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Abstract: The evidence regarding the intake of dietary folate, vitamin B6, and vitamin B12 in relation
to mortality in the general population is limited. This study aimed to examine the relationship
between dietary intakes of folate, vitamin B6, and vitamin B12 in relation to all-cause and cause-
specific mortality in a large U.S. cohort. This study included a total of 55,569 adults from the Third
National Health and Nutrition Examination Survey (NHANES III) and NHANES 1999–2014. Vital
data were determined by linking with the National Death Index records through 31 December 2015.
Cox proportional hazards models were used to investigate the relationships of all-cause and cause-
specific mortality with dietary folate, vitamin B6, and vitamin B12 intake. Dietary intakes of folate
and vitamin B6 were inversely associated with mortality from all-cause, cardiovascular disease, and
cancer for men and with mortality from all-cause and cardiovascular disease for women. In men,
the multivariable hazard ratios (95% confidence intervals) for the highest versus lowest quintiles of
folate and vitamin B6 were 0.77 (0.71–0.85) and 0.79 (0.71–0.86) for all-cause mortality, 0.59 (0.48–0.72)
and 0.69 (0.56–0.85) for CVD mortality, and 0.68 (0.56–0.84) and 0.73 (0.60–0.90) for cancer mortality,
respectively. Among women, the multivariable hazard ratios (95% confidence intervals) for the
highest versus lowest quintiles of folate and vitamin B6 were 0.86 (0.78–0.95) and 0.88 (0.80–0.97)
for all-cause mortality and 0.53 (0.41–0.69) and 0.56 (0.44–0.73) for CVD mortality, respectively. No
significant associations between dietary vitamin B12 and all-cause and cause-specific mortality were
observed. In conclusion, higher dietary intakes of folate and vitamin B6 were significantly associated
with lower all-cause and cardiovascular mortality. Our findings suggest that increasing the intake of
folate and vitamin B6 may lower the mortality risk among U.S. adults.

Keywords: diet; folate; vitamin B6; vitamin B12; mortality

1. Introduction

Folate, vitamin B6, and vitamin B12 are essential B vitamin nutrients which play
important roles in the degradation of homocysteine (Hcy) by acting as prerequisite substrate
donors or as necessary coenzymes [1,2]. In addition, these B vitamins are important
components of one-carbon metabolism, which contributes to DNA synthesis and DNA
methylation, the synthesis of blood cells, and nerve function. The lack of these B vitamins is
one of the key contributors to high blood homocysteine levels [3], DNA repair disruption [4],
and gene expression [5].

Several epidemiologic studies have investigated the relationship between dietary
folate, vitamin B6, or vitamin B12 intake and mortality risk. However, most of these
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studies were conducted among specific populations (e.g., older adults and participants
with cancers), and limited information is available for general populations. In addition,
the results were inconsistent. For example, Persson et al. [6] reported inverse associations
between dietary folate and the risk of all-cause and liver-disease mortality in the American
Association of Retired Persons Diet and Health Study. Li et al. observed an inverse
association between dietary folate intake and all-cause mortality among patients with breast
cancer [7]. Medrano et al. observed that a higher dietary intake of folate or vitamin B12 was
associated with lower coronary mortality, but vitamin B6 intake was not associated with
cardiovascular-disease (CVD) mortality in the Spanish population [8]. Cui et al. [9] observed
in the Japan Collaborative Cohort Study that dietary folate and vitamin B6 intakes were
inversely associated with mortality from stroke, coronary heart disease, and heart failure,
while dietary vitamin B12 intake was positively associated with mortality from stroke in
men. In contrast, Xu et al. [10] reported that dietary folate, vitamin B6, and vitamin B12 were
neither associated with all-cause mortality nor cancer–specific mortality in participants
with cancer. Non-significant relationships between folate supplementation and all-cause
or CVD mortality were observed in a recent meta-analysis of randomized clinical trials
(RCTs) [11], and even some RCTs demonstrated that folate or vitamin B12 supplementation
was associated with higher all-cause mortality [12–14]. Large-scale cohort studies are thus
needed to provide robust results and precise estimates in general populations. Therefore,
utilizing the data from a nationally representative sample of the National Health and
Nutrition Examination Survey (NHANES), we investigated whether dietary intakes of
folate, vitamin B6, and vitamin B12 were in relation to the risk of all-cause and cause-specific
mortality in the general U.S. adult population.

