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Abstract: Existing studies reported higher altitudes reduce the COVID-19 infection 34 

rate in the United States, Colombia, and Peru. However, the underlying reasons for this 35 

phenomenon remain unclear. In this study, regression analysis and mediating effect 36 

model were used in a combination to explore the altitudes relation with the pattern of 37 

transmission under their correlation factors. The preliminary linear regression analysis 38 

indicated a negative correlation between altitudes and COVID-19 infection in China. 39 

In contrast to environmental factors from low-altitude regions (<1500 m), high-altitude 40 

regions (>1500 m) exhibited lower PM2.5, average temperature (AT), and mobility, 41 

accompanied by high SO2 and absolute humidity (AH). Non-linear regression analysis 42 

further revealed that COVID-19 confirmed cases had a positive correlation with 43 

mobility, AH, and AT, whereas negatively correlated with SO2, CO, and DTR. 44 

Subsequent mediating effect model with altitude-correlated factors, such as mobility, 45 

AT, AH, DTR and SO2, suffice to discriminate the COVID-19 infection rate between 46 

low- and high-altitude regions. The mentioned evidence advance our understanding of 47 

the altitude-mediated COVID-19 transmission mechanism. 48 

Key words: COVID-19, environmental factors, altitude, mediating effect model, 79 

transmission mechanism 80 
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1. Introduction 82 

The outbreak of novel respiratory disease 2019 (COVID-19) has posed a global 83 

health crisis (Cao, 2020). With the rage of COVID-19, there have been over 0.24 billion 84 

confirmed cases and 4.99 million deaths as of 30 October, 2021 according to John 85 

Hopkins University (Hopkins, 2021). COVID-19 infects host cells via binding their 86 

trans-membrane protein ACE2 (angiotensin-converting enzyme 2), together with 87 

transmembrane serine protease 2 (TMPRSS2) (Li et al., 2020). The typical clinic 88 

symptoms of COVID-19 infected patients were cough, fever, dyspnea, myalgias, 89 

diarrhea, nausea, and vomiting (Goyal et al., 2020), with a low incidence of congestion, 90 

rhinorrhea, sore throat and diarrhea (Fu et al., 2020). Understanding the environmental 91 

indicator of COVID-19 contributes to guiding public health policy-making. Imposed 92 

city lockdown, and quarantine measures sharply reduced newly confirmed cases (Lian 93 

et al., 2021). Though population flow drives spatio-temporal distribution of COVID-19 94 

in China (Jia et al., 2020), available epidemiological data from Americas implied a 95 

correlation between altitudes and the incidence of COVID-19, such as Argentina, Brazil, 96 

Canada, Colombia, Costa Rica, Ecuador, Mexico, Peru, and USA (Arias-Reyes et al., 97 

2020a; Millet et al., 2021; Segovia-Juarez et al., 2020). For instance, the average 98 

COVID-19 infection rate in the United States decreased by 12% per 495 meters of 99 

elevation (Stephens et al., 2021). The relative mechanism for this phenomenon remains 100 

unclear. 101 

High-altitude regions (e.g., Tibetan region of China) exhibited lower COVID-19 102 

prevalence due to the relatively low population and mobility (Arias-Reyes et al., 2020a). 103 

Adjusted regression models including population density supported a negative 104 

correlation between COVID-19 cases and altitudes (Cano-Pérez et al., 2020). In 105 

addition, subsequent population-scale regression analysis from the United States 106 

revealed that high altitudes are adverse to the transmission of COVID-19 (Stephens et 107 

al., 2021). Even though the effect of population density decreased, a noticeable 108 

difference of COVID-19 infection in high- and low-altitude regions was observed 109 

(Segovia-Juarez et al., 2020). Such divergence may decrease the half-life and survival 110 
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of the virus in high UV exposure in high-altitude regions (Arias-Reyes et al., 2020b; 111 

Cadnum et al., 2020). Low pressure in high-altitude regions also affected lung 112 

physiology (Breevoort et al., 2020). Clinic symptoms from low- and high-altitude 113 

COVID-19 patients are primarily consistent while less prone to diarrhea at high-altitude 114 

