antioxidant effects have been the most widely
explored in the literature. Various in vitro and in vivo studies
have been conducted, and the antioxidant potential of curcumin
has been attributed to its chemical structure, including carbon-
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carbon double bonds, b-diketo group and phenyl rings with
hydroxyl, and o-methoxy groups (Wright, 2002; Priyadarsini
et al., 2003; Menon and Sudheer, 2007). Many mechanisms can
explain the antioxidant activity as binding free radicals, hydrogen
atom donors, and electron donors to neutralize free radicals. For
that, laser flash photolysis and pulse radiolysis have been used to
elucidate the mechanism of action of curcumin’s antioxidant
activity (Jovanovic et al., 1999; Nardo et al., 2008).

Curcumin is able to promote its antioxidant activity by
scavenging a variety of reactive oxygen species (ROS) as
superoxide radicals, hydrogen peroxide, and nitric oxide (NO)
radicals and by inhibiting lipid peroxidation (Ak and Gulcin,
2008). This latter activity is due to the enhancement of many
antioxidant enzymes activity, such as SOD, CAT, GPx, and OH-1.
Curcumin can also increase the GSH levels by upregulating
glutathione transferase and their mRNAs. Curcumin can also
inhibit ROS-generating enzymes, such as LOX, COX, and
xanthine oxidase. Curcumin is also considered a chain-breaking
antioxidant because of its lipophilic nature, potentially acting as a
peroxyl radicals scavenger (Priyadarsini et al., 2003).

Anti-Inflammatory Activity
In the literature, numerous in vitro and in vivo studies have
shown that curcumin has a great potential for treating numerous
inflammatory diseases (Aggarwal and Sung, 2009; Cianciulli
et al., 2016; Edwards et al., 2017; Dai et al., 2018). It was
shown that curcumin can: i) Inhibit pro-inflammatory
transcription factors (NF-kB and AP-1); ii) Reduce the pro-
inflammatory cytokines TNFa, IL-1b, IL-2, IL-6, IL-8, MIP-1a,
MCP-1, CRP, and PGE2; iii) Down-regulate enzymes such as 5-
lipoxygenase and COX-2 and -5; and iv) Inhibit the mitogen-

activated protein kinases (MAPK) and pathways involved in
nitric oxide synthase (NOS) enzymes synthesis (Aggarwal and
Sung, 2009; Panahi et al., 2014a; Panahi et al., 2014b; He et al.,
2015; Machova Urdzikova et al., 2015). The anti-inflammatory
mechanisms are shown in Figure 4.

On the other side, and given that oxidative stress triggers
chronic inflammation, a close relationship between antioxidant
molecules and its anti-inflammatory potential is becoming
increasingly clear. In this way, curcumin is also able to
modulate the NF-kB expression. In fact, the NF-kB pathway
activation leads to proinflammatory cytokine production, such as
interleukin (IL-1, IL-2, IL-6, IL-8) and TNFa, known to be
responsible for the activation of pro-inflammatory signaling
pathways. In addition, curcumin could decrease the oxidative
stress and inflammation through the Nrf2 pathway. The COX
pathway leads to the conversion of arachidonic acid into
prostaglandins and thromboxanes, with two COX isoenzymes
(COX-1 and COX-2) being involved. Particularly, COX-2 is
induced by various cytokines and tumor promoters, thus
closely linked to inflammation and carcinogenesis, with many
studies demonstrating that curcumin can inhibit the induction of
COX-2 gene expression (Yang et al., 2017).

Neuroprotective Effect
Neurodegenerative disorders - such as Parkinson disease (PD)
and Alzheimer’s disease (AD) - major depression, and epilepsy
affect millions of people worldwide, with an increasing
incidence rate.

Neuroinflammation is a chronic inflammation that leads
to neuronal metabolism changes that result in neuronal
degradation. In neuroinflammatory states, the neuronal death
is increased by microglia and astrocytes activation. The latter are
responsible for proinflammatory cytokines’ release, such as
TNFa and IL-1. Based on existing studies, curcumin has been
used as a potential therapeutic agent for various neurological
disorders, such as dementia, AD, PD, multiple sclerosis, and
Huntington’s disease (HD), due its antioxidant, anti-inflammatory,
and anti-protein aggregating abilities (Ye and Zhang, 2012; Wu
et al., 2013; Song et al., 2016; Teter et al., 2019; Salehi et al., 2020a).
Table 1 shows the neuroprotective effect of curcumin and its
related mechanism. For example, it has been shown that curcumin
blocks the inflammatory cytokines and prostaglandins production
in activated microglia and astrocytes (Yang et al., 2014; Cianciulli
et al., 2016). It also decreases the production of TNFa, IL-1b,
macrophage inflammatory protein (MIP-1b), monocyte
chemoattractant protein (MCP-1), and IL-8 in microglial and
astrocytes cells (Chen et al., 2014). These aspects are briefly
shown in Figure 5.

In AD, the main cause is the deposit of Amyloid-ß (Aß)
peptides plaques, which is the consequence of microgliosis,
astrocytosis, and the existence of proinflammatory substances
in the brain. Curcumin was found to reduce AD symptoms by
(Goozee et al., 2016; Ganesh et al., 2017): 1) Inhibiting the Aß
peptide production by altering the amyloid precursor protein
trafficking; 2) Binding the Aß peptides and influencing their
aggregation; 3) Attenuating the hyperphosphorylation of tau and
enhancing its clearance; 4) Reducing Aß induced toxicity

FIGURE 3 | Schematic illustration of curcumin biological activities.
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through the inhibition of JNK-3 phosphorylation; 5) Lowering
cholesterol levels which reduces AD risk; 6) Protecting the blood-
brain barrier by up-regulating OH-1 expression; 7) Inhibiting
acetylcholinesterase; 8) Playing a role in cell signaling through
activating Wnt pathways; and 9) Reducing inflammation and
oxidative damage. In the same way, some studies have shown
that PD can be treated with curcumin. Figure 6 shows the
neuroprotective mechanisms of curcumin in treating PD.

In multiple sclerosis, an autoimmune inflammatory disease that
primarily affects young adults and women through demyelinating
lesions, curcumin has also shown neuroprotective effects through
different mechanisms, including antioxidant, anti-inflammatory, and
anti-proliferative mechanisms. Curcumin was also able to modulate
several molecular targets, such as transcriptional factors (NF-kB,
Nrf2, AP-1, STAT-1,-3,-4), enzymes (COX-2, iNOS, OH-1, LOX,
XO), inflammatory cytokines (chemokine ligand, interleukin, TNFa),
proteins (caspase-3,-9, Bcl-2, Prostaglandin, CRP, myosin light
chain), protein kinase (AK, JNK, JAK, MAPK) and growth factors
and receptors (TLRs, chemokine receptor, TGF-a, TGF-ß) (Qureshi
et al., 2018).

Anticancer Effect
In the literature, extensive preclinical studies can be found assessing
curcumin’s anticancer effect, with increasing attention being given
to its related mechanism of action (Table 2). Curcumin has been
shown to prevent carcinogenesis by affecting two processes:
angiogenesis and cancer cell growth. It also suppresses cancer cell
metastasis and induces cancer cell apoptosis. The different
molecular targets through which curcumin acts, downregulating
or upregulating, is shown in Figure 7.

The role of angiogenesis in cancer is well-known. In fact,
cancer cells can produce new blood vessels by proangiogenic
factors stimulation. Curcumin has been shown to have anti-
angiogenic activity by inhibiting angiogenic factors stimulators,
as VEGF and basic fibroblast growth factor. In fact, curcumin has
revealed to be able to downregulate the VEGF expression
through NF-kB and AP-1 regulation, attenuating IL-8 expression
(Yance and Sagar, 2006). Astinfeshan et al. (2019) showed that
curcumin can inhibit angiogenesis through VEFGR and the PI3K/
Akt signaling pathway modulation. Moreover, it was shown that
curcumin can downregulate MMP-2 and MMP-9 and upregulate
the tissue inhibitor metalloproteinase-1, which insures extra
cellular matrix stability and coherence (Yance and Sagar, 2006).

Curcumin can also induce apoptosis in cancer cells through a
p53-dependent pathway. p53 is known to be one of the most
important tumor suppressor proteins, affecting cell proliferation
apoptosis and DNA damage (Kandoth et al., 2013). Several
studies have revealed an interplay between p53 and cancer-
related miRNAs (Hermeking, 2007; Ye et al., 2015). Ye et al.
(2015) also showed that the curcumin proapoptotic effect
depends on miR-192-5p and miR-215, which activates the p53
in non-small cell lung cancer. Other studies have shown that
curcumin-triggered apoptosis is p53-independent in HT-29
colon cancer cells (Watson et al., 2010).