2. Materials and Methods
2.1. Study Population

The NHANES is a nationally representative survey conducted by the National Center
for Health Statistics of the Centers for Disease Control and Prevention (CDC). Information
on the methods of sampling and data collection has been described previously [15]. In brief,
the NHANES adopted a complex, stratified, multistage probability sampling method to
select a representative population in the U.S. Information on lifestyle factors and health
and nutritional status was collected for each participant. The design and procedures of the
NHANES survey have been described in detail elsewhere [16].

In the current study, we used data from NHANES III (1988–1994) and eight cycles of
the NHANES from 1999 and 2014. Adult participants aged ≥ 20 years were included in
the analysis. Figure 1 shows the procedure of participant selection. Briefly, 113,402 U.S
residents attending the medical examination in the NHANES from 1988 to 2014 were
initially included in this study. Among them, 52,579 participants were excluded due to them
being younger than 20 years old, and 5254 participants with missing information on dietary
folate, vitamin B6, or vitamin B12 intake were further excluded. Finally, 55,569 adults were
included in the main analysis.

2.2. Measurement of Dietary Folate, Vitamin B6, and Vitamin B12 Intake

The data on dietary folate, vitamin B6, and vitamin B12 intake from food were
assessed using a 24 h diet recall conducted by trained interviewers. In NHANES III and
the 1999–2002 survey cycles, one diet recall was collected from each person in the Mobile
Examination Center (MEC). Since 2003, two dietary reviews were conducted. The first
one was collected in the MEC, and the second collection was conducted by telephone after
3–10 days. The intakes of folate, vitamin B6, and vitamin B12 from food were evaluated
using the United States Department of Agriculture (USDA) Food and Nutrient Database for
Dietary Studies (FNDDS), versions 1.0–5.0, which provided the content of these vitamins in
each food [17].
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Figure 1. Flowchart of participant selection.

2.3. Ascertainment of Mortality

The NCHS has linked the NHANES survey data with all-cause and cause-specific
mortality from the National Death Index (NDI). The restricted-use Linked Mortality File
(LMF) has been updated with mortality follow-up data through 31 December 2015, which
was also publicly available. The disease-specific death was determined by the 10th revision
of the International Classification of Disease (ICD-10). The outcomes in this study were
all-cause, cardiovascular, and cancer mortality. Cardiovascular mortality was defined as
the ICD-10 codes of I00–I09, I11, I13, I20–I51, or I60–I69, and cancer mortality was defined
as the ICD-10 codes of C00–C97. The time-to-event for each individual was calculated
from the date of recruitment to the date of death or the censor date (31 December 2015),
whichever came earlier.

2.4. Covariates

We used the information on age, sex (men or women), race/ethnicity (Hispanic, non-
Hispanic white, non-Hispanic black, and other race—including multi-racial), smoking
(never, former, or current), alcohol drinking (nondrinker, low-to-moderate drinker, or
heavy drinker), the ratio of family income to poverty (≤1, 1–3, or >3), leisure time physical
activity (defined as the product of metabolic equivalent value (MET)), and self-reported
physician diagnosed cardiovascular disease (yes or no), hypertension (yes or no), type 2
diabetes (yes or no), and Body mass index (BMI) as the covariates.

2.5. Statistical Analysis

We used numbers (percentages) to depict the categorical variables and means (stan-
dard deviations) to describe the continuous variables. Multiple imputation was used to
impute these covariates with missing values [18].

The Cox proportional hazards model was adopted to evaluate the relationships of
dietary folate, vitamin B6, and vitamin B12 with all-cause and cause-specific mortality.
The dietary nutrients (i.e., dietary folate, vitamin B6, and vitamin B12) were categorized
into quartiles, and the first quartile was selected as the reference group. Two models were
introduced: the Crude Model, which was not adjusted, and the Multivariable Model, which
was adjusted for age, race/ethnicity, BMI, family income–poverty ratio, smoking status,
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drinking status, leisure-time physical activity, total energy intake, diabetes, hypertension,
and cardiovascular disease.