COVID-19 patients in Gansu Province (Yue et al., 2020).  115 

The main transmission route of COVID-19 includes direct contact, respiratory 116 

droplet, and fecal-oral route (Hindson, 2020). Extensive studies have explored the role 117 

of social parameters (e.g., migration scale index and population density), climate 118 

factors (e.g., temperature, humidity, rainfall) and air pollutants (NO2, SO2, CO) in 119 

COVID-19 transmission (Jia et al., 2020; Lian et al., 2021; Shakil et al., 2020; Zang et 120 

al., 2022). For instance, the Ensemble Empirical Mode Decomposition (EEMD) 121 

analysis indicated the limited seasonal modulations on COVID-19 evolution (Huang et 122 

al., 2021). It has been also reported that high altitudes can influence the occurrence and 123 

intensity of influenza A (H1N1, H5N1, H5N8) (da Costa et al., 2018; Scolamacchia et 124 

al., 2021), and decrease COVID-19 infection (Segovia-Juarez et al., 2020; Stephens et 125 

al., 2021). The high altitude at 4500 m down-regulates the expression of ACE2, thereby 126 

probably protecting them against COVID-19 replication in host cells(Mendes et al., 127 

2019). However, the synergy effect of different factors on COVID-19 transmission 128 

needs deep inquiry.   129 

Geographical distribution of China covers complete data of COVID-19 confirmed 130 

cases ranging from low- and high-altitude regions, it can be adopted as a model to 131 

explore the relevant mechanisms of altitude-dependent COVID-19 infection. In this 132 

study, pandemic data (COVID-19 confirmed cases, death cases, as well as relevant 133 

climate factors and air pollutants) of 339 cities in China were collected. We formulated 134 

the statistical null hypotheses for falsification: H10, there are no inverse correlations for 135 

altitude with COVID-19 confirmed cases; H20, altitude has no effect on environmental 136 

factors (CO, NO2, PM2.5, PM10, SO2, O3, AT, AH, DTR and mobility); H30, 137 

environmental factors (CO, NO2, PM2.5, PM10, SO2, O3, AT, AH, DTR and mobility) 138 

have no effect on COVID-19 confirmed cases.  139 
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To further understand explore the altitude-mediated COVID-19 transmission 140 

mechanism, an altitude-infection rate nonlinear regression analysis validated the 141 

hypothesis that high altitudes reduce COVID-19 infection. A comparative analysis of 142 

environmental factors were conducted in low-altitude regions (<1500 m) and high-143 

altitude regions (>1500 m). Utilizing nonlinear regression analysis explored the 144 

relationship between altitude-related factors and COVID-19 infection. Subsequently, 145 

the multiple mediating effect model analysis elucidated the mechanism of altitude-146 

mediated COVID-19 infection. The mentioned findings provide profound insights into 147 

the relationship between altitudes and COVID-19 infection in China 148 

2 Material and Methods 149 

2.1 Collection of COVID-19 confirmed cases  150 

A dataset of daily confirmed cases of COVID-19 was collected from 10 January, 151 

2020 to 10 May, 2021 by excluding the imported cases in China. Data collection can 152 

fall to two time periods: (i) During January 10 to March 1, 2020, the National Health 153 

Commission of the People's Republic of China (NHC) released the local cases of 154 

COVID-19 in China while the local cases of Argentina derives from the Johns Hopkins 155 

Coronavirus Resource Center (Hopkins, 2021) (ii) During March 2, 2020 to May 10, 156 

2021, the local cases of COVID-19 infection were compiled from the NHC(NHC, 157 

2021), which distinguished the local cases from the imported cases of COVID-19 on 158 

each day. 159 

2.2 Environmental factors collection 160 

High-altitude region was above 2500 m (Moore and Regensteiner, 1983). Given 161 

the topography of China, the altitude falls to typical three terrain grades, which covers 162 

Qinghai-Tibet Plateau (Grade I > 4000 m above sea level), major basin regions of China 163 

(Grade II with an altitude of 1000-2000 m), and main plains of China (Grade III < 500 164 

m above sea level). In contrast to Grade III, the altitude variations in Grade I and II 165 

revealed distinct environmental factors. Based on the confirmed COVID-19 patients in 166 

China, high-altitude regions (>1500 m) and low-altitude regions (<1500 m) represent 167 

below 1500 m and above 1500 m, respectively. 168 

To examine the correlation between environmental factors and COVID-19 169 
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infection in-depth, various meteorological data, air pollution and urban basic data from 170 