Cyclin dependent kinase (CDKs) are serine/threonine kinases
that form a complex with their respective cyclin partner, thus
controlling cell cycle progression. Altered CDKs’ expressions are
always observed in cancer cells. Chiu and Su (2009) showed that
treating triple negative breast cancer cell line MDA-MB-231
with curcumin led to a disruption in CDKs/cyclin complexes,

FIGURE 4 | Curcumin anti-inflammatory mechanisms (adapted from He et al., 2015).
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necessary for cell cycle progression and down-regulation of
cyclin D1, required for progression through the G1/S phase,
and whose overexpression is associated with most breast cancers,
thus leading to cell cycle arrest at G1.

Curcumin has been proposed as highly effective against Ras-
overexpressed cancer conditions. In fact, Cao et al. (2015) showed
that curcumin inhibits AGS gastric cancer cells proliferation by
downregulating the Ras proteins and upregulating ERK. Banerjee
et al. (2017) demonstrated that curcumin-based intervention
shifts the oncogenic RAS-induced MEK/ERK pro-proliferative
pathway toward p38MAPK/JNK1 pro-death signaling. Curcumin
also revealed to be able to inhibit and downregulate the PI3K/Akt
signal pathway in cancer models (Rana et al., 2015; Kasi et al.,
2016). In the same line, targeting the Wnt/ß-catenin signaling
pathway is a promising approach in cancer therapy. In fact, Wnt/
ß-catenin overexpression is implicated in human cancers, with
curcumin being able to trigger cell cycle arrest at G2/M phase
through modulation of Wnt/ß-catenin signaling pathway. Dou
et al. (2017) also showed that curcumin is able to inhibit colon
cancer by Wnt/b-catenin pathways suppression via miR-130a.

With its anticancer effect, curcumin can target cancer
transcription factors. Many studies have shown that it can
block the NF-kB and AP-1 families of transcriptional factors
(Mishra et al., 2015; Man et al., 2018). Marquardt et al. (2015)
have tested the effect of curcumin in curcumin-sensitive and
curcumin-resistant liver cancer cell lines. The authors found that
in curcumin-sensitive cells, NF-kB was inhibited, while
curcumin-resistant cells retained the NF-kB function. In lung
cancer cells, curcumin decreased the expression of proliferating

cell nuclear antigen (PCNA), p‐PI3K, and NF‐kB (Man et al.,
2018). The sensitivity of human and rat glioma cells to radiation
increased following curcumin treatment, and both AP-1 and NF-
kB expression were inhibited (Shanmugam et al., 2015). Also,
curcumin has been shown to suppress STAT expression.
Curcumin was able to decrease the expression levels of STAT-
3-regulated cyclin D1, BCL-2, and Bcl-xL in pancreatic cancer
cells (Rajitha and Nagaraju, 2017). Shanmugam et al. (2015)
showed that curcumin could inhibit IL-6 induced STAT-3
phosphorylation and STAT-3 nuclear translocation in multiple
myeloma. Moreover, curcumin was also able to inhibit cell
proliferation, migration, and invasion, but promoted apoptosis
in retinoblastoma cells, with their antitumor activities appearing
to be via the up-regulation of miR-99a, and thereby the
inhibition of the JAK/STAT pathway.

Hepatoprotective Effect
Several agents, such as alcohol, drugs, pollutants, parasites, and
dietary components, among others, can trigger acute and chronic
liver injuries, including liver fibrosis, non-alcoholic steatohepatitis,
non-alcoholic liver disease, and even cirrhosis. Curcumin has been
extensively studied for its hepatoprotective effects (Rahmani et al.,
2016; Tung et al., 2017; Peng et al., 2018; Macıás-Pérez et al., 2019).

Choudhury et al. (2016) demonstrated that a curcumin
injection (8.98 µM) in Swiss albino rats with CCl4-induced
hepatotoxicity decreased the NADH oxidase level and increased
the GR and GST levels and succinate dehydrogenase activity. For
the same type of hepatotoxicity, curcumin administration (200
mg/kg) in Sprague-Dawley rats increased the hepatic glutathione

TABLE 1 | Curcumin and neuroprotective mechanisms.

Study
type

Subjects Dose/frequency Outcome & Mechanisms Reference

In vivo Male Sprague–Dawley rats 300 mg/kg b.w. Reducing oxidative stress levels in middle cerebral artery
occlusion

(Wu et al., 2013)

Increasing phospho-Akt, Nrf2, and NQO1 expression levels
Upregulating Nrf2 activity

In vivo Male Sprague–Dawley rats 5, 10 and 20 mg/kg /day
for 30 days

Upregulating PI3K expression (Yang et al.,
2014)Activating the BDNF/TrkB-dependent pathway

Increasing the contents of monoaminergic neurotransmitters
In vitro / In
vivo

Primary hippocampus neurons/APP/PS1
transgenic mice

150 mg/kg /day for 4
weeks

Reducing the activation of microglia and astrocytes (Liu et al., 2016)
Inhibiting the NF-kB signaling pathway
Increasing the transcriptional activity and protein levels of
PPARg

In vivo Male Sprague–Dawley rats 5, 10 and 20 mg/kg /day
for 30 days

Increasing levels of SOD and GSH-Px (Song et al.,
2016)Increasing levels of Dopamine and acetylcholine

Upregulating of bFGF, NGF, and TrkA
In vivo Male Wistar rats 100 mg/kg b.w. for 28

days
Modulating the PI3K/Akt/GSK3b neuronal survival pathway (Srivastava et al.,

2018)Increasing levels of pCaMKIIa/CaMKIIa and PSD95
Increasing levels of pCREB/CREB

In vivo Tg2576 mice 160 and 5000 mg/mL for 6
months

Immunomodulator of the TREM2-CD33-TyroBP hub (Teter et al.,
2019)Stimulating phagocytosis and altering inflammatory cytokines

expression
Reducing levels of miR-155

In vivo Male Sprague Dawley rats 200 mg/kg b.w. Attenuating autophagic activities through mediating the PI3K/
Akt/mTOR pathway

(Huang et al.,
2018)

Suppressing an inflammatory reaction by regulating the
TLR4/p38/MAPK pathway

In vivo Male Sprague Dawley rats 100 mg/kg b.w. Activating the Nrf2-ARE pathway (Dai et al., 2018)
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level and decreased the lipid peroxidase level and the activities of
both alanine transaminase (ALT) and aspartate aminotransferase
(AST) (Lee et al., 2016). So, curcuminmay be a promising agent to
prevent oxidative stress-related liver disorder, by decreasing ALT,
AST, and alkaline phosphatase levels, increasing GST, GR, GPx,
SOD and CAT, and reducing NO as well as inhibiting ROS
production (Farzaei et al., 2018). Furthermore, Badria et al. (2015)
showed that curcumin treatment increased the endogenous
antioxidant levels (ascorbic acid, GSH, SOD, and CAT) in the
liver in chronic iron overloaded male rats.

In case of drug-induced hepatoxicity, such as that triggered by
streptozotocin and paracetamol abuse, curcumin was able to
attenuate such effects in mice. Afrin et al. (2015) found that
curcumin administration in Sprague Dawley rats with
streptozotocin-induced diabetes inhibited TNFa, IL-1ß, MAPK,
and apoptosis signal-regulating kinase 1 (ASK1) in liver tissues. In
non-alcoholic steatohepatitis induced by low-dose streptozotocin
and a high-fat diet, Afrin et al. (2017) found that curcumin
treatment was able to decrease oxidative stress, inflammation, and
lipogenesis, and attenuated fibrosis and HMGB1-NF-kB

FIGURE 5 | Curcumin mechanism of action in neuroinflammation.

FIGURE 6 | Neuroprotective mechanisms of curcumin in treating Parkinson’s disease (adapted from Wang et al., 2017).
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translocation and signaling. Concerning paracetamol-induced
hepatotoxicity, curcumin administration attenuated mitochondrial
dysfunction by scavenging free radicals, induced antioxidant
enzymes expression, and inhibited NF-kB and transient receptor
potential melastatin 2 (TRPM2) channels (Granados-Castro et al.,
2016; Kheradpezhouh et al., 2016).

In mice with alcoholic fatty liver, curcumin administration
attenuated hepatocyte necroptosis, suppressed the ethanol-
induced pathway, inhibited glyoxylate, dicarboxylate, and
pyruvate metabolisms, modulated antioxidant signaling
pathways and upregulated detoxifying genes expression via the
ERK/p38-MAPK pathway (Xiong et al., 2015; Lu et al., 2016; Guo
et al., 2017).

It has also been demonstrated that curcumin can attenuate
liver fibrosis and cirrhosis (Chen et al., 2014; Zhong et al., 2016).
Curcumin administration in Sprague-Dawley rats with CCl4-
induced hepatic fibrosis led to a decrease in liver fibrosis through:
i) reducing extracellular matrix overproduction in HSCs; ii)
disrupting PDGF-R/ERK and mTOR pathways; iii) activating
PPAR-g; iv) upregulating PTEN and miR-29b expression; and v)
downregulating cannabinoid receptors (CBR) type 1 and DNA
methyltranferase 3b (Chen et al., 2014; Zhang et al., 2014).

