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A B S T R A C T   

Treatment with high dose icosapent ethyl (IPE), an ethyl ester of the omega-3 fatty acid eicosapentaenoic acid 
(EPA), significantly reduced ischemic events in patients with either cardiovascular disease (CV) or diabetes plus 
other risk factors (REDUCE-IT) but the mechanism is not well understood.  We compared the effects of EPA, 
docosahexaenoic acid (DHA), and the omega-6 fatty acid arachidonic acid (AA) on bioavailability of nitric oxide 
(NO) and fatty acid composition. Human umbilical vein endothelial cells (HUVECs) were pretreated with EPA, 
DHA, or AA (10 µM). Cells were stimulated with calcium ionophore and NO and peroxynitrite (ONOO− ) were 
measured using porphyrinic nanosensors. Levels of EPA, DHA, AA and other fatty acids were measured by gas 
chromatography (GC). EPA treatment caused the greatest NO release (18%, p < 0.001) and reduction in ONOO−

(13%, p < 0.05) compared to control; the [NO]/[ ONOO− ] ratio increased by 35% (p < 0.001). DHA treatment 
increased NO levels by 12% (p < 0.01) but had no effect on ONOO− release. AA did not affect either NO or 
ONOO− release.  Fatty acid treatments increased their respective levels in endothelial cells.  EPA levels increased 
10-fold to 4.59 mg/g protein (p < 0.001) with EPA treatment and the EPA/AA ratio increased by 10-fold (p <
0.001) compared to vehicle.  Only EPA increased docosapentaenoic acid (DPA, omega-3) levels by 2-fold (p <
0.001). AA alone decreased the EPA/AA ratio 4-fold (p<0.001). These findings support a preferential benefit of 
EPA on endothelial function and omega-3 fatty acid content.   

1. Introduction 

Endothelial cells mediate vasodilation through the regulated release 
of nitric oxide (NO) in response to changes in blood flow and various 
pharmacologic interventions [1-5].  Beyond its effects on smooth muscle 
cell relaxation, NO regulates platelet and leukocyte adherence, hemos
tasis/thrombosis and fibrinolysis [6, 7].  In a highly coordinated fashion, 
endothelial cells also produces potent vasoconstrictors, including 
endothelin-1, angiotensin II, thromboxane A2 (TXA2), and prostaglandin 
H2.  In atherosclerosis, endothelial cell dysfunction associates with 
abnormal vasomotor control and loss of NO bioavailability [8, 9].  NO is 
generated by three distinct dimeric nitric oxide synthase (NOS) enzymes 
that catalyze the oxidation of L-arginine into L-citrulline and NO.  Many 
cell types express constitutively two of these enzymes, endothelial NOS 
(eNOS) and neuronal NOS (nNOS). By contrast, inducible NOS (iNOS) is 

transcriptionally regulated in response to inflammatory stimuli. At low 
levels of the substrates (L-arginine and/or O2) or the absence of 
adequate co-factors like tetrahydrobiopterin (BH4), eNOS will donate 
electrons to molecular oxygen and produce superoxide (O2

− ) rather than 
NO, a process known as eNOS uncoupling [10, 11]. NO is a major 
scavenger of O2

− that generates the powerful oxidant peroxynitrite 
(ONOO− ) by a rapid, diffusion limited reaction [12, 13]. 