74 cities were collected, respectively (Table S1). Meteorological data were obtained 171 

from the information center of ministry of ecology and environment of the People's 172 

Republic of China (CMA, 2021) from January 10 to March 1, which involved average 173 

temperature (AT), diurnal temperature range (DTR), absolute humidity (AH) and air 174 

pollutants (e.g., PM2.5, PM10, SO2, CO, NO2 and O3). All altitude data for 74 cities 175 

originated from the National Geomatics Center of China (NGCC, 2021). Mobility for 176 

74 cities from Jan 10 to March 1 was determined according to Baidu Migration Map 177 

(qianxi, 2021). 178 

The R package of nCOV2019 (Wu et al., 2020) was adopted to summarize the 179 

daily cumulative chart of confirmed cases by provinces and cities in China as of March 180 

1. The infection summary map was employed in ArcGIS10.7.  181 

2.3 Statistic analysis 182 

   To explore the altitude-mediated COVID-19 transmission mechanism, we 183 

employed the statistical null hypotheses for falsification:  184 

H10: There are no inverse correlations for altitude with COVID-19 confirmed cases. 185 

H20: Altitude has no effect on environmental factors (CO, NO2, PM2.5, PM10, SO2, 186 

O3, AT, AH, DTR and mobility). 187 

H30: Environmental factors (CO, NO2, PM2.5, PM10, SO2, O3, AT, AH, DTR and 188 

mobility) have no effect on COVID-19 confirmed cases change. 189 

H40: Altitude has no mediating effect on COVID-19 transmission by changing 190 

environmental factors. 191 

 To test H10 hypothesis, we applied linear regression (F-test) to understand the 192 

relationship between confirmed cases of COVID-19 and altitudes from 74 cities. Taking 193 

into consideration of strict city lockdown measures, relevant data of Hubei Province 194 

were excluded.  195 

To test H20 hypothesis, we provided a comparative analysis of environmental 196 

factors at low-and high-altitude regions by two independent t-test using SPSS v.20.0. 197 

The results were expressed as mean ± SEM. p-value of <0.05 was considered 198 

statistically significant. Subsequently, spearman correlation analysis (F-test) was 199 

applied to examine the correlation between environmental factors and altitude. 200 

To test H30 hypothesis, a nonlinear regression (F-test) model was exploited to 201 

explore the correlation between confirmed cases and various factors (AH, AT, DTR, 202 
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PM2.5, PM10, SO2, CO, NO2 and O3, and mobility), respectively. We calculated 203 

correlation coefficients to test the hypotheses and to assess the strength of relationships. 204 

All nonlinear curve fit complied with spearman correlation by applying RStudio 4.0.3. 205 

A significant difference of nonlinear regression analysis was identified at p<0.05.  206 

Finally, we created a mediation model analysis to test the H40 hypothesis. To 207 

further explore whether altitude-mediated COVID-19 infection, a mediation model was 208 

used to evaluate the association between altitude and confirmed cases mediated by 209 

environmental factors. If the 95% CI of indirect effect did not contain 0, it indicated 210 

that the mediating effect was significant. The mediation model was controlled for 211 

covariates (CO, NO2, PM2.5, PM10, SO2, O3, AT, AH, DTR and mobility) and the study 212 

variables were standardized. If there is an intermediary variable, it indicates the 213 

existence of the mediation effect (Liang et al., 2021). Such a nonparametric technique 214 

has been extensively adopted to analyze small sample sizes since it can effectively 215 

avoid the interference of original data distribution. The detailed procedures of 216 

mediating effect are described as previously (Rucker et al., 2011; Zhu et al., 2020c).   217 

All regression analyses have been carried out using the statistical package R 218 

version 3.5 219 

3 Results 220 

3.1 High altitude decreases on COVID-19 confirmed cases 221 

To reflect the correlation between COVID-19 confirmed cases and altitudes the 222 

basic statistics information from 8178 confirmed cases covering 74 cities of China were 223 

collected from January 2020 to May 2021(Fig. 1a). The confirmed cases of COVID-19 224 

exhibited obvious aggregation and distribution nearby Hubei Province. Several 225 

contiguous provinces (Hunan, Henan and Anhui) had higher COVID-19 confirmed 226 

cases ranging from 1000 to 10000. In contrast, other contiguous provinces, including 227 