Cardioprotective Effect
Cardiovascular (CV) diseases are considered a worldwide human
health threat and are associated with high morbimortality rates.

TABLE 2 | Curcumin anticancer effect and mechanisms.

Study type Subjects Dose / frequency Outcome & Mechanisms Reference

In vitro MCF-7 breast cancer cell line 50 µg/mL Decreasing Mcl-1 gene expression (Khazaei Koohpar
et al., 2015)Inducing apoptosis

In vitro HNSCC cells (FaDu & Cal27) 12.5 µM Increasing pro-apoptotic protein Bik and Bim (Xi et al., 2015)
Reducing phosphorylation of NF-kB and STAT-3
Suppressing cyclin D1 and D2 expression

In vitro MCF-7 breast cancer cell line 2.5 µM Inducing Bcl-2 expression (apoptosis) (Zhan et al., 2014)
Suppression of the EGFR expression

In vitro MCF-7 and MDA-MB-231 breast cancer cells 2–10 mM Activating the ERK signaling pathway (Wang et al.,
2016b)Autophagy induced by activation of JNK

In vitro MCF7, MDA-MB-231, and SKBR3 breast cancer
cells

Increasing Tusc7 and GAS5 expression (Esmatabadi et al.,
2018)

In vitro MDA-MB-231 breast cancer cell 40 µM Activating p38-MAPK (Meena et al.,
2017)Decreasing CDK2, CDK4, cyclin D1, and cyclin E

levels
Inducing cell cycle arrest at G1/ and G2/M phases

In vitro Patu8988 pancreatic cell line 10, 15 and 20 mM Suppressing cell growth, inhibiting migration and
invasion, and inducing apoptosis

(Zhou et al., 2016)

Downregulating YAP and TAZ expression
Suppressing Notch-1 expression.

In vitro PANC1 and BxPC3 cell lines 10 - 80 µg/mL Inducing cell cycle arrest at the G2/M phase (Zhu and Bu, 2017)
Upregulating of Bax and LC3II expression
Downregulating Bcl2 expression

In vitro HCT116 colon cancer cell line 5, 10 and 20 mM Inhibiting EIF2, eIF4/p70S6K, and mTOR signaling
pathways

(Wang et al.,
2016a)

Inhibiting de novo protein synthesis
Increasing ROS levels due to mitochondrial
dysfunction

In vitro / In
vivo

SW480 colon cancer cell line 200 mg/kg b.w. for 5
days

Decreasing b-catenin expression (Dou et al., 2017)
Upregulating of Nkd2
Suppressing the Wnt/b-Catenin Pathway via miR-
130a

In vivo Male Sprague–Dawley rats 25, 50, and 75 mg/kg
b.w.

Downregulating the PI3-K/Akt/PTEN pathway (Rana et al., 2015)
Increasing pro-apoptotic Bad and Bax expression
Inhibiting Bcl2 expression

In vivo Male nude BALB/c mice 100 mg/kg b.w. each 2
days

Downregulating Notch and HIF-1 mRNA expression (Li et al., 2018b)
Suppressing VEGF and NF-kB expression VEGF and
NF-kB expression

In vitro Human lung cancer cells (NCI-H1299, NCI-H460,
NCI-H520 and NCI-H446)

5-40 µM Upregulating IGFBP-1 (Man et al., 2018)
Suppressing the PCNA and NF-kB pathway
Activating JNK phosphorylation

In vitro / In
vivo

HCT11 and HT29 colon cancer cells
Male nude BALB/c mice

10, 20, 30 and 40 µM,
40 mg/kg b.w.

Downregulating NF-kB activation (Zhang et al., 2017)
Inhibiting AMPK/ULK1-dependent autophagy

In vitro Mouse prostate cancer cells TRAMP-C1 50 and 100 nM Activating Nrf2 expression (Li et al., 2018a)
Reducing the methylation rate of the Nrf2 promoter
Reducing H3k27me3 enrichment on the Nrf2
promoter region
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Studies have shown that curcumin is effective in protecting from
CV diseases (Jiang et al., 2017; Li et al., 2019). Figure 8 illustrates
the mechanism of action of curcumin in CV diseases. As seen,
curcumin CV benefits are mostly related to their protective
effects on atherosclerosis, cardiac hypertrophy, heart failure,
aortic aneurysm, stroke, myocardial infarction, and diabetic
CV complications (Salehi et al., 2020b). As main molecular
targets, it is noteworthy that curcumin activates the Nrf2
which leads to HO-1 induction, responsible for cytoprotective
and anti-inflammatory effects against oxidative stress (Pittala
et al., 2018). For example, Sunagawa et al. (2018) showed that
curcumin is a natural p300 histone acetyltransferase (HAT)
inhibitor, while Monfoulet et al. (2017) reported that curcumin
is able to enhance endothelial function and to decrease the
TNFa-induced monocyte adhesion in endothelial cells through
NF-kB inhibition. Furthermore, Yao et al. (2016) found that
curcumin reduces angiotensin II type 1 receptor (AT1R)
expression, thus preventing CV diseases. Effectively, curcumin
decreases the binding potential of AT1R gene promoter with the
specificity protein 1 (SP1). Cao et al. (2018) demonstrated that
curcumin may attenuate chronic heart failure by increasing p38
MAPK, JNK, and ASK1.

CURCUMIN BIOAVAILABILITY AND
BIOEFFICACY: A BRUSHSTROKE

Scientific evidence has shown that curcumin exhibits antioxidant,
hypoglycemic, wound healing, anti-inflammatory (including
psoriasis-like inflammation), anti-asthmatic, antiviral,
antimicrobial, antifungal, anticancer, chemo-sensitization, and
radio-sensitization effects (Cheng et al., 2001; Garcea et al.,

2005; Goel and Aggarwal, 2010; Shahani et al., 2010; Gou et al.,
2011; Wang et al., 2012; Chang et al., 2013; Dovigo et al., 2013;
Phillips et al., 2013; Subhashini et al., 2013; Sun et al., 2013a;
Karlowicz-Bodalska et al., 2017; Salehi et al., 2019b), as well as
being able to reduce the pro-fibrotic effects in idiopathic
pulmonary fibrosis, to prevent intra-cerebral hemorrhage, and
to ameliorate lipopolysaccharide induced cardiac hypertrophy
(Smith et al., 2010b; Sun et al., 2011; Chowdhury et al., 2013).

Administration Routes
In vivo and clinical studies exploring the aforementioned
therapeutic effects of curcumin have assessed various routes of
administration (Ravindranath and Chandrasekhara, 1981;
Garcea et al., 2005; Smith et al., 2010a; Smith et al., 2010b;
Gou et al., 2011; Sun et al., 2011; Wang et al., 2012; Chowdhury
et al., 2013; Dovigo et al., 2013; Phillips et al., 2013; Subhashini
et al., 2013; Sun et al., 2013a). In most studies, curcumin was
delivered by gavage, per os (PO), intra-peritoneal (IP), and
intravenous (IV) administration, with IP and gavage delivery
more often applied to animals rather than to humans (Table 3)
(Ravindranath and Chandrasekhara, 1980; Shoba et al., 1998;
Pan et al., 1999; Perkins et al., 2002; Sharma et al., 2004; Garcea
et al., 2005; Lao et al., 2006; Maiti et al., 2007; Marczylo et al.,
2007; Yang et al., 2007; Sun et al., 2013a). Nonetheless, various
other administration routes have been investigated, including
sub-cutaneous (SC), topical, and nasal delivery (Shahani et al.,
2010; Wang et al., 2012; Dovigo et al., 2013; Subhashini et al.,
2013; Sun et al., 2013b).

Curcumin’s Pharmacokinetics
Despite curcumin’s pleiotropic health attributes and proven
safety, in vivo efficacy is hindered by its poor pharmacokinetic

FIGURE 7 | Curcumin molecular targets in cancer cells.
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(PK) properties, mainly due to its low bioavailability (Anand
et al., 2007; Prasad et al., 2014). The latter is due to numerous
factors, including its low free serum concentrations, limited tissue
distribution, short half-life, and apparent rapid metabolism and
elimination (Karlowicz-Bodalska et al., 2017). Most curcumin is
rapidly metabolized (via glucuronidation and sulfation) in the
liver and intestine, leaving a small quantity detectable in tissues
(Anand et al., 2007; Prasad et al., 2014). The major route of
elimination of curcumin after PO administration is feces (Anand
et al., 2007). The urinary excretion of curcumin or of its
metabolites (glucuronide and sulfate derivatives) is very low
regardless of the oral dose (Anand et al., 2007). Biliary excretion
of curcumin was only seen in rats after IV and IP administration
(Anand et al., 2007).