Individuals with well controlled LDL still have residual cardiovas
cular (CV) risk associated in part with elevated triglycerides (TGs) that 
may be lowered by omega-3 fatty acids (n3-FAs) [14, 15].   Along with 
their various metabolites, n3-FAs influence inflammation, thrombosis 
and vascular reactivity in models of atherosclerosis [16-18].  In patients 
with diabetes or receiving statins, eicosapentaenoic acid (EPA) 
improved arterial compliance in a manner that correlated with reduced 
biomarkers of inflammation [19-23]. Additionally, EPA has been shown 
to inhibit lipopolysaccharide (LPS)-induced expression of adhesion 
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molecules [24].  When combined with a statin, EPA improved NO 
bioavailability following exposure of endothelial cells to either oxLDL or 
high glucose. Docosahexaenoic acid (DHA) did not reproduce these ef
fects of the EPA/statin combination either in vitro or ex vivo [25]. 
However, DHA reduced cytokine-induced proatherogenic and proin
flammatory proteins in cultured human endothelial cells [26, 27]. 
Arachidonic acid (AA), an omega-6 FA (n6-FA), counters certain 
favorable effects of n3-FAs [16]. AA competes with n3-FAs for cyclo
oxygenase and lipoxygenase enzymes to form inflammatory metabolites 
such as the leukotriene LTB4 [28, 29]. Thus, the EPA/AA ratio predicts 
CV risk [7]. 

The results of rigorous and sufficiently powered CV outcome trials 
with n3-FAs have generally not demonstrated benefit for lower dose (1 
g/d) or mixed n3-FA formulations that include DHA [30-33]. By 
contrast, the Reduction of Cardiovascular Events with Icosapent Ethyl
–Intervention Trial (REDUCE-IT), used highly purified EPA ethyl ester 
(icosapent ethyl (IPE)). EPA treatment (4 g/d) in high risk patients with 
elevated triglycerides significantly reduced the risk of CV events 
[34-37]. A composite of ischemic events was reduced by 25% (p <
0.0001) while total (first and subsequent) ischemic events fell by 32% (p 
< 0.0001) compared with placebo. The benefits of EPA did not entirely 
correlate with triglyceride lowering, leading to interest in pleiotropic 
benefits and potential differences from DHA [38-40]. This conclusion 
was further supported by  the Effect of Vascepa on Progression of Cor
onary Atherosclerosis in Persons With Elevated Triglycerides on Statin 
Therapy (EVAPORATE) trial, which met the primary endpoint as evi
denced by significant regression of low-attenuation plaque volume with 
EPA (as IPE) compared to patients on statins alone [41]. The positive 
findings of the EVAPORATE trial provide mechanistic support for the 
reduced ischemic events in REDUCE-IT. 

Another trial that tested a mixture of EPA and DHA at a similar high 
dose as REDUCE-IT (4 g/d), called A Long-Term Outcomes Study to 
Assess Statin Residual Risk Reduction with Epanova in High Cardio
vascular Risk Patients with Hypertriglyceridemia (STRENGTH), failed to 
show any reduction in CV events and was halted prematurely due to 
futility at the recommendation of the independent data-monitoring 
committee [42, 43]. The failure to show significant benefit in 
STRENGTH indicates that the addition of DHA may diminish the bene
ficial CV properties of EPA or that its benefits in REDUCE-IT result from 
the EPA formulation (IPE) and/or dosage.  To elucidate potential dif
ferences among n3-FAs that may contribute to these differences in 
clinical outcomes, this study compared the separate effects of EPA, DHA, 
and AA on the endothelial release ratio of NO to ONOO− , an indicator 
eNOS coupling efficiency in relation to cellular fatty acid changes in 
these and other fatty acids. 

2. Materials and methods 

2.1. Materials 

Primary human umbilical vein endothelial cells (HUVECs) were 
purchased from Lonza Inc. (Walkersville, MD).  Cells were cultured in 

the recommended complete endothelial cell growth medium and 
maintained at 37 ◦C in a 95% air /5% CO2 humidified incubator. Cells 
were supplied with fresh medium every other day and propagated by an 
enzymatic (trypsin) procedure. Cell culture medium also contained 5% 
fetal bovine serum (FBS). The fatty acids EPA, DHA, and AA were pur
chased from Sigma-Aldrich (St. Louis, MO) and solubilized in redistilled 
ethanol under nitrogen atmosphere. The various acid stock solutions 
were stored at –20 ◦C until use. 