Jiangxi, Chongqing, Shanxi, attenuated the confirmed cases of COVID-19. Subsequent 228 

linear regression analysis (R=0.415) showed a significant negative correlation between 229 

altitudes and COVID-19 confirmed cases (Fig. 1b), which challenged the H10 230 

hypothesis. COVID-19 data from Argentina also shared a similar trend with that of 231 
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China (Fig. 1c). These evidence indicate altitude-dependent COVID-19 infection may 232 

be a universal phenomenon. 233 

 234 

 235 

Fig. 1. a, Geographic patterns of COVID-19 confirmed cases from China as of May 31, 2020; 236 

b, c, linear correlation analysis between altitudes and infection rate of COVID-19 in China (b) 237 

and Argentina (c) 238 

3.2 Comparative analysis of environmental factors at low-and high-altitude 239 

regions  240 

Previous analysis revealed that altitudes reduced the COVID-19 infection in 241 

China, we speculated that environmental factors in high-altitude regions are responsible 242 

for the COVID-19 infection. High-altitude regions significantly decreased PM2.5, AT, 243 

AH and mobility (p<0.05), along with high level of SO2 and DTR as compared to the 244 

low-altitude regions, (Fig. 2). The change in altitudes has no significant impact on the 245 

PM10, CO, O3, and NO2 (p>0.05). Among all parameters, air pollutants SO2 at >1500 246 

m was 2-fold higher than at <1500 m (Fig. 2c). Climatic factors (e.g., AT and AH) are 247 

sensitive to altitude changes; their levels above 1500 m were 5.1- and 3.8-fold lower 248 

than that below 1500 m, respectively (Fig. 2g, 2i). Although imposed quarantine 249 

measures in high-altitude regions showed less than 50% mobility of low-altitude 250 

regions (Fig. 2j). Spearman correlation analysis was carried out to examine the 251 

correlation between environmental factors and altitude (Table 1). Notably, PM2.5, 252 
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PM10, SO2, CO, and DTR were positively correlated with altitudes with an r-value of 253 

>0.24, while altitudes were negatively correlated with mobility, AT and AH, and their 254 

correlation coefficients were -0.236, -0.460, and -0.497, respectively. However, there 255 

was no significant correlation between altitudes, NO2 and O3. Collectively, this  256 

findings disproved H20 hypothesis, namely, altitude has a significant correlation with 257 

environmental factors except for NO2 and O3. 258 

 259 
Fig. 2. Comparative analysis of air pollutants, climate factors and social factors from low-260 

altitude region (<1500 m) and high-altitude region (>1500 m). AT: ambient temperature; AH: 261 

absolute humidity; DTR: diurnal temperature range. * represents significant difference while 262 

ns indicates no significant difference. * P<0.05, ** P<0.01, *** P<0.001. 263 

Table 1 Correlation analysis of altitude and environmental factors 264 

Factor correlation index(r) P value 

PM2.5 0.244* 0.036 

PM10 0.291* 0.012 

SO2   0.475*** <0.001 

CO   0.442*** <0.001 

NO2 0.104 0.376 

O3 8h -0.202 0.084 

Mobility  -0.236* 0.043 

AT    -0.460*** <0.001 

DTR   0.454*** <0.001 

AH   -0.497*** <0.001 
Notes: AT: ambient temperature; AH: absolute humidity; DTR: diurnal temperature range. “***” and “*” represent 265 

p<0.001 and p<0.05, respectively. 266 

3.3 Environmental factors of the COVID-19 transmission 267 
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To explore whether environmental factors have an effect on COVID-19 infection 268 

in China, spearman correlation analysis was applied to investigate the correlation 269 

between COVID-19 infection and environmental factors (Table S2, Fig. 3). Based on 270 

the correlation coefficients, the mentioned environmental factors are divided into three 271 

categories, namely dominant, secondary and other factors. 272 

273 

Fig. 3. Spearman correlation analysis between environmental factors and COVID-274 