Curcumin Bioavailability: From In Vivo
Findings to Clinical Applications
The in vivo efficacy of any therapeutic compound is determined
by the bioavailability of its free (unbound) concentration, not
only in blood but also surrounding the therapeutic target (Smith
et al., 2010a). Numerous studies confirmed negligible amounts
of unformulated curcumin in the serum and plasma of rats
and humans after gavage, PO, IP, and IV administration
(Ravindranath and Chandrasekhara, 1980; Ravindranath and
Chandrasekhara, 1981; Shoba et al., 1998; Pan et al., 1999;
Cheng et al., 2001; Perkins et al., 2002; Sharma et al., 2004;
Garcea et al., 2005; Lao et al., 2006; Maiti et al., 2007; Marczylo
et al., 2007; Yang et al., 2007; Chang et al., 2013; Sun et al.,
2013a). Comparison of the data generated from these studies

indicates that serum/plasma curcumin levels in rodents and
humans do not necessarily correlate (Table 3). The available
data also emphasizes the role of the administration route on
achievable serum levels. For example, plasma concentrations of
60 and 360 ng/mL were achieved, respectively, in rats following
unformulated curcumin administration (500 mg/kg, PO and 10
mg/kg, IV, respectively) (Yang et al., 2007). Thus, it seems that
greater serum/plasma concentrations of unformulated curcumin are
achieved via IV and IP administration, better than PO and gavage
administration (Anand et al., 2007) (Table 3). Similar observations
were found on tissue distribution and administration route. For
example, IP administration of low doses of unformulated curcumin
(100 mg/kg) gave a much greater distribution of the compound in
the intestines (~2.8 increase) when compared with much higher
doses administered PO (2000 mg/kg) (Ravindranath and
Chandrasekhara, 1981; Pan et al., 1999) (Table 3). Moreover, IP
administration of unformulated curcumin inhibited the pro-fibrotic
effects (inflammation and collagen deposition) and reduced the
idiopathic pulmonary fibrosis progression, while PO administration
was revealed to be ineffective (Smith et al., 2010b). This highlights
the need for selecting a proper administration route for the same
curcumin formulation to attain the therapeutic target and achieve
proper in vivo efficacy. In addition, studies in rats have shown a
dose-dependent limitation to the bioavailability of unformulated
curcumin for the same route of administration, where increasing the
administered dose has not resulted in an increase in tissue
concentrations (Ravindranath and Chandrasekhara, 1981). The
distribution of unformulated curcumin was also variable among
the different tissues. The highest amounts of unformulated

FIGURE 8 | Curcumin action on cardiovascular diseases (adapted from Li et al., 2019).
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curcumin were identified in the gut, stomach, liver, and spleen of
rats (Ravindranath and Chandrasekhara, 1981; Pan et al., 1999;
Perkins et al., 2002) (Table 3). The amounts of unformulated
curcumin found in the liver and spleen were lower than those
identified in the stomach and intestine by a factor of ~3 to 5 (Pan
et al., 1999; Perkins et al., 2002) (Table 3). In the gastrointestinal
(GI) tract of mice, the highest amount of unformulated curcumin
was identified in the small intestines (Ravindranath and
Chandrasekhara, 1980). Additionally, the kidney, heart, lungs, and
muscles showed moderate amounts of unformulated curcumin (in
descending order), while trace curcumin amounts were identified in
the brain (Pan et al., 1999; Perkins et al., 2002) (Table 3).

Curcumin Features for Industrial
Formulation
Commercial curcumin contains approximately 77%diferuloylmethane,
17% demethoxycurcumin, and 6% bisdemethoxycurcumin
(Anand et al., 2007). Based on the Lipinsky rule of five, it seems
that the molecular weight (MW) of curcumin allows for its GI
absorption (MW of 368.38 Da < 500 Da) (Banks, 2009). However,
numerous studies have reported that curcumin is poorly absorbed
from the GI tract (Suresh and Srinivasan, 2010; Karlowicz-
Bodalska et al., 2017). Indeed, as curcumin is a lipophilic
compound (Karlowicz-Bodalska et al., 2017), its lipophilicity
plays a key role in its absorption, distribution, metabolism, and
elimination (ADME). Nonetheless, its lipophilicity favors its
uptake by the peripheral tissues, which in turn lowers the free
curcumin concentrations in the blood (Pan et al., 1999; Cheng
et al., 2001; Sharma et al., 2004; Yang et al., 2007; Banks, 2009;
Chang et al., 2013; Sun et al., 2013a; Karlowicz-Bodalska et al.,
2017). For instance, its lipophilicity and low molecular weight
makes curcumin a good substrate for the P-glycoprotein that
effluxes substances from the blood–brain barrier (BBB) (Banks,
2009). The P-glycoprotein can greatly limit the rate of substances
uptake, such as curcumin, by the BBB, which is a major obstacle in
drug development (Banks, 2009). This explains the trace
curcumin amounts found in the brain (Pan et al., 1999; Perkins
et al., 2002). Thus, in order to achieve a proper in vivo efficacy, it is
important to attain the PK/PD targets. The amounts of free
curcumin detected in the blood or in the target tissues should
be enhanced using new formulations depending on the required
molecular target. In addition to new formulations, a proper
selection of the administration route is crucial to enhance the
curcumin bioavailability. Different curcumin formulations have
been designed to enhance its bioavailability, including synthetic
curcuminoids, nanoparticles, liposomes, micelles, and
phospholipid complexes. These new curcumin formulations not
only enhance its bioavailability but also allow for longer
circulation, better permeability, and resistance to metabolic
processes (Anand et al., 2007; Suresh and Srinivasan, 2010;
Prasad et al., 2014). In addition, the effect of these new
formulations on curcumin bio-efficacy has also been reviewed in
the literature (Anand et al., 2007; Prasad et al., 2014), where,
among others, the co-administration of piperine as an adjuvant
with curcumin enhances its bioavailability (Anand et al., 2007;
Suresh and Srinivasan, 2010; Prasad et al., 2014).

Curcumin Safety and Quality Parameters
Numerous reports have indicated that curcumin exhibits
multiple pharmacological activities, such as antioxidant and
antimicrobial properties. With a long-established safety record,
curcumin has been found to be quite safe in animals and humans,
even at doses up to 8 g/day. Consequently, this substance was
declared as GRAS by the FDA.

Studies on curcumin toxicity have been conducted in vitro,
in vivo, and in humans, where, despite its well-established safety,
some reports have highlighted deleterious side effects under
certain conditions, as briefly discussed below.

In Vitro Data
In vitro experiments have demonstrated potential adverse effects.
Sakano and Kawanishi (2002) demonstrated that curcumin, in
the presence of copper and cytochrome p450 isoenzymes, leads
to DNA fragmentation and base damage. In addition, Frank et al.
(2003) proved that, in a rat model of liver cancer, curcumin
bound to copper and did not inhibit spontaneous hepatic tumor
formation. The enhanced toxicity and oxidative stress may be
explained by the excess load of copper.

Acute Toxicity
No acute toxicity was described in animals. Vareed et al. (2008)
evaluated the pharmacokinetic parameters of a curcumin
preparation in healthy human volunteers after a single oral dose.
Some side effects were reported after curcumin administration (at
10 and 12 g). These side effects were qualified as non-serious, as
they correspond to grade 1 of the WHO classification of toxicity
grades. According to this study, curcumin is considered as safe
to use.

Cheng et al. (2001) tested several curcumin doses (500 mg, 1,
2, 4, 8, and 12 g/day) in a phase I clinical trial with 25 patients
presenting with a high risk of cancer or pre-malignant lesions.
Curcumin was taken orally for three months. Cheng et al. (2001)
found no toxic effects even at doses of 8 g curcumin/day. However,
doses higher than 8 g/day was found to be intolerable by the
treated patients.

Chronic Toxicity
In Animals
Adding turmeric (0.5%) or curcumin (0.015%) to mice diet did
not cause chromosomal aberrations and did not significantly affect
pregnancy rates, the amount of alive and dead embryos, total
implants, nor mutagenic index (Vijayalaxmi, 1980). Furthermore,
according to Ammon and Wahl (1991), high curcumin doses (100
mg/kg P.V.) produce ulcerogenic effect in rats.