Stratified analyses were conducted to evaluate the potential effect modification by age
(<65 or ≥65 y), smoking status (yes or no), drinking status (yes or no), and BMI (<30 or
≥30 kg/m2). We examined each potential modifier separately by adding a multiplicative
interaction term (i.e., continuous dietary nutrients intake parameters* potential modifier).

In order to examine the robustness of the relationships, we also conducted three
sensitivity analyses: (1) restricting the analysis to participants free of cardiovascular disease
at baseline; (2) excluding participants who died within the first 2 years of follow-up; (3)
further adjusting the folate supplement.

All statistical analyses were conducted using R 4.0.2. (R Core Team, Vienna, Austria),
and two-sided p values < 0.05 were considered statistically significant.

3. Results
3.1. General Characteristics

The general characteristics of the participants and the cases of all-cause death are
presented in Table 1. A total of 55,569 participants with a mean age of 49.0 (SD: 18.6)
years at baseline were included. During a median follow-up of 9.8 (interquartile range
(IQR): 5.3–15.8) years, a total of 11,535 participants died, including 2411 deaths due to
cardiovascular disease and 2482 deaths due to cancer. In comparison to the survivors, the
dead participants were more likely to be older, female, and non-Hispanic white; more
likely to have diabetes, hypertension, and cardiovascular disease; less likely to be current
smokers; and had a lower family income and less leisure-time physical activity.

Table 1. Baseline characteristics of the study population.

Variables Total Sample
n = 55,569

Survivors
n = 44,034

Death
n = 11,535

Age, year 49.0 (18.6) 44.4 (16.5) 66.4 (15.7)
Sex

Female 26,566 (47.81%) 20,343 (46.2%) 6223 (53.95%)
Male 29,003 (52.19%) 23,691 (53.8%) 5312 (46.05%)

Race
Hispanic 14,402 (25.92%) 12,011 (27.28%) 2391 (20.73%)
Non-Hispanic white 25,249 (45.44%) 18,973 (43.09%) 6276 (54.41%)
Non-Hispanic black 12,658 (22.78%) 10,090 (22.91%) 2568 (22.26%)
Other race—including

multi-racial 3260 (5.87%) 2960 (6.72%) 300 (2.6%)

Drinking
Never 14,732 (26.51%) 10,410 (23.64%) 4322 (37.47%)
Low to moderate 11,607 (20.89%) 8984 (20.4%) 2623 (22.74%)
Heavy 29,230 (52.60%) 24,640 (55.96%) 4590 (39.79%)

Smoking
Never 12,662 (22.79%) 10,050 (22.82%) 2612 (22.64%)
Former 13,919 (25.05%) 9779 (22.21%) 4140 (35.89%)
Current 28,988 (52.17%) 24,205 (54.97%) 4783 (41.47%)

Ratio of family income to poverty
≤1 12,048 (21.68%) 9353 (21.24%) 2695 (23.36%)
1–3 24,021 (43.23%) 18,178 (41.28%) 5843 (50.65%)
>3 19,500 (35.09%) 16,503 (37.48%) 2997 (25.98%)

Diabetes 6469 (11.64%) 3975 (9.03%) 2494 (21.62%)
Hypertension 10,078 (18.14%) 5814 (13.2%) 4264 (36.97%)
Cardiovascular disease 5705 (10.27%) 2806 (6.37%) 2899 (25.13%)
BMI, kg/m2 28.1 (6.0) 28.2 (6.0) 27.5 (5.7)
Leisure-time physical
activity, MET 18.5 (28.3) 19.2 (29.0) 15.5 (25.5)

Data were presented as means (standard deviations) or numbers (percentages). BMI, body mass index; MET,
metabolic equivalent value.
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3.2. Dietary Folate with All-Cause and Cause-Specific Mortality

The sex-specific relationships between dietary folate intake and all-cause and cause-
specific mortality are presented in Table 2. Among men, we observed that dietary folate
intake was inversely associated with death from all-cause, cardiovascular disease, and
cancer. The multivariable hazard ratios (HRs) with 95% confidence intervals (CIs) for the
highest versus lowest quintiles in men were 0.77 (0.71–0.85), 0.59 (0.48–0.72), and 0.68
(0.56–0.84) for all-cause, cardiovascular, and cancer mortality, respectively. Consistently,
among women, dietary folate intake was inversely associated with all-cause and cardio-
vascular mortality. However, no significant relationship between dietary folate intake and
cancer mortality was observed. The multivariable HRs (95% CIs) for the highest versus
lowest quintiles in women were 0.86 (0.78–0.95), 0.53 (0.41–0.69), and 0.82 (0.66–1.03) for
all-cause, cardiovascular, and cancer mortality, respectively.