19 confirmed cases. Mobility (a); Air pollutants: SO2 (b), CO (f); Climatic 275 

parameters: Average temperature (c), absolute humidity (d), diurnal temperature 276 

range (e). 277 

3.3.1 Mobility is dominant factor for COVID-19 infection 278 

Mobility represents the behavior of the travelers leaving from one city to another 279 

city for short time period by spatial displacement, including airplane, high-speed rail, 280 
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ship, coach and private car. It was observed that the change of mobility is positively 281 

correlated with COVID-19 infection (Fig. 3a). Mobility <1, it slightly contributed to 282 

the decrease in confirmed cases; whereas COVID-19 infection dramatically increased 283 

when the mobility exceeded 2.  284 

3.3.2 AT, DTR, AH, CO and SO2 are secondary factors responsible for COVID-285 

19 infection 286 

An obvious S-shaped curve was observed between environment factors (AT, SO2) 287 

and COVID-19 confirmed case (Fig.3b,3c). The level of SO2 has a negative correlation 288 

with confirmed cases above a threshold of 8 μg •m-3, and then confirmed cases 289 

rebounded near 25μg•m-3. However, AT ranging from 0 to 15 ℃ exhibited a positive 290 

correlation with confirmed cases while AT below 0 ℃ showed a low distribution of 291 

COVID-19 infection (Fig.3c). Unlike SO2, the relationship between CO and confirmed 292 

cases is an arched curve (Fig.3f), and the cases reached the maximum level when the 293 

concentration of CO was 0.8 mg•m-3. Similarly, COVID-19 confirmed cases increased 294 

first and then decreased with the changes of AH (Fig. 3d), its corresponding 295 

threshold values was 6 g•m-3. As opposed to the mentioned, DTR has a negative 296 

relationship with confirmed cases, and possessed three different slopes (Fig. 3e). Thus, 297 

we can challenge the H30 hypothesis because environmental factors (e.g. mobility, AT, 298 

DTR, AH, CO and SO2) have an impact on COVID-19 confirmed cases.  299 

3.3.3 O3, NO2, PM2.5 and PM10 have no impact on COVID-19 infection 300 

In the mentioned parameters, other factors (e.g., O3, NO2, PM2.5, and PM10) did 301 

not impact COVID-19 infection (Table S2), which was inconsistent with the existing 302 

studies (Zhu et al., 2020b). For example, 4.86 mg•L-1 ozone-water could deactivate 303 

SARS in 3 min. However, the effect of altitude on PM2.5 and PM10 was significantly 304 

correlated. With the increase in altitudes, the content of particulate pollutants in the air 305 

shows an upward trend, this provides reasonable explanation of low COVID-19 306 

infection in high-altitude regions. 307 

3.4 Mediation model analysis reveals altitude-mediated COVID-19 infection  308 
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To examine the potential mechanism of altitude-mediated COVID-19 infection, a 309 

mediation model analysis was conducted to assess the correlation of altitudes, 310 

environmental factors, COVID-19 infection. As shown in Fig.4, the environment 311 

factors of altitude on confirmed cases was negative associations (IE = -0.020, p < 0.01) 312 

and the 95% bias-corrected bootstrap confidence interval was -0.040 to 0.000, which 313 

indicated indirect effect of environment factors on confirmed cases (Table 2). In 314 

addition, the direct effect of altitude on confirmed cases (ADE = -0.020, p< 0.001) was 315 

also significant, indicating that environment factors partially mediated the relationship 316 

between altitude and confirmed cases, thereby we can disprove the H40 hypothesis (Fig. 317 

1). These evidences suggest that the altitude can influence COVID-19 infection by 318 

changing corresponding environmental factors.  319 

 320 

Fig.4. Multiple mediating effect model between altitude and confirmed cases.   321 

AT: ambient temperature; AH: absolute humidity; DTR: diurnal temperature 322 

range. 323 

Table 2 A mediating effect between infected rates and altitude 324 

Factor IE ADE Total Effect 

SO2 -0.010(-0.026,0.000)* -0.029(-0.063,0.010) -0.038(-0.075,0.000)** 

CO -0.002(-0.012,0.010) -0.040(-0.075,0.000)** -0.042(-0.084,-0.010)** 

Mobility -0.020(-0.045,0.010) -0.019(-0.049,0.010) -0.040(-0.071,0.010) 

AT -0.010(-0.025,0.000)* -0.031(-0.062,0.010) -0.041(-0.074,0.000)** 

DTR -0.007(-0.021,0.010) -0.035(-0.078,0.010) -0.042(-0.082,0.000)*** 

AH -0.012(-0.027,0.000)* -0.029(-0.064,0.010)* -0.041(-0.072,-0.010)*** 

Note: AT: ambient temperature; AH: absolute humidity; DTR: diurnal temperature range. ‘***’ : P<0.001, ‘**’: 325 