The National Toxicology Program (1993) assessed the short-
and long-term toxicity of an organic extract from turmeric,
called turmeric oleoresin. Rats and mice were fed diets
containing turmeric extract at varying doses (1000, 5000,
10,000, 25,000, or 50,000 mg/mL equivalent to daily doses of
50, 250, 480, 1300, or 2600 mg/kg b.w) for two periods: 13 weeks
or 2 years. No mortality was noted in either male and female rats,
neither in the 13-week study nor in the 2-year study. It turned
out that in the 13-week study, turmeric oleoresin induced a
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relative increase in liver weight, stained fur, discolored faces, and
hyperplasia of mucosal epithelium in the cecum and colon of rats
receiving the higher concentration of turmeric extract. The
turmeric oleoresin administration also did not cause carcinogenic
lesions. In the 2-year study, rats and mice fed with 50,000 mg/mL
turmeric oleoresin developed ulcers, chronic active inflammation,
cecum hyperplasia, and forestomach, increased incidences of
clitoral gland adenomas, and developed hepatocellular and
intestinal carcinoma (National Toxicology Program, 1993).

In another study developed in mice, the dietary administration
of the whole spice turmeric (0.2%, 1.0%, 5.0%) or ethanolic

turmeric extract (0.05%, 0.25%) for 14 days caused hepatotoxicity
(Kandarkar et al., 1998). In a study, Deshpande et al. (1998) gave
Wistar rats and female Swiss mice turmeric (0, 1 and 5%) and
ethanolic turmeric extract (0, 0.05 and 0.25%) through their diet for
14 and/or 90 days. Hepatotoxicity, body weight gain reduction, and
alterations in absolute and/or relative liver weights were detected in
mice and rats fed with a high dose of turmeric for longer periods.
Lower turmeric doses (i.e. 0.2 or 1%) for 14 days also exhibited
hepatotoxicity in mice, being more vulnerable to turmeric-induced
hepatotoxicity than rats (Deshpande et al., 1998). In preclinical
systematic safety studies commissioned by the National Cancer

TABLE 3 | Concentration of unformulated curcumin in plasma, serum, and various tissues of rats and humans after different routes of administration (PO, IP, and IV).

Species Route Dose Concentration of unformulated curcumin in the plasma, serum and various
tissues

Reference

Plasma
Rat PO 1000 mg/kg 15 ng/mL (Prasad et al., 2014)

500 mg/kg 60 ng/mL (Yang et al., 2007)
100mg/kg 220 ng/mL (Pan et al., 1999)

IP 100mg/kg 2250 ng/mL (Pan et al., 1999)
100mg/kg 2 nmol/mL (Perkins et al., 2002)

IV 10 mg/kg 360 ng/mL (Yang et al., 2007)
2 mg/kg 6600 ng/mL (Sun et al., 2013a)

Human PO 4000-8000 mg 410-1750 nM (Cheng et al., 2001)
3600 mg 11.1 ng/mL (Sharma et al., 2004)

Serum
Rat PO 2000mg/kg 1350 ng/mL (Shoba et al., 1998)

1000mg/kg 500 ng/mL (Maiti et al., 2007)
340 mg/kg 6.5 nM (Marczylo et al., 2007)

Human 12000 mg 51.2 ng/mL (Lao et al., 2006)
10000 mg 50.5 ng/mL (Lao et al., 2006)
4000-8000 mg 400-3600 nM (Cheng et al., 2001)
2000 mg/kg 6 ng/mL (Shoba et al., 1998)
400-3600 mg 7-20 nmol/g (Garcea et al., 2005)

Gastrointestinal (GI) tract
Rat PO 2000mg/kg Averaged GI tract concentration

42125 ng/g Small intestine 58600 ng/g (Ravindranath and Chandrasekhara, 1980)
Stomach 53300 ng/g (Ravindranath and Chandrasekhara, 1980)
Cecum 51500 ng/g (Ravindranath and Chandrasekhara, 1980)
Large intestine 5100 ng/g (Ravindranath and Chandrasekhara, 1980)

Intestine
IP 100mg/kg 117040 ng/g (Pan et al., 1999)

Intestinal mucosa
IP 100mg/kg 200 nmol/g (Perkins et al., 2002)

Other organs and tissues
Rat IP 100mg/kg Liver

26900 ng/g (Pan et al., 1999)
73 nmol/g (Perkins et al., 2002)
Spleen
26010 ng/g (Pan et al., 1999)
Kidney
7510 ng/g (Pan et al., 1999)
78 nmol/g (Perkins et al., 2002)
Lungs
16 nmol/g (Perkins et al., 2002)
Heart
9.1 nmol/g (Perkins et al., 2002)
Muscle
8.4 nmol/g (Perkins et al., 2002)
Brain
400 ng/g (Pan et al., 1999)
2.9 nmol/g (Perkins et al., 2002)
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Institute (NCI), no toxic effects were stated at doses of 3.5 g/kg
given for 3 months in rats, dogs, and monkeys (Sharma
et al., 2007).

In Humans
Sharma et al. (2007) noted that 1.5 g of turmeric powder per day
(about 150 mg of curcumin, average consumption in India) did
not exhibit any side effects in humans. In addition, Lal et al.
(2000) reported that 1.125 mg of curcumin/day did not show any
side effects in humans.

A study assessing the curcumin pharmacological aspects
reported that it is distinguished by its safety of use and has an
effect on the treatment of ulcerative colitis (Aggarwal and
Sung, 2009).

According to Chainani-Wu (2003), who assessed curcumin’s
safety and anti-inflammatory activity over the years 1966 to
2002, in a phase 1 human trial with 25 subjects using up to 8,000
mg of curcumin/day for 3 months, revealed no toxic effects.
Moreover, pilot phase I safety trials concluded that curcumin is
safe when consumed at a daily dose of 12 g for 3 months (Goel
et al., 2008).

Side Effects, Interactions, Contra-Indications,
and Precautions
Dermatitis and Allergies
Swierczynska and Krecisz (1998) have identified allergic contact
dermatitis and urticaria especially following direct curcumin
exposure to the skin or scalp. Liddle et al. (2006) reported a few
cases of allergic contact dermatitis and two cases of contact
urticaria. These cases were classified into immunologic
(immunoglobulinE mediated) and nonimmunologic with the
presence of inflammatory mediators (histamine, prostaglandins,
leukotrienes). The immunological forms extend beyond the
contact zone, whereas nonimmunologic forms remain limited to
the area of contact and can evolve into chronic dermatitis (Liddle
et al., 2006).

People already suffering from allergies to plants of the
Curcuma genus are more likely than others to have an allergic
reaction to turmeric (spice) or any of its constituents.

Carcinogenesis
Dance-Barnes et al. (2009) revealed that curcumin may enhance
ROS formation and promote lung cancer in mice. Higher
curcumin doses increase ROS cell levels, playing an important
role in carcinogenesis (Ahsan and Hadi, 1998; Fang et al., 2005;
Lopez-Lazaro, 2008).

Reproduction
It has been reported that curcumin may alter fertility by inhibiting
human sperm motility and has a potential application as a novel
intravaginal contraceptive (Rithaporn et al., 2003). According to
Garg (1974), the oral administration of petroleum ether and
aqueous extracts from turmeric rhizomes had a 100% anti-fertility
activity in rats. Another study highlighted the ability to inhibit
implantation by these extracts (Garg et al., 1978). In addition, it has
been shown that curcumin suppressed the growth of hamster flank
organs by inhibiting 5a-reductase, which converts testosterone into
5a-dihydrotestosterone (Liao et al., 2001).

Digestive Disorders
In high doses, turmeric is likely to cause GI disorders, such as
abdominal pain, nausea, and diarrhea, that can be minimized
through curcumin consumption at mealtimes. Nausea, diarrhea,
and an increase in serum alkaline phosphatase and lactate
dehydrogenase contents were experienced in patients receiving
0.45 to 3.6 g/day curcumin for 1 to 4 months (Sharma et al.,
2004). In another study, daily curcumin intake of 8 g for 2
months in patients with advanced pancreatic cancers led to
abdominal pain as the predominant side effect. Digestive
ulcerations were also reported (Aggarwal and Sung, 2009).
Diarrhea, headache, rash, and yellow stool were also noted in
seven subjects receiving escalating doses (from 500 to 12,000 mg)
of curcumin (Lao et al., 2006).

Synergistic Effects
Turmeric, through its major active constituent, curcumin, has
synergistic effects, and can potentiate the effect of other drugs/
substances. In fact, synergistic effects have been found when
curcumin is combined with antibiotics (norfloxacin) (Pavithra
et al., 2009), anti-inflammatories (Nandal et al., 2009), with
certain cytotoxic drugs, with chemotherapy (Aggarwal et al.,
2005; Kamat et al., 2007; Kunnumakkara et al., 2007; Lin et al.,
2007), or when diet supplies contain other polyphenol derivatives
(Strimpakos and Sharma, 2008). When administrated with
paclitaxel (Taxol), curcumin significantly inhibited breast and
lung cancer metastasis to a higher degree than curcumin or
paclitaxel used alone (Aggarwal et al., 2005).