2.2. Endothelial function analysis 

Concurrent measurements of NO, ONOO– and the [NO]/[ONOO–] 
ratio were performed with tandem electrochemical nanosensors 
following eNOS stimulation with calcium ionophore. Cells were incu
bated with EPA, DHA, or AA at 10 µM or equivolume vehicle in medium 
containing 5% FBS, which contains albumin, to facilitate in the delivery 
of the fatty acids to the cells. The 10 µM concentration was chosen based 
on pharmacokinetic analysis of EPA levels in plasma and red blood cells 
(RBCs) in patients receiving 4 g/d as used in REDUCE-IT and regulatory 
trials [44]. NO and ONOO– measurements were taken at multiple time 
points up to 24 h-incubation with the fatty acids using custom tandem 
porphyrinic nanosensors and aggregated as there was no significant 
time-dependent benefit with any of the treatments. The methods for NO, 
ONOO– and the [NO]/[ONOO–] ratio, including the calibration of the 
nanosensors and the orientation of the sensors relative to the endothelial 
cells, have been previously described [25, 45-47]. 

2.3. Cellular fatty acid and total protein analysis 

To determine the effects of EPA, DHA, and AA treatment on fatty acid 
composition, cells designated for fatty acid and protein content analysis 
were treated in parallel with the endothelial function analysis. Cells 
were incubated with each treatment for 8 h and then lysed for fatty acid 
analysis (10 × 106 cells in each sample). Total protein content in 20 µL 
aliquots from the cell lysates was measured using a Thermo Pierce™ 
BCA protein assay kit and quantified using absorbance at 562 nm. The 
remaining cell lysate sample was dried in a speed vacuum and the total 
fatty acid pool was derivatized using methanol with 14% boron tri
fluoride to form fatty acid methyl esters (FAME). Samples were then 
vortexed and heated at 100 ◦C for 10 min to aid in the derivatization 
reaction. A hexane/water solution was then added and the FAME were 
extracted in the hexane phase for analysis. Fatty acid content was 
determined using gas chromatography (GC) via a Shimadzu GC-2010 
Gas Chromatograph with a Supelco SP-2560, 100-m fused silica capil
lary column (0.25 mm internal diameter, 0.2 µm film thickness). To 
determine the identity of the fatty acids in the samples, sample spectra 
were compared to spectra of the fatty acid standards. Fatty acid content 
was calculated as µg/mL in each sample and then normalized to the 
amount of protein per sample (mg/g total protein). 

2.4. Statistical analyses 

Data were presented as the mean ± S.E.M. for (N) separate samples 
of treatment groups (N = 5–16 for nitric oxide analysis, N = 3–4 for fatty 
acid analysis). Differences between groups were analyzed using ANOVA 
followed by Student-Newman-Keuls multiple comparisons post hoc 
analysis (for comparisons between three or more groups) or unpaired, 
two-tailed Student’s T-test for comparisons between two groups. Alpha 
error was set to 0.05 in this study. 

3. Results 

3.1. Endothelial function analysis 

The results of the endothelial function analysis are summarized in 
Figs. 1 and 2. The comparative effects of each treatment on nitric oxide 

Abbreviations 

NOS nitric oxide synthase 
n3-FA omega-3 fatty acid 
n6-FA omega-6 fatty acid 
EPA eicosapentaenoic acid 
DHA docosahexaenoic acid 
AA arachidonic acid 
NO nitric oxide 
ONOO- peroxynitrite  
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release are summarized in Fig. 1A. EPA caused a significant increase in 
NO release compared to control (18%, 590 ± 10 versus 501 ± 14 nM, p 
< 0.001), compared to DHA (6%, 590 ± 10 versus 559 ± 8 nM, p <
0.05), and compared to AA (11%, 590 ± 10 versus 533 ± 9 nM, p <
0.001). AA failed to cause a significant increase in NO release compared 
to control. DHA caused a significant, 12% increase in NO release (p <
0.01) compared to control. 