P<0.05. ‘*’: P<0.1. 326 
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 327 

4 Discussion 328 

4.1 Altitudes is negatively correlated with the COVID-19 infection  329 

13% of the cities in China are located in middle- and high-altitude regions (>1500 330 

m above sea level). With the improvement of infrastructure and 331 

convenient transportation, population flow at high-altitude regions are still active.  332 

Our observations found that high altitudes is associated with the COVID-19 infection 333 

in China, in accordance with existing studies conducted in Colombia (Cano-Pérez et al., 334 

2020), Peru (Quevedo-Ramirez et al., 2020; Segovia-Juarez et al., 2020), United States 335 

(Stephens et al., 2021), and Mexico (Woolcott and Bergman, 2020). After the effects of 336 

population density was eliminated, an obvious negative correlation between altitudes 337 

and infection rates was still identified in Peru, thereby demonstrating that altitude has 338 

the potential to influence the COVID-19 infection (Segovia-Juarez et al., 2020). 339 

However, several studies debated the pros and cons of altitude-related COVID-19 340 

infection have been also reported previously (Luks and Swenson, 2020). Admittedly, 341 

moderate intermittent hypoxia induced by high altitude is capable of improving 342 

endogenous antioxidant capacity, mitochondrial and immune system function by 343 

inducing relevant ROS signaling, HIF and inflammatory pathways (Ivashkiv, 2020; van 344 

Patot et al., 2009; Yin et al., 2007). The mentioned findings also raise the possibility of 345 

hypoxia therapy in COVID-19 patients, including steroids curing for high-altitude 346 

disease (e.g., dexamethasone), are equally effective against COVID-19, especially in 347 

patients with severe COVID-19 (Han et al., 2019).  348 

4.2 High- and low-altitudes regions shared obvious difference in environmental 349 

factors 350 

It is estimated that China's urbanization rate has increased from 17% to 60.0% in 351 

2019, with over 600 million people migrating to cities (Bai et al., 2014). Such migration 352 

with a huge population is largely located in the coastal regions (e.g., the Yangtze River 353 

Delta and the Pearl River Delta), causing high mobility in low-altitude regions. The 354 

high-altitude regions encountered a wide range of difficulties in the construction of the 355 
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public transportation system, especially geological problems in the permafrost regions 356 

(Shan et al., 2014). Furthermore, the city size and population density of high-altitude 357 

regions are lower than in low-altitude regions. The mentioned limitations decreased the 358 

mobility of high-altitude regions, thereby reducing the transmission of the pandemic in 359 

high-altitude regions. 360 

Air pollutants are composed of organic compounds, metal particles, carbon 361 

materials, and other particulate materials (even ions) (Pandey et al., 2005). Among of 362 

them, PM2.5 acts as transport medium of large amounts of toxic contaminants via 363 

adsorption (Lu et al., 2015), thus posing a health risk to human (e.g., lung disease) (Tan 364 

et al., 2017). Our study demonstrated that the concentration of PM 2.5 was altitude-365 

dependent due to fewer developed urban agglomerations in high altitudes. Such trend 366 

can be supported by Zhao et. al., reported that a higher PM2.5 level in urban centers 367 

(Zhao et al., 2014). COVID-19 broke out in winter, and abundant particulate pollutants 368 

(e.g., PM10) increased due to the prevalence of winter heating, especially in Northwest 369 

regions of China (e.g., Shaanxi, Gansu and Ningxia) (Qu et al., 2010). With the 370 

promulgation of national environmental protection policies, the total emission of SO2 371 

was effectively controlled (Jiang et al., 2020). Nevertheless, high-altitude regions 372 

required extra fossil fuel combustion for warming, thereby causing higher SO2 373 

concentration than that in low-altitude regions. For O3, NO2 and CO, high population 374 

density could be a main contributor for their emissions (Feng et al., 2015; Han et al., 375 

