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Abstract: Magnesium is a critical mineral in the human body and is involved in ~80% of known
metabolic functions. It is currently estimated that 60% of adults do not achieve the average dietary
intake (ADI) and 45% of Americans are magnesium deficient, a condition associated with disease
states like hypertension, diabetes, and neurological disorders, to name a few. Magnesium deficiency
can be attributed to common dietary practices, medications, and farming techniques, along with
estimates that the mineral content of vegetables has declined by as much as 80–90% in the last
100 years. However, despite this mineral’s importance, it is poorly understood from several
standpoints, not the least of which is its unique mechanism of absorption and sensitive compartmental
handling in the body, making the determination of magnesium status difficult. The reliance on several
popular sample assays has contributed to a great deal of confusion in the literature. This review
will discuss causes of magnesium deficiency, absorption, handling, and compartmentalization in the
body, highlighting the challenges this creates in determining magnesium status in both clinical and
research settings.

Keywords: magnesium; magnesium deficiency; magnesium absorption; magnesium sampling;
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1. Introduction

Magnesium is a critical mineral in the human body governing the activity of hundreds of enzymes
encompassing ~80% of known metabolic functions [1–4]. Despite the importance of magnesium, it
remains one of the least understood and appreciated elements in human health and nutrition. It is
currently estimated that 45% of Americans are magnesium deficient and 60% of adults do not reach
the average dietary intake (ADI) [5–8]. A daily intake (DI) of 3.6 mg/kg is necessary to maintain
magnesium balance in humans under typical physiological conditions, with the ADI for adults
estimated at between 320 to 420 mg/day (13–17 mmol/day) [9,10].

The high rate of magnesium deficiency now postulated [5–8] can be attributed in part to a steady
decline in general magnesium content in cultivated fruits and vegetables, a reflection of the observed
depletion of magnesium in soil over the past 100 years [11–13]. A report to Congress was already
sounding the alarm as far back as the 1930s, pointing out the paucity of magnesium, and other minerals,
in certain produce [14].

This loss of mineral content across “healthy” food choices has been compounded by a historical
rise in the consumption of processed food, which has been shown to impede magnesium absorption
and contribute to the current state of magnesium deficiency (defined by serum blood levels, “normal”
being considered as 0.7–1 mmol/L and hypomagnesaemia as <0.7 mmol/L) [15–19]. Given the
role of magnesium in calcium and potassium transport, cell signaling, energy metabolism, genome
stability, DNA repair and replication, it is not surprising that hypomagnesaemia is now associated
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with many diseases including hypertension, coronary heart disease, diabetes, osteoporosis, and several
neurological disorders [1,2,4,20–23].

Despite its importance to human health, magnesium remains one of least investigated macro
minerals, and while it is getting more attention, this still pales in comparison to the level of investigation
into other macronutrients such as calcium or iron (Figure 1). The root cause of this oversight likely
lies in the fact that iron and calcium deficiency can be diagnosed through a variety of clinically well
recognized associated signs and symptoms, and readily supported by commonly used, and clinically
validated, diagnostic assays available for verification [24–26]. This tie-in is not the case however, for
magnesium, where deficiency does not present with unique and identifiable clinical manifestations.
Furthermore, even if clinical signs and symptoms are present, they are overshadowed by or taken to
be the result of common co-morbidities such as diabetes and cardiovascular disease. The lack of a
standardized laboratory test that accurately describes the status of magnesium [27] remains one of the
most vexing challenges associated with the magnesium field, and contributes to the relative anonymity
of magnesium compared to other macronutrients, which in turn, further contributes to magnesium
deficiency and its sequelae.
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(green) or “iron deficiency” (blue) (performed 4 May 2018) over the past 25 years (X-axis; 2017–1992). 
(Inset) Trend lines show the relatively flat research output on magnesium deficiency relative to 
calcium and iron. 

Moving forward, it is clear that there will be an important role to play for magnesium 
supplementation across, and within, certain populations. The key to unlocking the benefits of 
magnesium will be to understand the factors contributing to inadequate dietary intake, including the 
complexity of absorption, secretion, and reabsorption, and to address the challenges of representative 
compartment analytics. These factors make most human clinical magnesium supplementation 
studies are difficult to extrapolate and interpret accurately, leading to magnesium research being 
described as, “Far from complete and the conclusions that have been drawn are far from clear.” [28]. 

Causes of Magnesium Deficiency 

Despite the importance of magnesium to human health and wellness, 60% of people do not meet 
the recommended DI of 320 mg/day for woman and 420 mg/day for men, with 19% not obtaining 
even half of the recommended amount [5,6,29]. Magnesium dietary deficiency can be attributed not 
just to poor mineral intake due to modern diets, but historical farming practices may play a significant 
role as well. The highest food sources of magnesium are leafy greens (78 mg/serving), nuts (80 
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Moving forward, it is clear that there will be an important role to play for magnesium
supplementation across, and within, certain populations. The key to unlocking the benefits of
magnesium will be to understand the factors contributing to inadequate dietary intake, including the
complexity of absorption, secretion, and reabsorption, and to address the challenges of representative
compartment analytics. These factors make most human clinical magnesium supplementation studies
are difficult to extrapolate and interpret accurately, leading to magnesium research being described as,
“Far from complete and the conclusions that have been drawn are far from clear.” [28].