The comparative effects of each treatment on ONOO− release are 
summarized in Fig. 1B. EPA was the only treatment to cause a signifi
cant decrease in ONOO− release compared to control (13%, 154 ± 4 
versus 176 ± 8 nM, p < 0.05). Both DHA (9%) and AA (7%) failed to 
match the significant decrease in ONOO− release seen following EPA 
treatment. 

The above effects on NO and ONOO− release contribute to the overall 
effects on the [NO]/[ONOO− ] ratio, a key indicator of eNOS function. 
Since EPA and DHA were the only treatments to affect NO and ONOO−

release separately, we compared the effects of these FAs on the [NO]/ 
[ONOO− ] ratio, as summarized in Fig. 2. Treatment with EPA caused 
the largest and most significant increase in this ratio compared with 
control (35%, 3.87 ± 0.11 versus 2.86 ± 0.15, p < 0.001). The beneficial 

effect of EPA on the [NO]/[ONOO− ] release ratio was also significantly 
greater than DHA (p < 0.05). Treatment with DHA resulted in a 23% 
increase in the ratio compared with control (p < 0.01). 

3.2. Cellular fatty acid analysis 

Treatment of cells with EPA, DHA, or AA significantly modified the 
FA content of endothelial cells.  The average measurements of fatty acids 
in the control and treated cell lysates from four separate cell cultures 
(~10 × 106 cells each) are summarized in Figs. 3 and 4 and Table 1. 
Treatment with each fatty acid increased their respective levels 
compared to control: EPA caused a 10-fold increase in EPA levels (0.44 
± 0.02 to 4.59 ± 0.26 mg/g protein, p < 0.001), DHA caused a 2.9-fold 
increase in DHA levels (4.10 ± 0.45 to 11.86 ± 0.85 mg/g, p < 0.001), 
and AA caused a 2-fold increase in AA levels (9.38 ± 0.50 to 18.02 ±
0.76 mg/g protein, p < 0.001). EPA treatment, but not DHA or AA, 
caused a 2-fold increase in cellular levels of the n3-FA docosapentaenoic 
acid (DPA, 22:5 n3; 3.24 ± 0.20 to 8.72 ± 0.51 mg/g protein, p < 0.001). 
DHA treatment resulted in a 2.5-fold increase in EPA levels to 1.12 ±
0.08 mg/g protein, though this was less than the increase observed with 
EPA (p < 0.001). In addition to the increase in AA levels, only AA 
treatment caused a 4-fold increase in the omega-6 fatty acid docosate
traenoic acid (DTA, 22:4 n6) from 2.14 ± 0.13 to 8.78 ± 0.34 mg/g 
protein (p < 0.001). EPA treatment increased the EPA/AA ratio 10-fold 
(Fig. 4) compared to control (0.047 ± 0.003 to 0.52 ± 0.042, p < 0.001), 
while DHA treatment increased the EPA/AA ratio 2.6-fold (0.12 ± 0.01, 
p < 0.05) and AA treatment decreased the EPA/AA ratio 4-fold (0.012 ±
0.001, p < 0.0001). The FA treatments significantly modulated a num
ber of other cell FAs to a lesser extent, especially AA, as reviewed in 
Table 1. 

4. Discussion and conclusions 

The key finding of this study is that endothelial cells treated with n3- 
FAs (EPA, DHA) and the n6-FA (AA) have differential effects on NO 
bioavailability and fatty acid levels. EPA treated cells had significantly 
greater NO release with a concomitant reduction in release of ONOO− . 
AA did not significantly alter either NO or ONOO− release while DHA 
only increased NO. Consistent with these results, EPA-treated cells 
showed a significantly greater improvement in the [NO]/[ONOO− ] 
concentration ratio compared with DHA or control. The different effects 
of the FAs on eNOS coupling correlated with distinct effects on the FA 