Inhibitory Effects
Although several studies have shown that curcumin raises the
effect of chemotherapeutic agents, sometimes it might antagonize
and inhibit their antitumor efficacy (Lopez-Lazaro, 2008). For
example, curcumin combined with cyclophosphamide annulled
the effect of cyclophosphamide and then inhibited the tumor size
reduction in mice (Somasundaram et al., 2002). It is not clear
why curcumin exhibits such contrasting activities (Sandur et al.,
2007a; Sandur et al., 2007b), but it has been proposed that this
may be related to curcumin concentration that plays a role in
switching from its antioxidant to prooxidant effect. Curcumin
may also interfere with irinotecan absorption and efficacy
(Johnson and Mukhtar, 2007).

Interactions
Turmeric’s beneficial effects are undeniable; however, its
consumption may interact with certain drugs and lead to
several risks. For example, turmeric exerts an anticoagulant
activity and inhibitory effects on platelet aggregation due to its
antithrombotic properties; therefore, it is essential to consider
this effect, given the fact that it potentiates the action of
antiplatelet drugs (Shah et al., 1999)

Coupled with Ginkgo biloba or garlic or with an anticoagulant,
such as aspirin (acetylsalicylic acid), clopidogrel (Plavix),
dipyridamole (Persantine), ticlopidine (Ticlid), warfarin
(Coumadine), or enoxaparin (Lovenox), turmeric can intensify its
action, leading to serious consequences, such as hemorrhages.
Moreover, according to animal studies, turmeric can lower the
blood sugar and, as a result, have additive effects with oral
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antidiabetic drugs and insulin. Also, as turmeric can decrease blood
pressure, it has additive effects if taken with antihypertensives.
Lastly, turmeric, known for its digestive properties, increases
stomach acid levels. However, when associated with antacids,
such as cimetidine (Tagamet), famotidine (Pepcid), ranitidine
(Zantac) and omeprazole, it can inhibit their effectiveness.

Contra-Indications
Turmeric use is not recommended for individuals allergic to
Zingiberaceae plants. Regarding pregnancy and breastfeeding,
turmeric has historically been considered safe when used as a
spice. However, it has already been shown to cause uterine
stimulation and thus may stimulate menstruation onset. Despite
the fact that curcumin intake does not affect fetal development,
turmeric use is not recommended during pregnancy and
breastfeeding, and precautions should be taken due to the lack of
clinical studies. In addition, curcumin may stimulate gallbladder
contractions and cause gallstones development. Despite the lack of
human studies, curcumin use is not recommended in patients with
gallstones or biliary obstruction (Rasyid and Lelo, 1999).

In short, turmeric and curcumin appear to be extremely safe
and well-tolerated, even at high doses (up to 8 g), without toxic
effects. Moreover, epidemiological data have shown a low
incidence of several types of cancer in individuals who regularly
consume curcumin (Aggarwal and Sung, 2009). However, the
safety of curcumin should be further explored, and long-term
studies are needed for a better evaluation of possible adverse effects
and to fully determine its toxic potential.

Precautions
Given that curcumin can inhibit the antitumor activity of
chemotherapeutics, its use during chemotherapy should only
be done under medical supervision. Similarly, vigilance is a must
in patients allergic to turmeric or to any of its constituents;
similar attention should be paid to patients with blood
coagulation disorders or under anticoagulants treatment. In
these cases, dose adjustments are needed, while in cases of a
scheduled surgery, curcumin use should be stopped. Finally,
turmeric should be applied with caution in individuals with
diabetes or hypoglycemia or when treated with drugs that lower
blood glucose levels.

CURCUMIN MULTIDIMENSIONAL
APPLICATIONS: CURRENT TRENDS AND
FUTURE DEMANDS

Food Attractiveness Optimization
Food dyes have been used since ancient times and are currently a
trending topic in the food industry. Besides rendering foodstuffs
more appealing and delightful, they affect shelf-life and
microbiological quality and security. Following food industry
expansion, many synthetic colorants were developed to ameliorate
foodstuff features, but, over time, most of them were disqualified
due to short/long term side effects, toxicity, and potential
carcinogenic effects and other health injuries (Carocho et al.,
2014; Amchova et al., 2015). Therefore, together with the

increasing consumers’ demand for more delightful products,
natural food colorants have emerged as a greater option. As a
matter of fact, natural pigments, as well as synthetic analogues, are
effective, but may also be safe. In addition, they are able to induce
both health benefits and functional and/or additional properties,
including preservative effects (Martins et al., 2016). Modern
consumers are also looking for novel “functional foods” (Bagchi,
2006), with remarkable efficacy in preventing the onset of certain
diseases. These are often chosen based on their abilities to prevent
disease, more so than for their ability to reduce the risk of disease
or to enhance organoleptic properties (Siro et al., 2008). Also, the
so-termed “functional ingredients”, such as food pigments or
colorants and other natural substances able to improve the
nutritional status and acting as health promoters, are currently
drawing consumers’ attention. Not surprisingly, curcumin is
widely considered a good naturally-derived ingredient for
functional foods formulation and helpful to prevent various
chronic diseases (Xu et al., 2018).

In recent years, it has emerged that customers’ satisfaction is
not only driven by taste, smell, appearance, and attractiveness
but also by health effects, impact on quality of life, and ageing.
Necessarily, the efforts of food industries are oriented towards the
development of innovative strategies to meet both organoleptic
and health demands. To achieve these purposes, modern
industry applies a number of different techniques to ameliorate
natural pigment extraction and to maintain their stability, in
order to reduce the risk of color degradation and any subsequent
loss of attractiveness. It has to be mentioned that efforts have also
been directed to the development of differently designed
packaging with the aim of improving the shelf-life of foodstuffs,
thus limiting the use of additives, but also to develop safer and
more appealing products for conscious consumers. However,
direct collaboration with researchers and listening to consumer
claims offers substantial help to food factories in pursuing these
goals (Martins et al., 2016).

Agro-Industrial Procedures to Offset
Curcumin Instability and Low-
Bioavailability
The raise in curcumin stability and bioavailability, together with
the reduction of turmeric aroma, are currently the major issues
pursued by scientific research to reach a wider use of curcumin
both for food and pharmaceutical industries.

As a spice, turmeric extract possesses a characteristic pungent
flavor predominantly due to ar-turmerone (2-methyl-6-(4-
methylphenyl)-2-hepten-4-one), a constituent of turmeric oil; as
well as curcumin, ar-turmerone is endowed with antimicrobial,
antioxidant, and anticancer effects. Notably, the turmeric aroma
influences the particular taste of the food product to which is added,
consequently affecting the overall foodstuff’s sensory desirability and
so representing a con for the use of turmeric extract as a food
additive (Laokuldilok et al., 2016).

Curcumin is susceptible to light, unstable at pH>7, and, as with
many other natural antioxidant substances, undergoes oxidative
degradation (Nelson et al., 2017). In addition, it is insoluble in water
and soluble in organic solvents, thereby limiting bioavailability in
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human aqueous body fluids. Taken together, these shortcomings
complicate and limit the potential application of turmeric and
curcumin for different uses; so, different approaches have been
applied to overcome these drawbacks.

Encapsulation is a generally used technique for food
colorants/additives, since it provides the means to convert
liquids into solids, alter colloidal and surface properties, offer
environmental protection, and control the released features or
the coated materials’ availability (Özkan and Bilek, 2014). A
number of studies dealing with turmeric’s microencapsulation
have been published, differing on the materials used and
production method. To name a few, Cano‐Higuita et al., 2015
proposed a study to explore the modifications induced: (a) by
different formulations of wall materials, such as binary or ternary
mixtures constituted by gum Arabic, maltodextrin, and modified
starch and (b) by different drying methods in the stability of
microcapsules containing turmeric oleoresin. The authors found
that the ternary blend was more effective to prevent curcumin
loss and color changes in the microcapsules compared to the
binary mixture. As regards the drying method, curcumin
retention during lyophilization was better than spray drying,
but contrary behavior was found during storage; conversely,
spray‐dried curcumin microcapsules show higher retention after
8 weeks under incident light (Cano-Higuita et al., 2015).

Laokuldilok et al. (2016) investigated the masking properties of
turmeric combined with a binary mixture of wall material, i.e.
brown rice flour (BRF) and beta-cyclodextrin (b-CD). Thematerials
were accurately chosen; BRF exerts health benefits beyond basic
nutrition to human health, while b-CD possess an effective masking
ability. The study showed that microcapsules consisting of 5% of
core loading (based on 7% of gelatinized BRF solution) added to 20
g/L of b-CD as optimal formulation, were able to produce powder of
high curcuminoids encapsulation with low volatile release, moisture
content, and hygroscopicity. Thus, this novel encapsulation blend of
carrier agents has been proven to possess a high aroma masking
property together with a high retention of bioactive compounds
(Laokuldilok et al., 2016).

The extremely low hydrolytic degradation rate of curcumin
encapsulated inside polymeric particles suggests that
encapsulation, particularly nanoencapsulation (particles <100 nm)
(Murthy et al., 2018), is a valid method to ameliorate the high grade
of curcumin instability and poor bioavailability.