Causes of Magnesium Deficiency

Despite the importance of magnesium to human health and wellness, 60% of people do not meet
the recommended DI of 320 mg/day for woman and 420 mg/day for men, with 19% not obtaining
even half of the recommended amount [5,6,29]. Magnesium dietary deficiency can be attributed
not just to poor mineral intake due to modern diets, but historical farming practices may play a
significant role as well. The highest food sources of magnesium are leafy greens (78 mg/serving),
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nuts (80 mg/serving), and whole grains (46 mg/serving), none of which individually have a high
percentage of the recommended dietary allowance (RDA) of magnesium or are eaten consistently
or sufficiently for adequate magnesium intake [10,15,30]. Increasing demand for food has caused
modern farming techniques to impact the soil’s ability to restore natural minerals such as magnesium.
In addition, the use of phosphate-based fertilizers has resulted in the production of aqueously insoluble
magnesium phosphate complexes, for example, further depriving the soil of both components [31].

Many fruits and vegetables have lost large amounts of minerals and nutrients in the past 100 years
with estimates that vegetables have dropped magnesium levels by 80–90% in the U.S. (Figure 2) and
the UK [11–13,32,33]. It is important to note that the USDA mineral content of vegetables and fruits
has not been updated since 2000, and perhaps even longer, given that the data for 1992 was not able
to be definitively confirmed for this review. The veracity of the mineral content to support the claim
of demineralization of our food sources should be verified, particularly since farming methods and
nutrient fertilization has undoubtedly advanced in the last 50 years. Hence, there is a clear need for a
new initiative to study the current mineral content in vegetables and fruits grown in selective markets
to get a current and validated assessment of the mineral and nutrient value of commonly consumed
fruit and vegetable staples.
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Processing techniques, such as grain bleaching and vegetable cooking, can cause a loss of up to 80% 
of magnesium content [39]. Beverages, such as soft drinks, which contain high phosphoric acid, along 
with a low protein diet (<30 mg/day), and foods containing phytates, polyphenols and oxalic acid, 
such as rice and nuts, all contribute to magnesium deficiency due to their ability to bind magnesium 
to produce insoluble precipitates, thus negatively impacting magnesium availability and absorption 
[40–43]. Magnesium in drinking water contributes to about 10% of the ADI [44], however, increased 
use of softened/purified tap water can contribute to magnesium deficiency due to the filtering or 
complexation of the metal [45]. In addition, fluoride, found in 74% of the American population’s 
drinking water, with ~50% of drinking water having a concentration of 0.7 mg/L, prevents 
magnesium absorption through binding and production of insoluble complexes [46–48]. Ingestion of 
caffeine and alcohol increase renal excretion of magnesium causing an increase in the body’s demand 
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Figure 2. The average mineral content of calcium, magnesium, and iron in cabbage, lettuce, tomatoes,
and spinach has dropped 80–90% between 1914 and 2018 [30,34–37]. Asterisks indicate numbers could
not be independently verified.

Modern dietary practices are now estimated to consist of up to 60% processed foods [38].
Processing techniques, such as grain bleaching and vegetable cooking, can cause a loss of up to
80% of magnesium content [39]. Beverages, such as soft drinks, which contain high phosphoric
acid, along with a low protein diet (<30 mg/day), and foods containing phytates, polyphenols and
oxalic acid, such as rice and nuts, all contribute to magnesium deficiency due to their ability to bind
magnesium to produce insoluble precipitates, thus negatively impacting magnesium availability and
absorption [40–43]. Magnesium in drinking water contributes to about 10% of the ADI [44], however,
increased use of softened/purified tap water can contribute to magnesium deficiency due to the filtering
or complexation of the metal [45]. In addition, fluoride, found in 74% of the American population’s
drinking water, with ~50% of drinking water having a concentration of 0.7 mg/L, prevents magnesium
absorption through binding and production of insoluble complexes [46–48]. Ingestion of caffeine
and alcohol increase renal excretion of magnesium causing an increase in the body’s demand [49,50].
Common medications can also have a deleterious effect on magnesium absorption such as antacids (e.g.,
omeprazole), due to the increase in gastrointestinal (GI) tract pH (see Section 2.5) [51,52], antibiotics (e.g.,
ciprofloxacin) [53], and oral contraceptives due to complexation [54,55], and diuretics (e.g., furosemide
and bumetanide), due to an increase in renal excretion (see Section 2.6) [56,57].



Nutrients 2018, 10, 1202 4 of 23

2. Magnesium Absorption

2.1. Anatomic Considerations

Unlike other minerals, magnesium can be absorbed along the entire length of the gastrointestinal
tract. However, different segments contribute unequally to the overall absorption of dietary
magnesium. Due to the complex nature of magnesium absorption, segments of the GI tract can vary in
their contribution to absorption, however, under normal physiologic conditions the general guide is
the duodenum absorbs 11%, the jejunum 22%, the ileum 56%, and the colon 11% (Figure 3) [3,58].
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Figure 3. Percentage of magnesium absorption in the GI tract. The majority of magnesium is absorbed
in the distal portion of the small intestine. The ileum absorbs 56%, the jejunum 22%, the duodenum
11%, and colon 11% [3,58].