Fig. 1. A-B. Comparative Effects of EPA, DHA, and AA on Maximal (A) NO and 
(B) ONOO− Concentration from HUVECs. All treatments were delivered to cells 
in the presence of 5% FBS. NO Stats: ***p < 0.001 versus control; **p < 0.01 
versus control; ‡p < 0.001 versus AA; †p < 0.05 versus AA; §p < 0.05 versus DHA 
(Student-Newman-Keuls Multiple Comparisons test; overall ANOVA: p <

0.0001, F = 10.984). ONOO− Stats: *p < 0.05 versus control (Student-Newman- 
Keuls Multiple Comparisons test; overall ANOVA: p = 0.0437, F = 2.909). 
Values are mean ± SEM. 

Fig. 2. Comparative Effects of EPA and DHA on the [NO]/[ONOO− ] Concen
tration Ratio from HUVECs. All treatments were delivered to cells in the pres
ence of 5% FBS. ***p < 0.001 versus control; **p < 0.01 versus control; ‡p <
0.05 versus DHA (Student-Newman-Keuls Multiple Comparisons test; overall 
ANOVA: p < 0.0001, F = 12.886). Values are mean ± SEM. 
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content of these cells. Treatment with each fatty acid significantly 
increased the respective cellular levels of that fatty acid. EPA signifi
cantly increased endothelial cell levels of EPA and its immediate 
metabolic product DPA by 10-fold and 2-fold, respectively, while not 
increasing DHA or AA compared to control. DHA treatment did not 
change DPA levels while AA treatment significantly reduced it. The 

conversion of EPA to DPA occurs via elongase enzymes which add 2 
carbons to the acyl chain [48, 49]. EPA is eventually converted to DHA 
through DPA via one more elongase, a Δ6-desaturase, and a final step of 
β-oxidation which occurs in the peroxisome. Thus, it is possible that at 
this time point (8 h), the EPA added exogenously was primarily con
verted as far as DPA if changed at all. These n3-FAs may contribute more 
to the beneficial endothelial effects observed with EPA treatment as 
compared to DHA and especially AA which had no significant effect of 
eNOS coupling. We have previously shown that EPA, and to a lesser 
extent DPA, possess superior antioxidant effects as compared to DHA 
and AA in model membranes and lipoprotein particles [50, 51]. 

The conversion of EPA to DPA, along with other n3-FAs, occurs in 
parallel with the formation of various n6-FAs, including AA. Just as DPA 
is the immediate biosynthetic product of EPA, AA is converted to DTA by 
the same elongase [49]. We observed that treatment with AA, but not 
DHA or EPA, increased cellular levels of both AA and DTA, suggesting 
that the rate of conversion of EPA to DPA and AA to DTA are similar 
despite their different effects on endothelial function. 

Imbalances in the EPA/AA ratio that favor more AA than EPA are 
associated with increased CV risk [7, 52]. The n3-FAs EPA and DHA 
generate anti-thrombotic metabolites thromboxane A3/Prostacyclin 
(PGI3) while AA forms thromboxane A2, a platelet activator that con
tributes to atherothrombosis [53]. The n3-FAs also compete with AA for 
cyclooxygenase (COX) enzymes that synthesize the thromboxanes, thus 
reducing formation of these pro-aggregatory and vasoconstrictor me
tabolites. As seen in the MARINE trial, treatment with icosapent ethyl 
(IPE, 2–4 g/d) significantly increased the EPA/AA ratio which was 
associated with increased plasma EPA levels [54]. In our study, we 
observed a large and significant increase in the EPA/AA ratio with EPA 
treatment. This increase appears to be driven primarily by the increase 
in cellular EPA levels as there was no decrease in AA levels following 
EPA treatment. By contrast, AA treatment decreased the EPA/AA ratio 
which was associated with a significant increase in AA. In addition to the 

