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Abstract
The immune system protects human health from the effects of pathogenic organisms; however, its activity is affected when 
individuals become infected. These activities require a series of molecules, substrates, and energy sources that are derived 
from diets. The consumed nutrients from diets help to enhance the immunity of infected individuals as it relates to COVID-19 
patients. This study aims to review and highlight requirement and role of macro- and micronutrients of COVID-19 patients in 
enhancing their immune systems. Series of studies were found to have demonstrated the enhancing potentials of macronutri-
ents (carbohydrates, proteins, and fats) and micronutrients (vitamins, copper, zinc, iron, calcium, magnesium, and selenium) 
in supporting the immune system’s fight against respiratory infections. Each of these nutrients performs a vital role as an 
antiviral defense in COVID-19 patients. Appropriate consumption or intake of dietary sources that yield these nutrients will 
help provide the daily requirement to support the immune system in its fight against pathogenic viruses such as COVID-19.
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Introduction

Compounds in foods that affect a recognizable change in 
an organism’s immune system are referred to as immune-
enhancing nutrients. Glutamine, arginine, omega-3 fatty 
acids (FAs), and several others are nutrients that have been 
proven to express regulatory effects on immune function. 
Hence, they are assumed as immuno-nutrients or immune 
regulators (Schloerb 2001). It is well established that diet 
influences immune levels, and poor diet is the most rampant 
culprit in cases of weakened immunity worldwide (WHO 
2020a, b). Micronutrients such as folic acid, Zn, Mg, Mn, 
Se, Fe, Cu, B-vitamins, and water-soluble vitamins all func-
tion to improve the human body defense mechanism activity 
against many disease-causing organisms as shown in Table 1 
(Rytter et al. 2020). The lack of these essential micronu-
trients could cause an altered immune response (Gleeson 
2013). Therefore, a healthy immune system resulting from 
a good and balanced consumption of nutrients needed in the 
body is essential (Agovino et al. 2018).

A healthy immune system is a major defense against dis-
ease with no known drugs, an example of such disease being 
the current COVID-19 pandemic. Several vital nutrients 
are required for enhancing the body’s innate and adaptive 
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defense mechanisms (Purohit et al. 2020b). Poor micronu-
trients negatively affect immune function and reduce the 
body’s ability to resist infections (Carr and Maggini 2017; 
Gombart et al. 2014). Apart from magnesium and vitamin 
E, micronutrients have therapeutic effects in the European 
Union for being a key player in normal immune function 
(EU 2020). Omega-3 FAs are another nutrient group that 
helps in the regulation of the immune system, mainly by 
modulating inflammatory responses (Calder 2020). Nutri-
tional status can greatly impact a person’s total well-being, 
decrease non-communicable diseases, and reduce vulnera-
bility to growing infections (Agovino et al. 2018). Currently, 
there is no permanent or proven pill, vaccine or treatment, 
food, or herb for confirmed prevention of COVID-19 infec-
tion based on the information from WHO (WHO 2020a). 
Poor nutritional status can increase a patient’s susceptibil-
ity to contracting lethal COVID-19 (Purohit et al. 2020a). 
Many nutrients play a vital role in the immune system’s 
functioning, and an adequately managed balanced diet will 
enhance the effectiveness of the immune system. Also, for 
an effective immune response, it is required that zinc, iron, 
selenium, copper, magnesium, and vitamins be present in 
consumed diets (Calder 2013; Smith et al. 2018). Nutrients 
like vitamins and minerals influence health and upregula-
tion responses of the immune system to harmful agents as 
well as laboratory antigens (Jose et al. 2017; Pan et al. 2018; 
El-Senousey et al. 2018) . Prior to admission, COVID-19 
patients should be checked for nutrient deficiencies using 
standard screening tools to determine effective treatment 
and dietary regimens (Reber et al. 2019; Lomax and Calder 
2009; Yaqoob 2017).

In review aims to discuss the immunoboosting potential 
of macro and micronutrients in COVID support therapy. 
This review intends to provide basic insight and understand-
ing of synergetic mechanisms of vitamin A, B, C, D, E, zinc, 
iron, and selenium on the immune system. Later, we elabo-
rate the immune functions of micro- and macronutrients in 
COVID support therapy with recently published data. Vari-
ous micro- and macronutrients are highlighted in this review 
for the management of COVID-19.

Immune fuctions of nutrients

Macronutrients (carbohydrates, fats, and proteins)

Carbohydrates also known as sugars are the primary energy 
source that should be obtained frequently from food intake. 
Research has also shown that certain protein monomers such 
as arginine, glutamine, taurine, methionine, and cysteine 
possess immunomodulatory activities (Li et al. 2007). Meat 
is a highly digestible (about 94% digested) protein source as 
compared to beans (78%) and whole wheat (86%) (Bhutta 