2.2. Absorption

Two transport systems, one passive and one active, are known to be responsible for magnesium
uptake (Figure 4). At lower intestinal magnesium concentrations, a transcellular and saturable
transport mechanism predominates and relies on an active transporter [20,59,60], Transient Receptor
Potential Channel Melastatin members (TRPM6 and TRPM7), which possess unusual properties
designed to strip away the hydration shell of magnesium (see Section 2.3) [61–67]. This active transport
occurs predominantly in the distal small intestine and colon, and due to saturability is only responsible
for 10–20% of total magnesium absorbed [68]. Additionally, active transport can increase magnesium
absorption, typically at 30–50% [69] of ingested magnesium, up to 80%, for periods of time during lower
luminal concentrations [70,71]. TRPM6 and TRPM7 have high sensitivity to intracellular magnesium
levels causing inhibition and saturation of transcellular transport at higher magnesium concentrations
resulting in magnesium absorption being dominated by paracellular transport [64,67].

Passive paracellular diffusion occurs in the small intestine and because it is non-saturable, is
responsible for 80–90% of overall magnesium absorption [20,58,60,72]. The driving force behind this
passive transport is a high luminal concentration, ranging between 1 and 5 mmol/L, which contributes
to an electrochemical gradient and solvent drag of magnesium through the tight junctions between
intestinal enterocytes [59,73].
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Figure 4. Magnesium absorption in the intestine. Magnesium is absorbed through either a saturable
transcellular pathway (left) in which TRPM6 and TRPM7 actively transport magnesium into the GI
epithelial cells, which is effluxed through a Na+/Mg2+ exchanger and/or a paracellular pathway (right)
where magnesium transverses the tight junctions of the intestinal epithelium, assisted by magnesium
associated claudin proteins.

The distal jejunum and ileum have relatively low expression of certain tightening claudin proteins
(1, 3, 4 and 5) [74,75], the integral membrane proteins of tight junctions, which allow a higher
permeability, and hence, higher magnesium transport [75–77]. Claudins are also known to form
paracellular channels, in monomeric or heteromeric combinations, which can electively transport ions
such as calcium and magnesium. Studies have shown that when expression of claudins 2, 7 and 12 (all
highly expressed in the small intestine) [75,76] was decreased, magnesium paracellular transport was
also decreased, indicating that certain claudins play a significant role in passive magnesium transport
and absorption [78,79]. Claudins 16 and 19 have been shown to be involved in magnesium reabsorption
in the kidney but are not expressed in the GI tract [80]. A series of in vitro experiments, designed to
explore the involvement of active (solvent drag, voltage dependent or transcellular transport) and
passive paracellular transport mechanisms of magnesium absorption, showed that the paracellular
passive pathway was mainly mediated by claudin proteins at the tight junctions, which was attributed
to their ability to remove the hydration shell of magnesium (Figure 5) [78,79,81].

Claudins are a large family of proteins and the identification, localization, and function of these
integral membrane proteins is part of an emerging science, which at present only allows a glimpse into
their role in mineral transport in general, and magnesium transport in particular [75–77,82].

2.3. Hydration Shell

Magnesium is a divalent cation, which plays a critical role in how the mineral is absorbed [83,84].
Magnesium is the most densely charged of all the biological cations, due to a high charge to radius
ratio, resulting in high hydration energy for the Mg2+ cation [83]. This hydration energy results in tight
coordination with a double layer of water molecules, increasing the hydrodynamic radius 400 times
that of the dehydrated radius [83,85], resulting in an aquated cation that is too large to transverse
typical ion channels (Figure 5) [86]. The removal of the hydration shell around magnesium is a
precondition for absorption and can be accomplished by both TMPR6 and TMPR7 and the magnesium
associated paracellular claudins [64,67,87,88].
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Figure 5. Hydration shells of both magnesium and calcium. The hydrated radius of magnesium is
>400 times larger than its dehydrated radius, which is much more prominent than calcium (~25-fold
difference) [83,84]. This increase in radius, unlike calcium, prevents magnesium from passing through
narrow ion channels.

2.4. Distribution in the Human Body

Once magnesium is absorbed it is distributed throughout the body for use and storage. Only 0.8%
of magnesium is found in blood with 0.3% in serum and 0.5% in erythrocytes, with a typical total
magnesium serum concentration between 0.65–1.0 mmol/L [89,90]. The rest is distributed in soft tissue
(19%), muscle (27%), and bone (53%) (Figure 6) [89–91]. Up to one-third of the magnesium stored in
bone is exchangeable [92], and while the total amount of magnesium stored in bone can change with
age, bone remains the most significant area of stored and exchangeable magnesium.
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Figure 6. Magnesium homeostasis. Dietary magnesium can be absorbed along the entire length of the
GI tract and into the blood but can also be excreted in feces (between 20% and 70% of the ingested
amount) [69]. Once in the blood, magnesium is quickly taken up into tissues with muscle containing
27%, bone 53%, and other tissues holding 19% [3,58,93]. Blood and tissue magnesium are in a constant
state of exchange and the kidney, which can filter up to 2400 mg of magnesium per day [94] (or 10%
of average magnesium content in an adult [95]) can excrete between 5% and 70% of that magnesium
depending on multiple variables.
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2.5. Factors That Influence Magnesium Absorption

Magnesium concentration within the GI tract is a key driver of how and which of the two
transport systems become engaged in magnesium absorption. Active transport in the colon dominates
absorption at lower magnesium concentrations but becomes saturated when luminal amounts are
between 125 and 250 mg [70,72]. When luminal amounts reach ≥250 mg the absorption mechanism
changes and is governed by passive transport in the distal small bowel [70,72].