Fig. 3. A-D. Comparative Effects of 
EPA, DHA, and AA Treatment on (A) 
EPA, (B) DHA, (C) AA, and (D) DPA 
Levels from HUVECs. A: ***p < 0.001 
versus control; **p < 0.01 versus con
trol; ‡p < 0.001 versus DHA and AA; ¶p 
< 0.01 versus AA (Student-Newman- 
Keuls Multiple Comparisons Test; over
all ANOVA: p < 0.0001, F = 222.51). B: 
***p < 0.001 versus control; ‡p < 0.001 
versus EPA and AA (Student-Newman- 
Keuls Multiple Comparisons Test; over
all ANOVA: p < 0.0001, F = 83.638). C: 
***p < 0.001 versus control; ‡p < 0.001 
versus DHA and EPA (Student-Newman- 
Keuls Multiple Comparisons Test; over
all ANOVA: p < 0.0001, F = 57.851). D: 
***p < 0.001 versus control; ‡p < 0.001 
versus DHA and AA (Student-Newman- 
Keuls Multiple Comparisons Test; over
all ANOVA: p < 0.0001, F = 88.500). 
Values are mean ± SEM (N = 4).   

Fig. 4. Comparative Effects of EPA, DHA, and AA Treatment on the EPA/AA 
Ratio from HUVECs. ***p < 0.001 versus control; *p < 0.05 versus control; ‡p <
0.001 versus DHA; §p < 0.001 versus AA; ¶p < 0.01 versus AA (Student-New
man-Keuls Multiple Comparisons Test; overall ANOVA: p < 0.0001, F =
117.89). Values are mean ± SEM (N = 4). †p < 0.0001 versus control (Unpaired, 
two-tailed Student’s T-Test; t = 11.068, df = 6). 
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increase in cellular DPA and EPA, the increase in the EPA/AA ratio 
associated with EPA treatment may explain the superior endothelial 
benefits observed with EPA. 

In cells, polyunsaturated fatty acids (PUFAs) are primarily found 
esterified to the sn-2 position of membrane phospholipids.  Along with 
the headgroup composition, phospholipid fatty acids have complex ef
fects on membrane biophysical characteristics, including fluidity, lipid 
domains, width and rates of oxidation that vary among different cell 
types as well as with age and various disease-like conditions.  In 
particular, EPA modifies the lipid composition of membrane caveolae 
and the subcellular distribution of eNOS [55]. EPA changes the lipid 
fluidity of the caveolae following membrane phospholipid enrichment. 
There is also displacement of caveolin-1, an inhibitor of eNOS, with EPA 
incorporation to soluble fractions that allow activation.  The compara
tive effects of various long chain fatty acids, including n6-FAs and 
n3-FAs, on lipid oxidation and the organization of cholesterol have also 
been recently characterized [56-59]. Despite similar structures, EPA and 
DHA have distinct effects on membrane structure, cholesterol distribu
tion, oxidation rates and lipid dynamics [56-60].  Differences between 
EPA and DHA on rates of oxidation were reproduced in atherogenic 
ApoB-containing lipoproteins as well as ApoA-containing particles [61, 
62]. 

Loss of normal vasodilation correlates with CV risk and all-cause 
mortality independent of traditional risk factors [63]. EPA produces 
favorable effects on arterial compliance and vasomotor control in pa
tients with CV disease or its risk factors, including those with diabetes or 
receiving statins [19-22].  The benefits of EPA may be due to improved 
NO bioavailability, a potent vasodilator.  This study used nanosensors to 
measure release kinetics of NO and ONOO− , along with their ratio as an 
indication of eNOS coupling efficiency in increasing NO bioavailability 
and reducing ONOO− - a main component of nitroxidative stress.  Pre
vious studies showed that the improvement in NO bioavailability with 
EPA in these cells did not relate to changes in eNOS expression and were 
enhanced in combination with a statin [25].  The changes in NO 
bioavailability with EPA and a statin were observed under conditions of 
oxidative stress and hyperglycemia and not reproduced with DHA or 
other TG-lowering agents. These findings were extended using ex vivo 

experiments in rat glomerular endothelium [25]. 
Inadequate levels of substrates such as L-arginine and/or cofactors 

like BH4 leads to uncoupling of dimeric eNOS. Instead of producing NO, 
uncoupled eNOS generates O2

