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Abstract: 24 

Behavioral and medical control measures are not effective in containing the spread of SARS-25 

CoV-2. Here we report on the effectiveness of a preemptive environmental strategy using UV-C 26 

light to prevent airborne transmission of the virus in a hamster model and show that UV-C 27 

exposure completely prevents airborne transmission between individuals 28 

  29 
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 30 

Introduction 31 

The  COVID-19 pandemic has officially caused more than 5.4 million deaths worldwide as of 32 

December 28, 2021.1  Epidemiological and experimental data suggests that the primary mode of 33 

transmission of the virus is through airborne particles.2-4  Medical countermeasures, such as 34 

vaccines and monoclonals antibody therapies were rapidly developed, but have had limited 35 

impact on the  overall control of the  pandemic.  While the developed vaccines are highly 36 

effective against preventing sever COVID-19 and hospitalization, their transmission-blocking 37 

potential on population level appears limited.  Currently,  44.65% of the global population are 38 

fully vaccinated and an estimated 285 million people have been infected with SARS-CoV-2.1  39 

This has drastically changed SARS-CoV-2 immune landscape and likely promoted the 40 

emergence of Variants of Concern (VoC) escaping antibody immunity,  fueling the current 41 

global spikes in infection rates.5  These rapid increases in SARS-CoV-2 prevalence prompt crude 42 

control measures such as: travel restrictions, large-scale quarantining and “lock downs” of entire 43 

populations leading to economic and public health burden.6  The inability to control the ongoing 44 

SARS-CoV-2 pandemic has put the focus on the development of pathogen agnostic non-medical 45 

intervention strategies.  These non-medical intervention strategies should ideally be practical, 46 

effective under multiple conditions, not depend on the cooperation of individuals, not contribute 47 

to virus evolution and prove efficacious for multiple epidemic and pandemic pathogens.  One 48 

measure that has the potential to decrease the concentration of infectious airborne pathogens in 49 

enclosed spaces is ultraviolet (UV) light.  Ultraviolet light, in particular UV-C light (wavelengths 50 

in the range of 200 nm – 280 nm) has germicidal properties.  Several studies have shown that 51 

UV-C light can be used to inactivate SARS-CoV-2 on surfaces using a UV-C germicidal lamp.7-9  52 
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Here we report on the effectiveness of UV-C light in blocking transmission of airborne SARS-53 

CoV-2 in a hamster model. 54 

Results 55 

To test the ability of UV-C light to prevent infection of naïve hamsters by naturally aspirated 56 

aerosols we employed a modified version of an aerosol transmission system described 57 

previously.4  In this system two cages are separated by a 1250 mm X 73 mm tube resulting in a 58 

size exclusion of airborne particles ≥10 µm.  The central portion of the tube is quartz enclosed in 59 

a HDPE box containing a UV-C light source (Figure 1).  The length of the tube inside the box is 60 

66.2 cm and the air traveling from the infected animals to the naïve animals had a residence time 61 

of 10.7 seconds in the tube.  A 934.5 L/hr airflow, approximately 30 cage air exchanges per hour, 62 

is maintained throughout the experiment resulting in a UV-C dose exposure of the pathogen-63 

containing airborne particles of approximately 21.4 mJ/cm2.  64 

Briefly, for each trial, 2 hamsters were inoculated intranasally (IN) with 8 X 104 TCID50 SARS-65 

CoV-2 strain nCoV-WA1-2020 (EPI_ISL_404895) (prototype lineage A SARS-CoV-2) or 66 

hCoV-19/USA/KY-CDC-2-4242084/2021 (EPI_ISL_1823618) (VoC Delta).  At 1 day post 67 

infection (dpi) 2 infected hamsters were placed in the upstream (donor) cage and 2 naïve 68 

hamsters were placed in the downstream (naïve) cage.  After a 4-hour exposure the exposed 69 

naïve hamsters were moved to individual cages and the donor hamsters were euthanized after an 70 

oropharyngeal swab was collected.  71 

To determine whether the naïve exposed sentinel hamsters became infected, oropharyngeal 72 

swabs were collected on days 1, 2 and 3 post exposure (DPE) and analyzed for the presence of 73 

subgenomic viral RNA (sgRNA, marker for active SARS-CoV-2 replication) and genomic viral 74 

RNA (gRNA) by qRT-PCR.  The experiment was repeated 4 times for the following conditions: 75 
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UV-C light treatment, no UV-C light treatment with variant nCoV-WA1-2020 or hCoV-76 