That being said, the solubility of the magnesium form (inorganic salt, organic salt, chelate, etc.) is an
important factor, with increased solubility correlating with increased absorption. The pH of the GI tract
can impact how soluble the magnesium form is, with a lower pH increasing magnesium solubility [96,97].
This can make magnesium absorption increasingly difficult as it travels down the small intestine with
pH steadily increasing to 7.4 in the ileum. In 2005, Coudray et al. showed that magnesium absorption is
significantly affected by GI tract pH in rats [97]. The study showed that as pH gradually increased, the
solubility of ten magnesium salts (organic and inorganic) gradually decreased from 85% in the proximal
intestine to 50% in the distal intestine. Other studies showed that a commonly used proton pump inhibitor,
omeprazole, affected passive transport in vitro [78,79]. They showed that omeprazole suppressed passive
magnesium absorption by causing luminal acidity to rise above the range (pH 5.5–6.5) in which claudin 7
and 12 expression is optimized, magnesium hydration shell stripping is most effective, and electrostatic
coupling between magnesium and the transporter takes place [79].

Magnesium absorption is enhanced by factors that contribute to water flow across the intestinal
mucosal membrane, such as simple sugars and urea [59,98]. Therefore, meals containing carbohydrates
and medium chain fatty acids will increase magnesium uptake but will also increase the demand
since magnesium is critical to glucose breakdown and insulin release [99]. Solid meals, by prolonging
GI transit time, can also enhance magnesium absorption [100]. Increased dietary fiber intake in the
diet (e.g., cellulose, pectin, and inulin) does not appear to affect magnesium status but can increase
magnesium excretion in feces [101–103].

2.6. Factors That Affect Magnesium Status

Renal function is a key player in magnesium homeostasis and filters approximately
2400 mg/day [94], and anywhere between 5% and 70% filtered magnesium may actually be excreted
in the urine [89,103,104]. This wide range depends on ever changing variables such as dietary intake,
existing magnesium status, mobilization from bone and muscle, and the influence of a variety of
hormones (e.g., parathyroid hormone, calcitonin, glucagon) [105–107] and medications (e.g., diuretics
and certain chemotherapies that can cause abnormally high magnesium excretion) [56,90,104,108].
Renal magnesium wasting can occur in patients who are on long-term diuretic management as well as
those with diabetes. The resultant magnesium deficiency leads to higher nutritional requirements and
the inevitable increase in magnesium absorption to re-establish homeostasis [109].

Gender also contributes to magnesium status as estrogen enhances magnesium utilization,
favoring its uptake by soft and hard tissues [110]. Young women have better magnesium retention than
young men, and as a result of this, their circulating magnesium levels are lower [111,112], particularly
at the time of ovulation or during oral contraceptive use [54,112–115], when estrogen levels are highest.
Consequently, samples taken in a mixed gender population or at time points that do not take this into
account could further confound human magnesium studies.

Body mass index (BMI) also may affect magnesium status, particularly in women and children.
Patients considered obese (BMI ≥ 30) have been shown to have lower magnesium consumption and
reduced magnesium status compared to non-obese age matched controls [116–119].

3. Analytical Challenges in Establishing Magnesium Status

Understanding the relationship between the concentration of an analyte in the compartment
being measured (e.g., blood, urine, and epithelial samples) and the status of that analyte in the body,
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or its relevance in the measured compartment is a fundamental principal that will render an analytical
test useful or not. Due to the way in which magnesium is compartmentalized, the typical compartment
(blood and urine) analytics may not provide an accurate proxy of magnesium status and will mislead
the practitioner.

A literature search identified 54 randomized controlled magnesium supplementation studies
(see Methods), and showed that the majority of studies examined blood and urine with only a few
examining fecal material, other tissues such as muscle, or from different cell specimens (Table 1).

3.1. Blood Levels

The current “normal” range interval of serum magnesium is 0.7–1 mmol/L and was established
based on serum magnesium levels gathered by a U.S. study between 1971 and 1974 of presumably
healthy individuals aged 1–74 years [120]. Serum changes can be influenced by dietary magnesium
intake and albumin levels, but can also be affected by short term changes like day to day and hour
to hour variability of the amount of magnesium absorbed and excreted through the kidneys [121].
Blood levels have been shown to increase in response to magnesium supplementation, but this does
not signal that complete equilibrium has been established between blood and the nearly 100-fold larger
body reservoir of magnesium. In fact, the much larger exchangeable pool of magnesium is more often
called upon to augment blood levels to maintain a narrow range preferentially, which is a key reason
why blood measurements can easily mask deficiency [122,123].

The tight control of magnesium serum levels, representing only 0.8% of total body stores (see
Section 2.4), therefore serves as a poor proxy for the 99.2% of magnesium in other tissues that constitutes
the body’s true magnesium status. Furthermore, this narrow serum range feeds the common perception
of clinicians that magnesium levels rarely fluctuate, and therefore, are not indicative of the condition for
which the blood tests are ordered. Therefore, practitioners are apt to order blood tests for magnesium
infrequently, if at all, and if a magnesium level is in the patient chart, it is more often as part of a blood
test panel and not purposely ordered to determine the magnesium status [89,124–126]. This contributes
significantly to magnesium deficiency not being recognized as a modifiable nutritional intervention,
and magnesium in general, being the neglected mineral that it is.