Table 2. Hazard Ratios (HRs) and 95% confidence intervals (CIs) for all-cause and cause-specific
mortality according to the quintiles of dietary folate.

Quartile of Nutrient Intake
Ptrend

Q1 Q2 Q3 Q4

Men

All-cause mortality

Crude Model Ref 0.89
(0.84–0.95)

0.77
(0.72–0.83)

0.65
(0.60–0.71) <0.001

Multivariable Model Ref 0.91
(0.86–0.97)

0.86
(0.80–0.92)

0.77
(0.71–0.85) <0.001

Cardiovascular mortality

Crude Model Ref 0.80
(0.71–0.91)

0.64
(0.55–0.75)

0.53
(0.44–0.63) <0.001

Multivariable Model Ref 0.81
(0.71–0.92)

0.71
(0.61–0.83)

0.59
(0.48–0.72) <0.001

Cancer mortality

Crude Model Ref 0.82
(0.72–0.93)

0.77
(0.66–0.89)

0.57
(0.48–0.68) <0.001

Multivariable Model Ref 0.87
(0.77–0.99)

0.89
(0.77–1.04)

0.68
(0.56–0.84) 0.001

Women

All-cause mortality

Crude Model Ref 1.01
(0.94–1.07)

0.91
(0.84–0.98)

0.85
(0.78–0.93) <0.001

Multivariable Model Ref 0.91
(0.85–0.97)

0.87
(0.81–0.95)

0.86
(0.78–0.95) <0.001

Cardiovascular mortality

Crude Model Ref 0.91
(0.79–1.05)

0.71
(0.59–0.86)

0.58
(0.46–0.71) <0.001

Multivariable Model Ref 0.82
(0.70–0.95)

0.69
(0.57–0.83)

0.53
(0.41–0.69) <0.001

Cancer mortality

Crude Model Ref 0.97
(0.84–1.13)

1.04
(0.88–1.24)

0.79
(0.65–0.97) 0.115

Multivariable Model Ref 0.93
(0.80–1.08)

1.05
(0.88–1.25)

0.82
(0.66–1.03) 0.342

Crude HR did not adjust for anything. Multivariable HR adjusted for age, race/ethnicity, BMI, family income–
poverty ratio, smoking status, drinking status, leisure-time physical activity, total energy intake, diabetes, hyper-
tension, and cardiovascular disease.

3.3. Dietary Vitamin B6 with All-Cause and Cause-Specific Mortality

The sex-specific relationships between dietary vitamin B6 intake and all-cause and
cause-specific mortality are presented in Table 3. Among men, a higher dietary intake of
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vitamin B6 was associated with a lower risk of all-cause (HR (95% CI) 0.79 (0.71–0.86)), CVD
(HR (95% CI) 0.69 (0.56–0.85)), and cancer mortality (HR (95% CI) 0.73 (0.60–0.90)). Among
women, a higher dietary intake of vitamin B6 was associated with a lower risk of all-cause (HR
(95% CI) 0.88 (0.80–0.97)) and CVD mortality (HR (95% CI) 0.56 (0.44–0.73)). No significant
relationship between dietary vitamin B6 intake and cancer mortality was observed.

Table 3. Hazard Ratios (HRs) and 95% confidence intervals (CIs) for all-cause and cause-specific
mortality according to the quintiles of dietary vitamin B6.