As already mentioned, the major and urgent issue in curcumin
consumption by itself is related to its poor bioavailability. This issue
is due to an unfavorable pharmacokinetics (ADMET) profile
characterized by low serum levels, limited tissue distribution,
apparent rapid metabolism, and a short half-life (Anand et al.,
2007; Sanidad et al., 2019). Extensive efforts were accomplished in
the never-ending research of innovative and valid strategies to solve
these limits.

One solution could be to enhance both solubility and
dissolution rates (Hani and Shivakumar, 2014), reachable with
cyclodextrin inclusion complexes, solid dispersions (SDs), and
solid self-emulsifying drug-delivery systems (S-SEDDs). The
increase in surface area by micronization, manipulating solid-
state crystallinity, and prodrugs development are additional

approaches to improve the aqueous solubility of curcumin
(Ipar et al., 2019).

In recent years, nanotechnology-based drug delivery systems
for curcumin, including liposomes, polymeric nanoparticles,
microemulsions, and nanoemulsions, to cite a few, have been
widely developed (Ipar et al., 2019; Sanidad et al., 2019). Nano-
formulations possess a low size/surface area ratio, and offer some
advantages, such as improved transport through the GI mucosa
and the possibility of ensuring sustained and controlled release,
as well as a targeted delivery. Another approach applied to
improve curcumin’s pharmacokinetics is its co-administration
with adjuvants that are able to narrow its metabolic pathways.
The most known bioavailability enhancer for curcumin is
piperine (bioperine); when associated with curcumin, piperine
leads to an increase of 2000% in the bioavailability, both in
animals and humans (Shoba et al., 1998; Han, 2011). However,
this strategy has some limitations since piperine enhances the
curcumin bioavailability through different mechanisms, such as
inhibition of hepatic and intestinal glucuronidation and P-gp
inhibition (Srinivasan, 2007; Han et al., 2008; Sri et al., 2019).
Since glucuronidation is a process necessary to eliminate toxins
and metabolized drugs, where P-gp is responsible for drug-efflux,
a long-term use of piperine could lead to toxin accumulation and
drug-toxicity with subsequent liver damage, especially in patients
under pharmacological therapy (Burgos-Morón et al., 2010; Sri
et al., 2019).

Curcumin Health Concerns and Upcoming
Strategies
Despite its many benefits on human health and its well-
established safety profile, curcumin presents some health
concerns. Several reports have proposed that curcumin may
trigger toxicity under specific conditions. To give some
examples, subjects treated with curcumin ranging from 0.45 to
12 g may suffer from nausea, diarrhea, headache, rush, yellow
stool, and increased levels of both serum alkaline phosphatase
and lactate dehydrogenase (Lao et al., 2006; Kocaadam and
Şanlier, 2017).

In 2010, a work entitled “The dark side of curcumin”
evidenced some doubts as regards the therapeutic potential of
the so-called “golden spice”. The authors aimed to provide a
review on curcumin’s negative properties in comparison to its
beneficial effects (Burgos-Morón et al., 2010). For instance, some
studies indicate a potential carcinogenic effect of curcumin at
doses close to that evidencing beneficial effects, as it seems to
induce DNA damage at both mitochondrial and nuclear levels.
Carcinogenic activity has also been observed in mice fed with
various doses of turmeric oleoresin for 3 months and 2 years. The
mechanisms behind this effects seems to be related to the 2 a,b‐
unsaturated ketones in the molecule’s chemical structure. These
portions are known to establish covalent linkages with thiol
groups of cysteine residues through a Michael addition reaction.
This mechanism may lead to ROS production through
modification of the antioxidant enzyme thioredoxin reductase.
Moreover, it can induce topoisomerase II‐mediated DNA
damage and can inactivate the “guardian of the genome p53”.
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In addition, curcumin was found to chelate iron, thus affecting its
systemic metabolism, and to inhibit cytochrome P450,
glutathione‐S‐transferase, and UDP‐glucuronosyltransferase
activities. When inhibited, these three drug‐metabolizing
enzymes may trigger toxicity due to the accumulation of
xenobiotics (Burgos-Morón et al., 2010). Nevertheless, the
main reasons leading to skeptical opinion on curcumin’s
therapeutic benefits are its low bioavailability and instability,
but also its potential interaction with key-proteins involved in
metabolic pathways.

More recently, a detailed and clear-cut manuscript by Nelson
et al. (2017) overviewed curcumin’s essential medicinal chemistry
arguing that a reactive, unstable, nonbioavailable molecule could
not be considered a poor prototypical lead compound for drug
discovery. The work also evidenced that curcumin has recently
been classified as both a pan assay interference compound
(PAINS) and invalid metabolic panaceas (IMPS) candidate
(Nelson et al., 2017).

Two critical scientific contributions were published in
response to both manuscripts (Kurien et al., 2011; Bahadori
and Demiray, 2017), with both highlighting that the limited
number of cautionary reports that indicate research on curcumin
as an “excess of the need” were numerically exceeded by the
plethora of scientific manuscripts regularly published on this
topic. Indeed, in 2015, a Curcumin Resource Database (CRDB)
(Kumar et al., 2015) was set up, covering over 9000 publications,
500 patents, 1186 curcumin analogs, 195 molecular targets, and
176 varieties of C. longa, whose aim was to support the
preclinical development of curcuminoids. Although these
studies demonstrated curcumin’s therapeutic and protective
potential in animals and humans, more extensive clinical
studies are needed to clearly elucidate its human health effects
(Xu et al., 2018).

CONCLUDING REMARKS
AND PERSPECTIVES

Curcumin has a long history of use as a culinary spice and food
dye, and even as an ingredient for multiple medicinal preparations
in Ayurveda and Chinese medicine. Along the ages, progress in
science has proven the wide spectrum of favorable effects
curcumin has on human health. Nowadays, the “golden spice”
is still used as a cooking ingredient, but modern technology
allowed curcumin exploitation in many different applications
related to food and health.

Over the past half-century, a high amount of distinct clinical
trials have been accomplished to address curcumin’s efficacy, safety,
and pharmacokinetics (Gupta et al., 2013; Subramani et al., 2018).
Curcumin has been administered in several formulations, such as
capsules, tablets, powder nanoparticles, liposomal encapsulation,
and emulsions, with dose-escalating studies revealing that curcumin
is safe at doses as high as 12 g/day for 3 months. Bioavailability has
been the major curcumin therapeutic limitation, and to solve this
problem new nanomedicine formulations have been developed to
improve curcumin targeting, pharmacokinetics, efficacy, and

cellular uptake (Salehi et al., 2020a; Salehi et al., 2020b). Its
pleiotropic activities comprise a plethora of inflammatory
diseases, such as cancer, CV disease, arthritis, atherosclerosis,
diabetes, gastric disease, inflammatory bowel disease, psoriasis,
acquired immunodeficiency syndrome, and so on. However,
protective effects on hepatic conditions, chronic arsenic exposure,
and alcohol intoxication have also been stated. At the same time, a
wide range of molecular targets have been listed, such as pro-
inflammatory cytokines, apoptotic proteins, NF-kB, COX-2, 5-
LOX, STAT3, C-reactive protein, prostaglandin E(2), prostate-
specific antigen, adhesion molecules, phosphorylase kinase,
transforming growth factor-b, triglyceride, ET-1, creatinine, HO-
1, AST, and ALT, which clearly justify its remarkable health effects.
Interestingly, upcoming clinical applications are looking for
curcumin-induced cognitive effects. Indeed, curcumin is known as
a molecule able to prevent/weaken pathological processes leading to
age‐related dementia, cognitive decline, or depression, despite
conflicting conclusions that arouse some doubts regards its
effectiveness. A recent paper reviewed the clinical trials on
curcumin application for cognitive functions to assess its real
efficacy (Zhu et al., 2018). Unfortunately, only six studies satisfied
the inclusion criteria, so that data were insufficient to provide an
accurate and precise estimation of curcumin outcomes in different
individuals. However, results show that curcumin is safe and well
tolerated and seems to be more useful in ameliorating cognitive
function in elderly subjects than AD- and schizophrenia-related
symptoms. In addition, different investigations have suggested
curcumin to be a potential chemopreventive and anticancer
treatment in human papilloma virus (HPV) infection, as well as
in primary and malignant squamous cervical cancer (Teymouri
et al., 2017). However, high-quality clinical trials are needed to
unequivocally confirm the beneficial effects of curcumin in different
clinical conditions. Going in that direction, the clinical trial
registered with the number NCT02944578 is actually recruiting
women with high grade squamous intraepithelial cervix lesion to
validate topical application of curcumin in precancer cervical lesions
(https://clinicaltrials.gov).
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Kocaadam, B., and Şanlier, N. (2017). Curcumin, an active component of turmeric
(Curcuma longa), and its effects on health. Crit. Rev. Food Sci. Nutr. 57, 2889–
2895. doi: 10.1080/10408398.2015.1077195