Red blood cells’ (RBC; erythrocyte and monocyte) magnesium levels are often cited as preferable
to serum or plasma levels due to their higher magnesium content (0.5% vs. 0.3%, respectively).
Some RBC studies report correlation to magnesium status particularly when subjects are placed
on long-term (~3 months) magnesium replete or deplete diets. However, most studies using RBC
magnesium endpoints do not satisfy this long-term design and have not been performed in nearly
enough randomized clinical studies to be considered sufficiently robust or reliable (Table 1) [127–129].
In addition, the majority of RBC studies do not validate the method through inter-compartmental
sampling (e.g., urine and muscle), challenging the claim that this test is a reliable representation of the
large magnesium pool.
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Table 1. Magnesium clinical trial studies by year with method of determining magnesium status indicated. Expanded from Zhang et al. [130].

Study Blood Urine Intracellular
Fecal

Tissue Challenge Studies

Serum Plasma 24 h NS RBC WBC SL Other Muscle Other Balance Retention

1. Zemel, 1990, USA [131] χ χ

2. Facchinetti, 1991, Italy [132] χ χ χ

3. Desbiens, 1992, USA [133] χ

4. Ferrara, 1992, Italy [134] χ χ

5. Bashir, 1993, USA [135] χ χ

6. Plum-Wirell, 1994, Sweden [136] χ χ χ

7. Witteman, 1994, Netherlands [137] χ χ

8. Eibl, 1995, Austria [138] χ χ

9. Eriksson, 1995, Finland [139] χ

10. Itoh, 1996, Japan [140] χ χ

11. Sanjuliani, 1996, Brazil [141] χ

12. Costello, 1997, USA [142] χ χ χ

13. Sacks, 1997, USA [143] χ

14. de Valk, 1998, Netherlands [144] χ χ χ

15. Lima, 1998, Brazil [145] χ χ χ

16. Walker, 1998, UK [146] χ

17. Weller, 1998, Germany [147] χ χ χ χ χ

18. Hagg, 1999, Sweden [148] χ χ

19. Wary, 1999, French [149] χ χ χ χ χ

20. Zorbas, 1999, Greece [150] χ χ χ χ

21. Schechter, 2000, USA [151] χ χ

22. Walker, 2002, UK [152] χ

23. Mooren, 2003, Germany [153] χ

24. Rodriguez-Moran, 2003, Mexico [154] χ

25. Walker, 2003, UK [155] χ χ χ

26. Závaczki, 2003, Hungary [156] χ

27. De Leeuw, 2004, Belgium [157] χ χ

28. Pokan, 2006, USA [158] χ

29. Rodríguez, 2008, Mexico [159] χ

30. Almoznino-Sarafian, 2009, Israel [160] χ χ
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Table 1. Cont.

Study Blood Urine Intracellular
Fecal

Tissue Challenge Studies

Serum Plasma 24 h NS RBC WBC SL Other Muscle Other Balance Retention

31. Lee, 2009, South Korea [161] χ χ

32. Romero, 2009, Mexico [162] χ

33. Aydın, 2010, Turkey [163] χ

34. Kazaks, 2010, USA [164] χ χ χ

35. Nielsen, 2010, USA [165] χ χ χ

36. Zorbas, 2010, Greece [166] χ χ χ χ

37. Chacko, 2011, USA [167] χ

38. Romero, 2011, Mexico [168] χ

39. Esfanjani, 2012, Iran [169] χ

40. Laecke, 2014, Belgium [170] χ χ

41. Cosaro, 2014, Italy [171] χ χ χ

42. Rodriguez, 2014, Mexico [172] χ

43. Setaro, 2014, Brazil [173] χ

44. Navarrete-Cortes, 2014, Mexico [174] χ χ

45. Guerrero-Romero, 2015, Mexico [175] χ

46. Park, 2015, USA [176] χ

47. Baker, 2015, USA [177] χ

48. Joris, 2016, Netherlands [178] χ χ

49. Terink, 2016, Netherlands [179] χ

50. Moradian, 2017, Iran [180] χ

51. Rajizadeh, 2017, Iran [181] χ

52. Cunha, 2017, Brazil [182] χ

53. Bressendorff, 2017, Denmark/Norway [183] χ χ

54. Bressendorff, 2017, Denmark [184] χ χ χ

55. Toprak, 2017, Turkey [185] χ

Total 35 11 16 10 12 3 3 3 2 4 2 1 1

RBC: red blood cells; WBC: white blood cells; SL: sublingual cells; NS: not specified or not 24 h collection.
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3.2. Urine Levels

Due to the large amount of magnesium filtered and the variable degree of reabsorption and
secretion (see Section 2.6), magnesium levels in the urine do not correlate with either the amount of
magnesium ingested or the magnesium status in the body. Therefore, despite their frequent use in
many published clinical studies (Table 1) [6,130], they should be regarded critically in most clinical
and research settings due to the wide fluctuation of renal magnesium reabsorption and excretion.

An epidemiologic study linking magnesium status with risk of heart disease highlighted the
poor correlation between urine and blood results and called out the inconsistent results from many
previous studies [186,187], even though 24 h urine analyses may still serve some useful function in
population based epidemiological studies. The biological variation of magnesium status in smaller
cohorts, however, has been highlighted in a study with 60 healthy males in which a within-subject
variation of 36% and a between-subject variation of 26% was demonstrated when measuring the 24 h
urinary magnesium excretion [187]. The same can be said about fecal magnesium levels, which require
3–7 days collection and are notoriously unpopular with researchers and subjects [69,188].

A more complicated method of determining magnesium status relies on intravenous magnesium
loading followed by a 24 h urine collection, ostensibly to measure what percentage of administered
dose is retained, from which an assessment of magnesium status can be derived. This retention test
relies heavily on the reliability and standardization of the 24 h urine measurement, which is not
uniformly accepted [125,189–193]. Additionally, this test is costly, more suitable for research units and
impractical for most clinical settings.