2011). The present observations revealed a significant difference of AT, AH, and DTR 376 

between high- and low-altitude regions due to their distinct climate types. High-altitude 377 

regions pertain to temperate continental climate and plateau climate, while monsoon 378 

climate is prevalent in low-altitude regions (Shi et al., 2007) 379 

4.3 Environmental factors influence the COVID-19 transmission  380 

Environmental factors and social customs contribute to the transmission of some 381 

representative pandemic viruses (Boomhower et al., 2022). Among of these factors, 382 

mobility is dominant factor to control the human-to-human transmission risk of 383 

COVID-19 (Jiang and Luo, 2020; Liu et al., 2020), as well as SARS (Li et al., 2005) 384 
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and H1N1(Boëlle et al., 2011). It is estimated that confirmed cases increased by 105.27% 385 

without Wuhan blockade based on the prediction model (Wuhan 2020 vs. seven other 386 

lockdown cities 2020). In contrast, strict city lockdown and home quarantine order 387 

decreased the migration rate by 54.15% (Fang et al., 2020). Although low mobility is 388 

accompanied with less social contact (Zhu et al., 2020c), some unexpected events (e.g., 389 

George Floyd) and large festival (e.g., Kumbh Mela) led to an explosion in of new 390 

confirmed cases (Valentine et al., 2020; Visaria and Dharamdasani, 2021). For example, 391 

5-day abnormal growth were observed in all six cities surveyed, including Atlanta 392 

(4.24%), Houston (16.76%), Jacksonville (32.35%), Miami (8.3%), Orlando (51.75%), 393 

and Phoenix (4.26%). This COVID-19 rebound is largely attributed to high mobility 394 

and large gatherings in the absence of safe social distancing. China's current prevention 395 

and control measures effectively reduced the spread of COVID-19, but travel 396 

restrictions should still be maintained (Zhao et al., 2020). Similar government 397 

interventions were enacted in Peru, Bolivia, and Colombia, and people’s time at home 398 

increased by 50%. This low mobility has significantly restricted the spread of COVID-399 

19 (Zhu et al., 2020a). 400 

Our studies confirmed that AT, AH and DTR affected the COVID-19 infection, in 401 

lined with aerosol mediated person-to-person transmission of COVID-19 in Wuhan 402 

hospital (Liu et al., 2020). The stability and activity of the virus appears to be closely 403 

to AT and AH, thereby contributing to droplet mediated virus transmission (Xie and 404 

Zhu, 2020). Generally, the median half-life of the novel Coronavirus in aerosol is 2.74 405 

hours. It can live on contaminant surfaces for up to several days and still be infectious. 406 

Consequently, a combination of heat and ultraviolet light irradiation was used for the 407 

sterilization and prevention of COVID-19(Mahanta et al., 2021). However, our studies 408 

didn’t observe a significant difference of solar radiation at low- and high- altitude 409 

regions. Thus, we believe that the solar radiation showed a negligible on the 410 

transmission of COVID-19 in China.  411 

Unlike climatic factors, anthropogenic activities exacerbate the formation 412 

distribution of air pollutants. Our studies revealed that air pollutants (e.g., SO2 and CO) 413 
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showed considerable effect on the COVID-19 infection. Once their levels reached a 414 

certain threshold, and could inhibit the transmission ability of COVID-19. Existing 415 

studies also demonstrated that 3.6 ppm of SO2 gas and 308 cm-2
•min-1 of simulated solar 416 

radiation kill Encephalomyelitis viral (Berendt et al., 1971; Berendt et al., 1972). 417 

However, 150 µM CO inhibits bovine viral diarrhea virus replication in bovine to some 418 

extent (Ma et al., 2017; Zhang et al., 2017). Under normal conditions, vehicles took up 419 

47% of total CO emissions in the air. During the Home Quarantine, CO levels in the air 420 

decreased significantly with a decline in road traffic and economic activity (Dantas et 421 

al., 2020). Nonetheless, the interactions between air pollutants and climatic factors are 422 

still underestimated.  423 

In addition to the abovementioned factors, some other factors, e.g. Vitamin D, 424 

Pollens and mold spores, should not be underestimated because they are associated with 425 

complications of COVID-19. Previous studies found that Vitamin D deficiency may 426 

induce acute respiratory distress syndrome (Grant et al., 2020), populations living in 427 

the high-altitude regions had less levels of vitamin D than those living at lower altitudes 428 

(Hirschler et al., 2019), along with low accidence of emphysema D (Mendes et al., 429 