Kumar, A., Chetia, H., Sharma, S., Kabiraj, D., Talukdar, N. C., and Bora, U.
(2015). Curcumin Resource Database. Database J. Biol. Database Curation
2015, bav070–bav070. doi: 10.1093/database/bav070

Kunnumakkara, A. B., Guha, S., Krishnan, S., Diagaradjane, P., Gelovani, J., and
Aggarwal, B. B. (2007). Curcumin potentiates antitumor activity of
gemcitabine in an orthotopic model of pancreatic cancer through
suppression of proliferation, angiogenesis, and inhibition of nuclear factor-
kappaB-regulated gene products. Cancer Res. 67, 3853–3861. doi: 10.1158/
0008-5472.CAN-06-4257

Kurien, B. T., Dillon, S. P., Dorri, Y., D’souza, A., and Scofield, R. H. (2011).
Curcumin does not bind or intercalate into DNA and a note on the gray side of
curcumin. Int. J. Cancer 128, 242–245. doi: 10.1002/ijc.25290

Lakshmi, S., Padmaja, G., and Remani, P. (2011). Antitumour Effects of Isocurcumenol
Isolated from Curcuma zedoaria Rhizomes on Human and Murine Cancer Cells.
Int. J. Med. Chem. 2011, 253962. doi: 10.1155/2011/253962

Lakshmi, G. (2014). Food coloring: the natural way. Res. J. Chem. Sci. 4, 87–96.
Lal, B., Kapoor, A. K., Agrawal, P. K., Asthana, O. P., and Srimal, R. C. (2000). Role of

curcumin in idiopathic inflammatory orbital pseudotumours. Phytother. Res. 14,
443–447. doi: 10.1002/1099-1573(200009)14:6<443::AID-PTR619>3.0.CO;2-V

Lao, C. D., Ruffin, M. T., Normolle, D., Heath, D. D., Murray, S. I., Bailey, J. M.,
et al. (2006). Dose escalation of a curcuminoid formulation. BMC Complement.
Altern. Med. 6, 10. doi: 10.1186/1472-6882-6-10

Laokuldilok, N., Thakeow, P., Kopermsub, P., and Utama-Ang, N. (2016).
Optimisation of microencapsulation of turmeric extract for masking flavour.
Food Chem. 194, 695–704. doi: 10.1016/j.foodchem.2015.07.150

Lee, H. Y., Kim, S. W., Lee, G. H., Choi, M. K., Jung, H. W., Kim, Y. J., et al. (2016).
Turmeric extract and its active compound, curcumin, protect against chronic
CCl4-induced liver damage by enhancing antioxidation. BMC Complement.
Altern. Med. 16, 316. doi: 10.1186/s12906-016-1307-6

Li, W., Su, Z. Y., Guo, Y., Zhang, C., Wu, R., Gao, L., et al. (2018a). Curcumin
Derivative Epigenetically Reactivates Nrf2 Antioxidative Stress Signaling in
Mouse Prostate Cancer TRAMP C1 Cells. Chem. Res. Toxicol. 31, 88–96. doi:
10.1021/acs.chemrestox.7b00248

Li, X., Ma, S., Yang, P., Sun, B., Zhang, Y., Sun, Y., et al. (2018b). Anticancer effects
of curcumin on nude mice bearing lung cancer A549 cell subsets SP and NSP
cells. Oncol. Lett. 16, 6756–6762. doi: 10.3892/ol.2018.9488

Li, H., Sureda, A., Devkota, H. P., Pittala, V., Barreca, D., Silva, A. S., et al. (2019).
Curcumin, the golden spice in treating cardiovascular diseases. Biotechnol. Adv. 38,
107343. doi: 10.1016/j.biotechadv.2019.01.010

Liang, J., Meng, Y., and Lei, C. (2007). Study on antiseptic effects of curcumin.
China Food Addit. 2, 73e79.

Liao, S., Lin, J., Dang, M. T., Zhang, H., Kao, Y. H., Fukuchi, J., et al. (2001).
Growth suppression of hamster flank organs by topical application of
catechins, alizarin, curcumin, and myristoleic acid. Arch. Dermatol. Res. 293,
200–205. doi: 10.1007/s004030000203

Liddle, M., Hull, C., Liu, C., and Powell, D. (2006). Contact urticaria from
curcumin. Dermatitis 17, 196–197. doi: 10.2310/6620.2006.06004

Lin, Y. G., Kunnumakkara, A. B., Nair, A., Merritt, W. M., Han, L. Y., Armaiz-
Pena, G. N., et al. (2007). Curcumin inhibits tumor growth and angiogenesis in
ovarian carcinoma by targeting the nuclear factor-kappaB pathway. Clin.
Cancer Res. 13, 3423–3430. doi: 10.1158/1078-0432.CCR-06-3072

Lin, C.-M., Sheu, S.-R., Hsu, S.-C., and Tsai, Y.-H. (2010). Determination of bactericidal
efficacy of essential oil extracted from orange peel on the food contact surfaces. Food
Control 21, 1710–1715. doi: 10.1016/j.foodcont.2010.06.008

Liu, Z. J., Li, Z. H., Liu, L., Tang, W. X., Wang, Y., Dong, M. R., et al. (2016).
Curcumin Attenuates Beta-Amyloid-Induced Neuroinflammation via
Activation of Peroxisome Proliferator-Activated Receptor-Gamma Function
in a Rat Model of Alzheimer’s Disease. Front. Pharmacol. 7, 261. doi: 10.3389/
fphar.2016.00261

Lobo, R., Prabhu, K. S., Shirwaikar, A., and Shirwaikar, A. (2009). Curcuma
zedoaria Rosc. (white turmeric): a review of its chemical, pharmacological and
ethnomedicinal properties. J. Pharm. Pharmacol. 61, 13–21. doi: 10.1211/
jpp.61.01.0003

Lopez-Lazaro, M. (2008). Anticancer and carcinogenic properties of curcumin:
considerations for its clinical development as a cancer chemopreventive and
chemotherapeutic agent. Mol. Nutr. Food Res. 52 Suppl 1, S103–S127. doi:
10.1002/mnfr.200700238

Lu, C., Xu,W., Zhang, F., Shao, J., and Zheng, S. (2016). Nrf2 Knockdown Disrupts the
Protective Effect of Curcumin on Alcohol-Induced Hepatocyte Necroptosis. Mol.
Pharm. 13, 4043–4053. doi: 10.1021/acs.molpharmaceut.6b00562

Machova Urdzikova, L., Karova, K., Ruzicka, J., Kloudova, A., Shannon, C.,
Dubisova, J., et al. (2015). The Anti-Inflammatory Compound Curcumin
Enhances Locomotor and Sensory Recovery after Spinal Cord Injury in Rats
by Immunomodulation. Int. J. Mol. Sci. 17 (1), 49. doi: 10.3390/
ijms17010049

Macıás-Pérez, J. R., Vázquez-López, B. J., Muñoz-Ortega, M. H., Aldaba-Muruato,
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Miłobȩdzka, J., Kostanecki, V., and Lampe, V. (1910). Zur Kenntnis des
Curcumins. Berichte Der Deutschen Chem. Gesellschaft 43, 2163–2170. doi:
10.1002/cber.191004302168

Mishra, A., Kumar, R., Tyagi, A., Kohaar, I., Hedau, S., Bharti, A. C., et al. (2015).
Curcumin modulates cellular AP-1, NF-kB, and HPV16 E6 proteins in oral
cancer. Ecancermedicalscience 9, 525. doi: 10.3332/ecancer.2015.525

Monfoulet, L. E., Mercier, S., Bayle, D., Tamaian, R., Barber-Chamoux, N.,
Morand, C., et al. (2017). Curcumin modulates endothelial permeability and
monocyte transendothelial migration by affecting endothelial cell dynamics.
Free Radic. Biol. Med. 112, 109–120. doi: 10.1016/j.freeradbiomed.
2017.07.019

Murthy, K. C., Monika, P., Jayaprakasha, G., and Patil, B. S. (2018).
Nanoencapsulation: An Advanced Nanotechnological Approach To Enhance
the Biological Efficacy of Curcumin. Adv. Plant Phenolics: Chem. Hum. Health.
383–405 doi: 10.1021/bk-2018-1286.ch021

Nandal, S., Dhir, A., Kuhad, A., Sharma, S., and Chopra, K. (2009). Curcumin
potentiates the anti-inflammatory activity of cyclooxygenase inhibitors in the
cotton pellet granuloma pouch model.Methods Find Exp. Clin. Pharmacol. 31,
89–93. doi: 10.1358/mf.2009.31.2.1357705
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