3.3. Oral Sampling

Energy-dispersive X-ray analysis of magnesium in sublingual cells reports correlation between
intracellular magnesium levels in sublingual cells and atrial cell biopsies from subjects undergoing
open heart surgery in a small single cohort [194]. However, to our knowledge, this method has not
been validated for application as a reliable and indicative of magnesium status in a broader context,
beyond a single disease state cohort study. So too, saliva levels have not been adequately correlated
with other conventional measurements, and therefore, to date, lack the requisite robustness to be
considered as an improvement to assays of blood or urine [155].

3.4. Magnesium Isotopes

In recognition of the meaningful exchange of endogenous magnesium between physiologic
compartments, and the high degree of biological variability in typical analytic measurements, some
researchers maintain that the only reliable way of measuring the disposition of exogenous magnesium
is by using isotopic labels [97,195–200]. A radioisotope, 28magnesium, has been used previously in
magnesium research but it does not make an ideal nucleotide because its half-life (t1/2 = 21 h) [201–203]
does not match the long biological half-life of magnesium (~1000 h) [201]. Therefore, 28magnesium is
not commonly used in current research [128].

Stable isotopes retain all chemical characteristics of an element while being distinguishable
from the endogenous elements within the body. This allows for a means of tracking the fate of an
exogenously administered “dose” of the element upon ingestion or injection into the body without the
harmful emissions associated with radioisotopes. Stable isotopes can be useful tools, particularly in
nutritional research, because of the ability to use them in most populations (including small children
and pregnant women) and more than one isotope can be used in a study to follow uptake and
distribution of different forms of a nutrient.

However, stable magnesium isotopes have proven to be difficult to use because truly
low-abundance stable magnesium isotopes do not exist, and therefore, provide significant background
noise in the assays. There are three stable magnesium isotopes; 25magnesium, which has an abundance
of 10%, 24magnesium has 79% abundance, and 26magesnium has 11% abundance. This means that
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these isotopes cannot be used in the customary small amounts to provide an adequate isotope signal
to indicate magnesium status [84]. Very large amounts of isotope, using more than one isotope
or significant enrichment, are needed for these studies, dramatically limiting the available supply
and adding significantly to the cost, ultimately leading researchers to use less sophisticated and
unreliable methods.

4. Conclusions

An argument can be made for revisiting the accepted ranges of diagnostic tests to capture clinical
or other biologic consequences that lie within the currently accepted ranges of normal. Even though
this has been suggested in a recent review [6], this approach is likely to be more impactful in large
population studies (that have not been undertaken in the U.S. for more than 40 years) than provide
pinpoint guidance to diagnose and manage magnesium deficiency in the individual. The multiple
factors affecting magnesium status (e.g., dietary intake, luminal concentration, GI pH, weight and
gender) in conjunction with the high degree of inter- and intra-variability of intestinal, renal, and tissue
handling make an individual diagnosis extremely challenging for the clinician.

Until a commercially viable and unambiguous magnesium deficiency biomarker is identified and
validated, it is worth exploring an alternative approach to diagnosing magnesium deficiency. A patient
with dietary risk factors (e.g., high soda, coffee, and processed food ingestion); using medications
known to affect magnesium (e.g., diuretics, antacids, oral contraceptives); with disease states (e.g.,
ischemic heart disease, diabetes, and osteoporosis); with clinical symptoms (e.g., leg cramps, sleep
disorder, and chronic fatigue); or with Metabolic Syndrome (Table 2) should prompt the practitioner to
measure serum and/or 24 h urine for magnesium, bearing in mind that it is quite likely that results
from these laboratory tests may read within the reference range (0.75–0.85 mmol/L in the case of
serum magnesium) [204].

Table 2. Suggested illustrative criteria for assessment of magnesium deficiency.

Category Risk Factor Criterion

Disease
Diabetes [4], Heart disease [22] Major

Osteoporosis [26] Minor

Diet
Soda [41], Processed Foods [39] Major

Coffee [50], Alcohol [49], Protein [42] Minor

Medication
Diuretics [57], Antacids [51] Major

Oral contraceptives [55], Antibiotics [53] Minor

Clinical History
Leg Cramps [205] Major

Sleep Disorder [206], Fibromyalgia [207], Chronic fatigue [208] Minor

Metabolic Status
Metabolic Syndrome [209] Major

BMI > 30 [117] Minor

It has further been suggested that if serum magnesium is below 0.85 mmol/L and urinary
excretion is below 80 mg/day, it is appropriate to consider magnesium related co-morbidities and
risk factors for magnesium deficiency when considering whether a state of magnesium deficiency
exists [204]. This could warrant a medication change or dietary recommendations to increase intake of
raw vegetables with higher magnesium content and reducing soda and processed food consumption
with low or no magnesium and/or recommending magnesium supplements.

This new approach may further sensitize the clinician to the limitations of diagnostic tests and the
need to incorporate risk and clinical considerations into the treatment paradigm. By way of suggestion,
certain conditions may be regarded as “major” diagnostic criteria (e.g., diuretic use, ischemic heart
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disease, and high processed food and/or soda intake) and others as “minor” criteria (e.g., sleep
disorder or BMI) (Table 2).