Quartile of Nutrient Intake
Ptrend

Q1 Q2 Q3 Q4

Men

All-cause mortality

Crude Model Ref 0.76
(0.72–0.81)

0.65
(0.61–0.70)

0.57
(0.53–0.62) <0.001

Multivariable Model Ref 0.94
(0.88–1.00)

0.86
(0.80–0.93)

0.79
(0.71–0.86) <0.001

Cardiovascular mortality

Crude Model Ref 0.71
(0.62–0.80)

0.55
(0.47–0.64)

0.51
(0.43–0.61) <0.001

Multivariable Model Ref 0.87
(0.76–0.98)

0.74
(0.63–0.86)

0.69
(0.56–0.85) <0.001

Cancer mortality

Crude Model Ref 0.67
(0.59–0.76)

0.70
(0.61–0.80)

0.54
(0.45–0.64) <0.001

Multivariable Model Ref 0.85
(0.74–0.97)

0.95
(0.82–1.10)

0.73
(0.60–0.90) 0.013

Women

All-cause mortality

Crude Model Ref 0.93
(0.87–0.99)

0.85
(0.79–0.91)

0.83
(0.76–0.91) <0.001

Multivariable Model Ref 0.93
(0.87–1.00)

0.90
(0.84–0.98)

0.88
(0.80–0.97) 0.002

Cardiovascular mortality

Crude Model Ref 0.89
(0.77–1.03)

0.71
(0.60–0.85)

0.58
(0.47–0.72) <0.001

Multivariable Model Ref 0.89
(0.77–1.03)

0.77
(0.64–0.92)

0.56
(0.44–0.73) <0.001

Cancer mortality

Crude Model Ref 0.98
(0.84–1.13)

0.85
(0.71–1.00)

0.82
(0.68–1.00) 0.017

Multivariable Model Ref 1.01
(0.87–1.17)

0.91
(0.76–1.08)

0.89
(0.72–1.10) 0.182

Crude HR did not adjust for anything. Multivariable HR adjusted for age, race/ethnicity, BMI, family income–
poverty ratio, smoking status, drinking status, leisure-time physical activity, total energy intake, diabetes, hyper-
tension, and cardiovascular disease.

3.4. Dietary Vitamin B12 with All-Cause and Cause-Specific Mortality

Table 4 shows the HRs for dietary vitamin B12 intake in relation to all-cause and
cause-specific mortality. We observed that vitamin B12 intake was not associated with
death from all-cause, cardiovascular, or cancer mortality in either men or women. For
men, the multivariable HRs (95% CIs) for the highest versus lowest quintiles were 1.01
(0.92–1.11), 0.93 (0.76–1.13), and 0.96 (0.79–1.16) for all-cause, cardiovascular, and cancer
mortality, respectively. For women, the multivariable HRs (95% CIs) for the highest versus
lowest quintiles were 1.07 (0.97–1.18), 1.05 (0.83–1.34), and 1.05 (0.84–1.31) for all-cause,
cardiovascular, and cancer mortality, respectively.
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Table 4. Hazard Ratios (HRs) and 95% confidence intervals (CIs) for all-cause and cause-specific
mortality according to the quintiles of dietary vitamin B12.

Quartile of Nutrient Intake
Ptrend

Q1 Q2 Q3 Q4

Men

All-cause mortality

Crude Model Ref 0.88
(0.82–0.93)

0.79
(0.73–0.84)

0.66
(0.61–0.72) <0.001

Multivariable Model Ref 1.01
(0.95–1.08)

1.01
(0.94–1.09)

1.01
(0.92–1.11) 0.719

Cardiovascular mortality

Crude Model Ref 0.78
(0.69–0.90)

0.68
(0.59–0.79)

0.56
(0.47–0.67) <0.001

Multivariable Model Ref 0.92
(0.80–1.05)

0.91
(0.77–1.07)

0.93
(0.76–1.13) 0.311

Cancer mortality

Crude Model Ref 0.84
(0.73–0.96)

0.85
(0.73–0.98)

0.65
(0.55–0.77) <0.001

Multivariable Model Ref 0.97
(0.84–1.11)

1.08
(0.93–1.27)

0.96
(0.79–1.16) 0.895

Women

All-cause mortality

Crude Model Ref 0.88
(0.82–0.95)

0.83
(0.77–0.89)

0.77
(0.71–0.84) <0.001

Multivariable Model Ref 1.04
(0.97–1.11)

1.02
(0.94–1.11)

1.07
(0.97–1.18) 0.244

Cardiovascular mortality

Crude Model Ref 0.84
(0.72–0.97)

0.66
(0.56–0.79)

0.55
(0.45–0.68) <0.001

Multivariable Model Ref 1.11
(0.95–1.29)