2019). Thus, we speculated that low vitamin D at high-latitude regions a potential 430 

contribution to decreaseing the transmission of COVID-19. In most cases, the role of 431 

pollen and mold spores in COVID-19 transmission is still controversial due to the 432 

complexity of the transmission of COVID-19 (Shah et al., 2021). It can function as 433 

potential vector of COVID-19, and could cause lung complications(Ravindra et al., 434 

2021). However, existing studies found that pollen had a high negative correlation 435 

with the incidence of COVID-19(Hoogeveen et al., 2021). These findings are still early 436 

speculations because it is challenging to achieve seasonal allergens exposure and lack 437 

of corresponding experimental data. Therefore, our study incorporated pollen 438 

nucleomyces spores and other factors into PM2.5 and PM10 to avoid the deviation 439 

caused by a single factor.  440 

4.5 Altitude mediated COVID-19 infection by changing environmental factors 441 

Negative binomial regression model analysis, coupled with lag model can 442 
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accurately assess the correlation between environmental factors and COVID-19 443 

infection (Zhou et al., 2021). Another study utilized meta-analysis to integrate existing 444 

COVID-19  (Gupta et al., 2020). However, these analysis underestimates the main 445 

driven factors (e.g. altitude) associated with COVID-19 infection (Bashir et al., 2020; 446 

Ma et al., 2020; Pirouz et al., 2020; Wang et al., 2020). Our studies combined the 447 

nonlinear regression analysis and mediating effect to elucidate the altitude-mediated 448 

COVID19 transmission mechanism (Fig. 4). Similarly, the altitude-driven influence of 449 

various factors on the transmissible capacity of epidemics has been found in 450 

H1N1(Perez-Padilla et al., 2013), H7N9 (Qiu et al., 2014), HIV (Hoshi et al., 2016) and 451 

other dengue (Hurtado‐Díaz et al., 2007). The rational allocation of public health 452 

resources can be facilitated by studying the spatial and temporal characteristics of 453 

COVID-19 transmission, disease prevention and control of public health workers, 454 

flexible prevention and control strategies in different risk areas and effective prevention 455 

measures in high-risk areas. 456 

 Collectively, our study provided a novel insight on altitude-mediated COVID-19 457 

infection via nonlinear regression and mediating effect model, and reported altitude-458 

related environmental factors (e.g., SO2, CO, mobility, AT, AH and DTR) as main 459 

contributors of COVID-19 infection. Though existing studies reported a higher 460 

COVID-19 mortality rates in U.S. counties located at ≥2,000 m elevation versus those 461 

located <1,500 m (Woolcott and Bergman, 2020), no relationship between altitude and 462 

COVID-19 mortality rates was observed in China. Such divergence is correlated with 463 

lower confirmed patients in high-altitude region of China. It’s worth noting that low 464 

confirmed cases in high-altitude regions do not mean that low mortality, COVID-19 465 

deaths mainly are induced by the patient's own symptoms. 466 

4.6 Study limitations 467 

Due to the complexity and diversity of environmental factors, there are limitations 468 

in the research of COVID-19. In order to improve the accuracy of assumptions, a 469 

variety of different prediction models to validate altitude-mediated COVID-19 470 

transmission could be used. On the other hand, the research on the impact of COVID-471 
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19 infection rate should be expanded, including R0, epidemiological analysis, mutant 472 

strain and other complex situations. Though high altitudes may decrease the 473 

transmission risk of COVID-19, the mentioned populations should be considered 474 

especially for COVID-19 due to technical errors and canceled ventilation of 475 

commercial ventilators in high-altitude regions (Breevoort et al., 2020) 476 

5 Conclusion 477 

This study revealed the relationship between altitude and COVID-19 infection in 478 

China via nonlinear regression, spearman regression analysis, and mediating effect 479 

model. Environmental factors, such as mitigation scale index, ambient temperature, 480 

absolute humidity, diurnal temperature range, SO2, and CO, partially mediated 44.7% 481 

of the correlation between altitudes and COVID-19 infection. The mentioned evidences 482 

present more insights into the altitude-mediated COVID-19 transmission mechanism. 483 
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Highlights 

• High altitudes reduce the COVID-19 infection. 

• Altitude changes the levels of MSI, DTR, AH, AT, and SO2. 

• Multiple mediating model confirmed altitude-dependent COVID-19 infection. 
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