A clinician may recognize a patient at risk for magnesium deficiency with one major criterion and
two or more minor criteria, or two major criteria and no minor criteria, and so forth. The parameters
of such a system is beyond the scope and authority of this review, with Table 2 being illustrative, but
this could be entertained as a new way to look at a serious essential nutrient deficiency that is all but
ignored because of the pitfalls of the analytic methods that are peculiar to this most important mineral.

Methods: Searches were conducted in MEDLINE up to 30 May 2018. The words “magnesium”,
“supplementation”, “intervention,” “depletion”, “randomized controlled trial”, “randomized clinical trial”,
“randomized trial”, “controlled trial”, and “clinical trial” were used in the searches.
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185. Toprak, O.; Kurt, H.; Sarı, Y.; Şarkış, C.; Us, H.; Kırık, A. Magnesium Replacement Improves the Metabolic
Profile in Obese and Pre-Diabetic Patients with Mild-to-Moderate Chronic Kidney Disease: A 3-Month,
Randomised, Double-Blind, Placebo-Controlled Study. Kidney Blood Press. Res. 2017, 42, 33–42. [CrossRef]
[PubMed]

186. Joosten, M.M.; Gansevoort, R.T.; Mukamal, K.J.; van der Harst, P.; Geleijnse, J.M.; Feskens, E.J.; Navis, G.;
Bakker, S.J. Urinary and plasma magnesium and risk of ischemic heart disease. Am. J. Clin. Nutr. 2013,
97, 1299–1306. [CrossRef] [PubMed]

187. Djurhuus, M.S.; Gram, J.; Petersen, P.H.; Klitgaard, N.A.H.; Bollerslev, J.; Beck-Nielsen, H. Biological variation
of serum and urinary magnesium in apparently healthy males. Scand. J. Clin. Lab. Investig. 1995, 55, 549–558.
[CrossRef]

188. Tahiri, M.; Tressol, J.C.; Arnaud, J.; Bornet, F.; Bouteloup-Demange, C.; Feillet-Coudray, C.; Ducros, V.;
Pépin, D.; Brouns, F.; Roussel, A.M.; et al. Five-Week Intake of Short-Chain Fructo-Oligosaccharides
Increases Intestinal Absorption and Status of Magnesium in Postmenopausal Women. J. Bone Miner. Res.
2001, 16, 2152–2160. [CrossRef] [PubMed]

189. Saur, P.M.; Zielmann, S.; Roth, A.T.; Frank, L.; Warneke, G.; Radke, A.; Ensink, F.B.; Kettler, D. Diagnosis of
magnesium deficiency in intensive care patients. Anasthesiologie Intensivmedizin Notfallmedizin Schmerztherapie
AINS 1996, 31, 37–41. [CrossRef] [PubMed]

190. Hébert, P.; Mehta, N.; Wang, J.; Hindmarsh, T.; Jones, G.; Cardinal, P. Functional magnesium deficiency in
critically ill patients identified using a magnesium-loading test. Crit. Care Med. 1997, 25, 749–755. [CrossRef]
[PubMed]

191. Saur, P.; Niedmann, P.D.; Brunner, E.; Kettler, D. Do intracellular, extracellular or urinary magnesium
concentrations predict renal retention of magnesium in critically ill patients? Eur. J. Anaesthesiol. 2005,
22, 148–153. [CrossRef] [PubMed]

192. Wälti, M.K.; Walczyk, T.; Zimmermann, M.B.; Fortunato, G.; Weber, M.; Spinas, G.A.; Hurrell, R.F. Urinary
excretion of an intravenous 26Mg dose as an indicator of marginal magnesium deficiency in adults. Eur. J.
Clin. Nutr. 2006, 60, 147–154. [CrossRef] [PubMed]

193. Martin, B.J. The magnesium load test: Experience in elderly subjects. Aging Clin. Exp. Res. 1990, 2, 291–296.
[CrossRef]

194. Haigney, M.C.P.; Silver, B.; Tanglao, E.; Silverman, H.S.; Hill, J.D.; Shapiro, E.; Gerstenblith, G.; Schulman, S.P.
Noninvasive Measurement of Tissue Magnesium and Correlation with Cardiac Levels. Circulation 1995,
92, 2190–2197. [CrossRef] [PubMed]

195. Coudray, C.; Rambeau, M.; Feillet-Coudray, C.; Tressol, J.C.; Demigne, C.; Gueux, E.; Mazur, A.; Rayssiguier, Y.
Dietary inulin intake and age can significantly affect intestinal absorption of calcium and magnesium in rats:
A stable isotope approach. Nutr. J. 2005, 4, 29. [CrossRef] [PubMed]

196. Sojka, J.; Wastney, M.; Abrams, S.; Lewis, S.F.; Martin, B.; Weaver, C.; Peacock, M. Magnesium kinetics in
adolescent girls determined using stable isotopes: Effects of high and low calcium intake. Am. J. Physiol.
Regul. Integr. Comp. Physiol. 1997, 273, R710–R715. [CrossRef] [PubMed]

197. Abrams, S.A. 16—Using stable isotopes to determine mineral bioavailability of functional foods. In Designing
Functional Foods; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead
Publishing: Cambridge, UK, 2009; pp. 415–428, ISBN 978-1-84569-432-6.