0.98
(0.81–1.19)

1.05
(0.83–1.34) 0.848

Cancer mortality

Crude Model Ref 0.93
(0.80–1.08)

0.91
(0.77–1.07)

0.84
(0.69–1.01) 0.062

Multivariable Model Ref 1.03
(0.88–1.20)

1.05
(0.88–1.26)

1.05
(0.84–1.31) 0.598

Crude HR did not adjust for anything. Multivariable HR adjusted for age, race/ethnicity, BMI, family income–
poverty ratio, smoking status, drinking status, leisure-time physical activity, total energy intake, diabetes, hyper-
tension, and cardiovascular disease.

3.5. Subgroup and Sensitivity Analysis

The results of the subgroup analyses are presented in Tables S1–S6. The relationships
of dietary folate, vitamin B6, and vitamin B12 with all-cause and cause-specific mortality
appeared to be similar to the main results, although several subgroup findings did not reach
statistical significance. Statistically significant interactions were observed for some factors.
For male participants, we observed stronger negative associations of folate and vitamin B6
intake with cardiovascular mortality in older adults than in younger adults. For female
participants, a statistically significant interaction was observed for the relationship between
dietary vitamin B12 and cardiovascular mortality in the analyses stratified according to BMI
at baseline (P for interaction = 0.008), even though the difference did not reach statistical
significance in both groups.

Sensitivity analyses suggested that the significant associations of dietary folate and
vitamin B6 with all-cause and cause-specific mortality remained similar after excluding the
participants who died within the first 2 years of follow-up (Table S7) and the participants
with cardiovascular disease at baseline (Table S8).
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4. Discussion

To the best of our knowledge, this is the largest study so far to comprehensively
investigate the relationships of the dietary intakes of folate, vitamin B6, and vitamin B12
with all-cause and cause-specific mortality in a large, nationally representative U.S. adults
cohort. We found that dietary folate and vitamin B6 intakes were inversely associated with
mortality from all-cause, cardiovascular disease, and cancer for men and with mortality
from all-cause and cardiovascular disease for women. No significant associations were
seen between the intake of vitamin B12 and all-cause and cause-specific mortality in either
men or women.

Our findings of the inverse association between dietary folate intake and all-cause and
cause-specific mortality are in line with several previous studies. The Swedish Mammogra-
phy Cohort suggested that the dietary intake of folate was associated with a reduced risk
of all-cause mortality in women diagnosed with breast cancer [19]. The Japan Collabora-
tive Cohort Study found that the dietary intake of folate was associated with a reduced
risk of mortality from heart failure for men and of mortality from stroke, CHD, and total
cardiovascular disease for women [9]. One study from the same cohort suggested that
folate intake was associated with lower all-cause and CVD mortality among participants
at a high risk of CVD [20]. One ecological study in Spain found that folate intake was
associated with a reduced risk of death from ischemic heart disease and cerebrovascular
disease in men and of death from cerebrovascular disease in women [8]. However, some
other studies have inconsistent results. The American Association of Retired Persons Diet
and Health Study did not find a significant association between folate intake and liver
disease mortality [6]. Another study in the U.S. reported that dietary folate was neither
associated with all-cause nor breast-cancer-specific mortality [10]. This inconsistency can
be ascribed to a series of factors, including the variations in the health outcomes, research
methods, study populations, and study regions.

Previous data on the associations between dietary vitamin B6 intake and mortality risk
have been limited. Our findings of inverse relationships of dietary vitamin B6 intake with
all-cause, cardiovascular, and cancer mortality for men and with all-cause and cardiovascu-
lar mortality for women are in line with some previous studies. Three prospective cohort
studies found that a higher intake of dietary vitamin B6 was associated with a lower risk
of all-cause mortality [21], cardiovascular mortality [9], and prostate cancer mortality [22].
Contrary to our findings, an ecological analysis in Spain did not observe a significant
association between dietary vitamin B6 intake and cardiovascular mortality [8]. Among
1508 women with breast cancer, Xu et al. [10] reported non-significant associations between
dietary vitamin B6 intake and all-cause or breast-cancer-specific mortality. In a Chinese
study, dietary vitamin B6 intake was inversely associated with all-cause and cardiovascular
mortality, but it was not associated with cancer mortality [23]. A recent study in U.K.
reported that dietary vitamin B6 intake was not statistically associated with colorectal-
cancer-specific mortality [24]. Of these previous studies, one was an ecological analysis,
three were among participants with cancer, and the other three were among middle-aged
or older adults. Thus, it may be difficult to compare them directly with our study.