− that subsequently reacts quickly with 
NO to create ONOO− .  In addition to molecular oxygen, O2

− reacts with 
BH4 to further reduce eNOS function. Increased cellular levels of 
ONOO− secondary to eNOS uncoupling ultimately disrupts the redox 
balance and contributes to endothelial damage [64, 65]. 

These findings have important clinical implications when reviewing 
outcome trials for n3-FAs consisting of EPA only as compared to mixed 
EPA/DHA formulations.  In the open-label Japan EPA Lipid Intervention 
Study (JELIS), purified EPA (1.8 g/d) combined with statin treatment 
resulted in a 19% relative reduction in major coronary events compared 
with statin treatment alone (p = 0.011) [66].  The multinational, blinded 
REDUCE-IT study (4 g/d of purified EPA as IPE) demonstrated a 25% 
relative reduction in first ischemic events, including a significant 20% 
reduction in death from CV causes. However, STRENGTH (4 g/d of a 
mixture of EPA and DHA) failed to reduce ischemic events in a similar 
patient population despite similar reductions in triglycerides. The con
trasting results of REDUCE-IT and STRENGTH indicate important dif
ferences in clinical outcomes with n3-FA formulations. As mentioned 
previously, the EVAPORATE trial showed significant, favorable effects 
on measures of plaque volume and composition on noninvasive 
computed tomography with IPE versus placebo, including regression of 
vulnerable plaques [41].  These results were consistent with the 
open-label Combination Therapy of Eicosapentaenoic Acid and Pit
avastatin for Coronary Plaque Regression Evaluated by Integrated 
Backscatter Intravascular Ultrasonography (CHERRY) trial which used 
invasive intravascular ultrasound [67]. 

Limitations of this analysis include uncertainty about whether these 
results apply directly to humans as this in vitro analysis used cultured 
cells. Additionally, the total fatty acid analysis included both delivered 
free fatty acids and those already incorporated into cellular phospho
lipids, though we do not differentiate among these in our measurements. 
These results support further investigations using different sources of 
endothelial cells under various disease-like conditions as well as in vivo 
experiments. 

Table 1 
Summary of Fatty Acid Levels in HUVECs Following Treatment with EPA, DHA, and AA.  

Fatty Acid Treatment 
Control EPA DHA AA 

(mg/g protein) (mg/g protein) (mg/g protein) (mg/g protein) 

14:0 4.13 ± 0.19 3.92 ± 0.19 3.94 ± 0.16 3.32 ± 0.14* 
16:0 34.38 ± 1.48 31.72 ± 1.49 31.79 ± 1.21 27.69 ± 1.12* 

trans-16:1n7 0.55 ± 0.02 0.52 ± 0.02 0.49 ± 0.02 0.40 ± 0.02* 
cis-16:1n7 4.65 ± 0.21 4.57 ± 0.23 4.36 ± 0.22 3.50 ± 0.16* 

18:0 22.31 ± 0.94 20.91 ± 0.98 20.95 ± 0.84 18.46 ± 0.73* 
trans-18:1n9 0.61 ± 0.05 0.60 ± 0.03 0.57 ± 0.02 0.55 ± 0.02 
cis-18:1n9 41.81 ± 2.10 38.78 ± 1.96 37.88 ± 1.96 31.83 ± 1.36* 

trans-18:2n6 1.63 ± 0.07 1.33 ± 0.08* 1.32 ± 0.05* 1.09 ± 0.05* 
cis-18:2n6 1.99 ± 0.09 2.27 ± 0.12 2.25 ± 0.12 1.81 ± 0.08 