198. Hachey, D.L.; Wong, W.W.; Boutton, T.W.; Klein, P.D. Stable isotopes in the study of human nutrition. Int. J.
Radiat. Appl. Instrum. 1988, 39, 503. [CrossRef]

199. Hansen, K.E.; Nabak, A.C.; Johnson, R.E.; Marvdashti, S.; Keuler, N.S.; Shafer, M.M.; Abrams, S.A.
Isotope Concentrations from 24-h Urine and 3-h Serum Samples Can Be Used to Measure Intestinal
Magnesium Absorption in Postmenopausal Women. J. Nutr. 2014, 144, 533–537. [CrossRef] [PubMed]

200. Draxler, J.; Martinelli, E.; Weinberg, A.M.; Zitek, A.; Irrgeher, J.; Meischel, M.; Stanzl-Tschegg, S.E.; Mingler, B.;
Prohaska, T. The potential of isotopically enriched magnesium to study bone implant degradation in vivo.
Acta Biomater. 2017, 51, 526–536. [CrossRef] [PubMed]

201. Avioli, L.V.; Berman, M. Mg28 kinetics in man. J. Appl. Physiol. 1966, 21, 1688–1694. [CrossRef] [PubMed]
202. Danielson, B.G.; Johansson, G.; Ljunghall, S. Magnesium metabolism in healthy subjects. Scand. J. Urol.

Nephrol. Suppl. 1979, 51, 49–73.
203. Watson, W.S.; Hilditch, T.E.; Horton, P.W.; Davies, D.L.; Lindsay, R. Magnesium metabolism in blood and the

whole body in man using 28magnesium. Metabolism 1979, 28, 90–95. [CrossRef]

http://dx.doi.org/10.1159/000468530
http://www.ncbi.nlm.nih.gov/pubmed/28297698
http://dx.doi.org/10.3945/ajcn.112.054114
http://www.ncbi.nlm.nih.gov/pubmed/23485414
http://dx.doi.org/10.1080/00365519509075394
http://dx.doi.org/10.1359/jbmr.2001.16.11.2152
http://www.ncbi.nlm.nih.gov/pubmed/11697813
http://dx.doi.org/10.1055/s-2007-995865
http://www.ncbi.nlm.nih.gov/pubmed/8868531
http://dx.doi.org/10.1097/00003246-199705000-00007
http://www.ncbi.nlm.nih.gov/pubmed/9187591
http://dx.doi.org/10.1017/S026502150500027X
http://www.ncbi.nlm.nih.gov/pubmed/15816595
http://dx.doi.org/10.1038/sj.ejcn.1602278
http://www.ncbi.nlm.nih.gov/pubmed/16234844
http://dx.doi.org/10.1007/BF03323935
http://dx.doi.org/10.1161/01.CIR.92.8.2190
http://www.ncbi.nlm.nih.gov/pubmed/7554201
http://dx.doi.org/10.1186/1475-2891-4-29
http://www.ncbi.nlm.nih.gov/pubmed/16253138
http://dx.doi.org/10.1152/ajpregu.1997.273.2.R710
http://www.ncbi.nlm.nih.gov/pubmed/9277559
http://dx.doi.org/10.1016/0883-2889(88)90199-2
http://dx.doi.org/10.3945/jn.113.186767
http://www.ncbi.nlm.nih.gov/pubmed/24500940
http://dx.doi.org/10.1016/j.actbio.2017.01.054
http://www.ncbi.nlm.nih.gov/pubmed/28111338
http://dx.doi.org/10.1152/jappl.1966.21.6.1688
http://www.ncbi.nlm.nih.gov/pubmed/5929290
http://dx.doi.org/10.1016/0026-0495(79)90174-4


Nutrients 2018, 10, 1202 23 of 23

204. Costello, R.B.; Nielsen, F. Interpreting magnesium status to enhance clinical care: Key indicators. Curr. Opin.
Nutr. Metab. Care 2017, 20, 504–511. [CrossRef] [PubMed]

205. Bilbey, D.L.; Prabhakaran, V.M. Muscle cramps and magnesium deficiency: Case reports. Can. Fam. Physician
1996, 42, 1348–1351. [PubMed]

206. Abbasi, B.; Kimiagar, M.; Sadeghniiat, K.; Shirazi, M.M.; Hedayati, M.; Rashidkhani, B. The effect of
magnesium supplementation on primary insomnia in elderly: A double-blind placebo-controlled clinical
trial. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2012, 17, 1161–1169.

207. Romano, T.J.; Stiller, J.W. Magnesium Deficiency in Fibromyalgia Syndrome. J. Nutr. Med. 1994, 4, 165–167.
[CrossRef]

208. Moorkens, G.; Manuel, B.Y.K.; Vertommen, J.; Meludu, S.; Noe, M.; De, I.L. Magnesium deficit in a sample of
the Belgian population presenting with chronic fatigue. Magnes. Res. 1997, 10, 329–337. [PubMed]

209. Kumeda, Y.; Inaba, M. Metabolic syndrome and magnesium. Clin. Calcium 2005, 15, 97–104. [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1097/MCO.0000000000000410
http://www.ncbi.nlm.nih.gov/pubmed/28806179
http://www.ncbi.nlm.nih.gov/pubmed/8754704
http://dx.doi.org/10.3109/13590849409034552
http://www.ncbi.nlm.nih.gov/pubmed/9513929
http://www.ncbi.nlm.nih.gov/pubmed/16272619
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Magnesium Absorption 
	Anatomic Considerations 
	Absorption 
	Hydration Shell 
	Distribution in the Human Body 
	Factors That Influence Magnesium Absorption 
	Factors That Affect Magnesium Status 

	Analytical Challenges in Establishing Magnesium Status 
	Blood Levels 
	Urine Levels 
	Oral Sampling 
	Magnesium Isotopes 

	Conclusions 
	References