To date, only seven studies have investigated the relationships between dietary vitamin
B12 intake and the risk of death. Four studies reported that a higher intake of dietary
vitamin B12 was associated with a lower risk of death from cerebrovascular disease in the
general population [8], as well as from all-cause [25] and cancer [25,26] among participants
with cancer, which is similar to our findings. However, the three other studies found
no significant associations for all-cause [10], breast-cancer-specific [10], prostate-cancer-
specific [22], or colorectal-cancer-specific mortality [24]. More interestingly, the Japan
Collaborative Cohort Study observed a positive association between dietary vitamin B12
intake and stroke mortality in older men [9]. Again, a direct comparison of these studies is
difficult considering the heterogeneity of the study populations and study methods.

Our study has a series of strengths. Firstly, this study was based on a reliable and
robust design with a complex, stratified, multistage probability sampling method, which
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made it possible to select a representative sample of the general U.S. population. Secondly,
the relatively large sample size enabled us to provide more stable and precise estimates and
made it possible for us to conduct a series of subgroup and sensitivity analyses. Thirdly,
given the comprehensive data collection in the NHANES, we could adjust for a variety of
potential confounders, including race/ethnicity, socioeconomic status, lifestyle factors, and
comorbidities.

It should also be acknowledged that out study has several limitations. Firstly, the
dietary nutrients intake was collected via one or two 24 h diet recalls for each person, which
may not reflect the long-term intake since food intake varies from day to day. However, the
National Cancer Institute method was used to reduce the measurement bias due to dietary
intake estimation using 24 h diet recalls [27,28]. In addition, this measurement bias seems
to be random, and there is no evidence suggesting that the potential measurement bias is
different between the participants who survived and those who died. We thus speculate that
this limitation should not affect the study’s conclusion. Secondly, the mortality outcomes
were determined by linkage to the National Death Index through a probabilistic match,
which might result in misclassification. However, a prior validation study showed that
99.4% of the living participants and 96.1% of the decedents were classified correctly [29].
Thirdly, we could not investigate the effect for cancer-cause-specific mortality due to the
limited information. Fourthly, we used the pre-existing data analyses of the relationships of
diet folate, vitamin B6, and vitamin B12 intake with all-cause and cause-specific mortality,
which may not be considered initially in the NHANES survey. In addition, the biomarkers
of vitamins were not considered. However, previous studies suggested that diet intake was
highly correlated with B vitamin status [30–32].

5. Conclusions

In summary, using data from a nationally representative survey of U.S. adults, we
found that dietary folate and vitamin B6 intakes were inversely associated with mortality
from all-cause, cardiovascular disease, and cancer for men and with mortality from all-
cause and cardiovascular disease for women. Our findings suggest that increasing the
intake of folate and vitamin B6 may lower the mortality risk among U.S. adults.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu14112253/s1, Table S1. Stratified analyses of the associations
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analyses of the associations between dietary vitamin B6 intake and all-cause and cause-specific
mortality in men; Table S3. Stratified analyses of the associations between dietary vitamin B12 intake
and all-cause and cause-specific mortality in men; Table S4. Stratified analyses of the associations
between dietary folate intake and all-cause and cause-specific mortality in women; Table S5. Stratified
analyses of the associations between dietary vitamin B6 intake and all-cause and cause-specific
mortality in women; Table S6. Stratified analyses of the associations between dietary vitamin B12
intake and all-cause and cause-specific mortality in women; Table S7 Hazard Ratios (HRs) and 95%
CIs for all-cause and cause-specific mortality according to the quartiles of dietary folate, vitamin
B6, and B12 intake after excluding the participants with cardiovascular disease at baseline; Table S8
Hazard Ratios (HRs) and 95% CIs for all-cause and cause-specific mortality according to the quartiles
of dietary folate, vitamin B6, and B12 intake after excluding the participants who died within two
years of follow-up.
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