19/USA/KY-CDC-2-4242084/2021 (Delta).  When testing under UV-C conditions, the light was 77 

turned on 1 hour prior to introducing the animals to the system. 78 

All the animals in the no UV-C treatment groups became infected as early as 1 DPE. gRNA was 79 

detected in all animals as early as 1 DPE for both the lineage A and the Delta VOC and 80 

continued through DPE 3 (Figure 2, A & C).  No gRNA was detected in either of the UV-C 81 

groups (Figure 2, A &C).  sgRNA was also detected on DPE 1 – 3 in the no UV-C treatment 82 

groups, but not in any of the animals in the UV-C groups (Figure 2, B &D).  To conclusively 83 

demonstrate absence of transmission of SARS-CoV-2 in both UV-C treatment groups the 84 

binding antibody titers against the SARS-CoV-2 spike protein (S) were determined on sera 85 

obtained at 14 DPE.  Both no UV-C light treatment groups had high antibody titers (≥52,000 in 86 

all animals, n = 16), but both no UV-C light treatment groups displayed a complete lack of 87 

binding antibody titers against SARS-CoV-2 S (<400 in all animals, n = 16).  88 

Discussion 89 

As the SARS-CoV-2 pandemic approaches its third-year, additional non-medical intervention 90 

strategies are urgently needed.  Especially in areas and locations where there is a higher risk of 91 

SARS-CoV-2 transmission, such as hospitals, COVID-19 testing centers, schools and other 92 

indoor areas effective preemptive environmental intervention measures are needed to protect 93 

health care workers and people at risk of developing severe COVID19.  Non-medical 94 

intervention such as social distancing rely on the assumption that small airborne respiration 95 

droplets will settle to the ground within about 2 meters from the source.  However, true aerosols 96 

(< 10 µm) in diameter will remain suspended, floating on air currents for an extended amount of 97 

time, can travel more than 2 meters and remain suspended for minutes to hours. In addition, 98 
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other non-medical countermeasures, such as mask wearing, are highly dependent on compliance 99 

and as such have had varying levels of effectiveness across different cultural, political, and 100 

religious environments. 101 

Here we have demonstrated that a preemptive environmental intervention measure, using UV-C 102 

irradiation, can prevent the aerosol transmission of SARS-CoV-2 between hamsters.  This work 103 

suggests that UV-C could be used to decrease the concentration of viable air-borne virus in 104 

various environments used in conjunction with existing control measures and where other 105 

methods are less likely to work.  Extensive literature is available for pathogen inactivation, using 106 

either bacterial spore inactivation tests, bacteria or respiratory viruses by UV-C treatment.10,11  107 

There are several UV-C systems that have been developed and are already being employed.12,13  108 

The experiments described here recapitulate a system in which ducted air is treated and returned 109 

to the room; the efficiency of this type of system is dependent on the number of room-air 110 

exchanges per hour and the ventilation system processes.  Another UV-C system that has been 111 

employed in areas with a high incidence of tuberculosis (TB) is upper-room ultraviolet 112 

germicidal irradiation.14  Upper-room ultraviolet germicidal irradiation has the potential to treat 113 

up to 24 room air changes per hour equivalents where comfort level ventilation systems handle 114 

between 1 and 2 room air exchanges per hour.15 115 

Preemptive environmental interventions in public spaces, that are not dependent on the 116 

compliance of the at-risk population, would potentially be a highly cost-effective non-medical 117 

countermeasure to help control the current pandemic.  In addition, given the pathogen agnostic 118 

nature of UV-C germicidal irradiation it has the potential to curb airborne transmission of fungal, 119 

bacterial, and viral pathogens and even everyday maladies like the common cold.   120 

 121 
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Figure 1. Experimental aerosol transmission with UV-C irradiation setup.  Two cages are separated 180 

with a 1250 mm X 73 mm i.d. tube.  The center portion of the tube is 662 mm of UV transparent quartz 181 

surrounded by a HDPE box housing a UV-C light source.  Two donor hamsters, infected intranasally with 182 

8 X 104 TCID50 SARS-CoV-2 of either lineage A or the Delta variant one day prior to the experiment, 183 

were placed in the upstream cage and two naïve sentinel hamsters were placed in the downstream cage 184 

with a 934.5 L/hr airflow for 4 hours.  The arrow indicates the direction of the airflow.  185 

 186 

 187 

Figure 2. UV-C irradiation blocks SARS-CoV-2 aerosol transmission in hamsters.  A & B) Boxplot 188 

(minimum to maximum) of genomicRNA and subgenomicRNA Lineage A SARS-CoV-2 RNA in 189 

oropharyngeal swabs collected on 1-, 2- and 3-days post exposure. Blue dots represent the no UV-C 190 

treatment group (n = 8) and grey dots represent the UV-C treatment group (N=8).  C & D) Boxplot 191 

(minimum to maximum) of genomicRNA and subgenomicRNA Delta SARS-CoV-2 RNA in 192 

oropharyngeal swabs collected on 1-, 2- and 3-days post exposure.  Pink dots represent the no UV-C 193 

treatment group (n = 8) and light-blue dots represent the represent the UV-C treatment group (N=8). 194 

Dotted line = limit of detection.   195 
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Figure 1. 196 
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Figure 2. 198 
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