18:3n3 0.05 ± 0.01 0.02 ± 0.003* 0.02 ± 0.005* 0.004 ± 0.001* 
18:3n6 0.12 ± 0.01 0.11 ± 0.01 0.11 ± 0.02 0.15 ± 0.01 
20:0 1.07 ± 0.01 0.76 ± 0.05* 0.87 ± 0.05* 0.77 ± 0.04* 

20:1n9 0.86 ± 0.04 0.70 ± 0.03* 0.66 ± 0.03* 0.64 ± 0.03* 
20:2n6 0.23 ± 0.02 0.24 ± 0.02 0.21 ± 0.01 0.19 ± 0.01 
20:3n6 2.17 ± 0.10 2.10 ± 0.11 2.07 ± 0.12 2.06 ± 0.08 
20:4n6 9.38 ± 0.50 8.75 ± 0.50 9.17 ± 0.55 18.02 ± 0.76* 
20:5n3 0.44 ± 0.02 4.59 ± 0.26* 1.12 ± 0.08* 0.22 ± 0.01* 
22:0 1.78 ± 0.11 1.20 ± 0.08* 1.33 ± 0.06* 1.22 ± 0.06* 

22:4n6 2.14 ± 0.13 2.15 ± 0.12 1.95 ± 0.13 8.78 ± 0.34* 
22:5n6 0.40 ± 0.03 0.31 ± 0.02* 0.38 ± 0.03 0.53 ± 0.03* 
22:5n3 3.24 ± 0.20 8.72 ± 0.51* 3.19 ± 0.25 2.60 ± 0.11* 
22:6n3 4.10 ± 0.23 3.68 ± 0.22 11.86 ± 0.85* 2.92 ± 0.10* 
24:0 1.28 ± 0.04 0.92 ± 0.05* 1.02 ± 0.05* 0.95 ± 0.05* 

24:1n9 0.62 ± 0.02 0.57 ± 0.03 0.49 ± 0.03* 0.45 ± 0.03* 

Results shown as mean ± SEM. Statistical analysis were only carried out between each individual fatty acid treatment and control to improve clarity of the table using 
unpaired, two-tailed Student’s t-test. Statistical indicators: *p < 0.05 vs control. 
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In conclusion, we observed pronounced differences in endothelial 
NO bioavailability following treatment with EPA, DHA, and AA, along 
with differential changes in fatty acid content.  EPA treated cells had 
significantly greater [NO]/[ONOO− ] concentration ratio as compared to 
control, DHA, and AA.  Treatment with EPA increased cellular EPA 
levels 10-fold, DPA levels 2-fold, and the EPA/AA ratio 10-fold, while 
DHA and AA treatment increased their respective levels without in
creases in DPA.  These findings support a preferential benefit of EPA on 
endothelial cell function that correlates with increased EPA, DPA and 
EPA/AA ratio that may help explain differences in clinical outcomes 
among recent n3-FA trials. 

Summary 

Introduction – We compared the effects of eicosapentaenoic acid 
(EPA), docosahexaenoic acid (DHA), and arachidonic acid (AA) on 
endothelial cell (EC) function, including nitric oxide (NO) release, and 
fatty acid composition. Loss of endothelial NO bioavailability is impli
cated in inflammation and atherosclerosis. 

Materials and Methods – Human ECs were treated with equimolar 
EPA, DHA, or AA (10 µM) or vehicle. At multiple time points, NO and 
peroxynitrite (ONOO− ) were measured by porphyrinic nanosensors. 
Cellular fatty acid composition was determined by GC–MS. 

Results – EPA significantly increased the [NO]/[ONOO− ] release 
ratio compared to vehicle, DHA and AA. Each fatty acid treatment 
increased their respective levels in the cells. Only EPA treatment also 
increased cellular levels of DPA and the EPA/AA ratio. 

Conclusions – These findings support a preferential benefit of EPA on 
endothelial function and fatty acid content that may contribute to 
atheroprotection. 
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