1999). Meat is a good origin of all the eight essential amino 
acids and lacks in non-essential amino acids. The use of 
a scoring method known as protein digestibility–corrected 
amino acid score to rate how viable a protein is uses a 
maximum score of 1.0. Most plant foods have values of 
0.5–0.7 while animal proteins like beef have a value of 0.9 
(Schaafsma 2000). Glutamic acid/glutamine is the highest 
amino acid in meats (16.5%), followed by aspartate, alanine, 
and arginine. Taurine is a free amino acid that is primar-
ily present in all tissues, with its presence higher in blood, 
heart, and retina (Wójcik et al. 2010). Taurine mainly helps 
in bile acid conjugation and other biological functions. Also, 
taurine is implicated in several physiological processes 
including osmotic regulation, modulation of the immune 
responses, and membrane integrity. It plays a vital role in 
nervous system coordination and the eyes (HuxTable 1992). 
Due to the limited nature of the endogenous synthesis of 
taurine, it is often considered a conditional essential nutri-
ent, and it is majorly obtained from foods. Aquatic animals 
are mostly a preferred taurine source than their terrestrial 
animal counterparts (Bouckenooghe et al. 2006; Dragnes 
et al. 2009; Spitze et al. 2003). High taurine levels have been 
reported in some marine invertebrates, compared to terres-
trial plants with a low taurine content (Kataoka and Ohnishi 
1986). Taurine is also present in considerable amounts in 
meats (77 mg/100 g in beef and 110 mg/100 g in lamb) 
(Purchas et al. 2004).

Furthermore, some polyunsaturated fatty acids (PUFA), 
as well as their metabolic products, modulate cell functions, 
particularly omega (ω)-3 fatty acids (DHA and EPA) that 
affect immune cell activities (Gleeson 2013). However, most 
positive effects are caused by n-3 PUFA, particularly DHA 
and EPA. These FAs have been shown to possess pleio-
tropic effects, consequently influencing the production of 
the inflammatory components via in vivo, membrane func-
tionality, and blood flow properties and studies have shown 
the preventive properties of n-3 PUFA in several ailments 
(Riediger et al. 2009). Beef from animals fed with pasture 
is a preferred source of ω-3 fats than those fed with grains, 
and this clarifies why Australian meats have a preferred 
fatty acid ratio compared with that in the USA, where grains 
are the major source of food for the animals (Sinclair and 
O’Dea 1987; Marmer et al. 1984) . Studies have shown that 
meats from fowls and pigs possess lower ω-3 PUFA than 
beef and lambs though fish remain the most preferred source 
of omega-3 PUFA. Moreover, ω-3 and ω-6 PUFAs mostly 
modulate inflammatory effects, being a starting material for 
leukotrienes or prostaglandins and resolvins or protectins 
(both are derivatives of omega-3 FA that helps inflamed tis-
sues to return to normal once the inflammatory response is 
over) respectively. Protectin D is an omega-3 serving as a 
newly discovered antiviral drug that shows a promising role 
in interventions of the novel virus COVID-19 (Purohit et al. 
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2020a). Recently, 160 mg and 90 mg daily consumption of 
omega-3 fats (EPA and DHA) was recommended for males 
and females, respectively, as the Nutrient Reference Values 
for Australians, with an upper consumption range of 610 mg 
for control and 430 mg for prevention of lingering chronic 
ailments (National Health and Medical Research Council 
2006). Australian beef is a good source of omega-3 FA with 
135 g of red meat yielding more significant than 30 mg 
(Food Standards Australia New Zealand 2002). Also, mut-
ton muscle meat yields a good level of long-chain omega-3 
PUFA. Among Australians, fish and red meat serve as the 
first and second-largest sources of omega-3 long-chain 
PUFA (Howe et al. 2006).

Endogenous negative-feedback mechanisms help resolve 
inflammation quickly after an immune response. In achiev-
ing this, EPA and DHA localized at the inflammatory region 
are transformed into cell signaling molecules known as 
specialized pro-resolving lipid mediators (SPMs), namely 
maresins, protectins, and resolvins. They work together to 
quench inflammation and ensure the process of healing in 
tissues with respiratory system inclusive (Calder 2012; Basil 
and Levy 2016) . Sea animals are rich in protein with lower 
calories, and high levels of omega-3 long-chain PUFAs 
compared to terrestrial animals (Tacon and Metian 2013) 
. It has been found that the absence of PUFAs can cause a 
slow removal of inflammation (Mehta et al. 2020) . This will 
be crucial to the so-known cytokine storm observed amid 
severe COVID-19 with the presentation of unsuppressed 
inflammation (Pedersen and Ho 2020; Gao et al. 2017). 
SPMs derived from DHA and EPA protect against acute 
lung injury and acute respiratory distress syndrome (ARDS) 
(Zhang et al. 2019).

Antioxidants rich in DHA and EPA have been employed 
in several trials involving ARDS patients. A recent review 
on these trials noted an undeniable betterment in oxygen 
flow in the circulatory system and a considerable amount 
of decrease in the need for ventilators, new organ break-
down, time spent in the intensive care unit (ICU), and mor-
tality (Dushianthan et al. 2019). Eicosanoids derived from 
n-3 PUFA possess the ability to downregulate immune 
response (Calder 2001). Eicosanoids derived from n-6 
PUFA possess pro-inflammatory properties and enhanced 
immune responses such as pyrexia and agony. In the past 
four decades, research has shown the importance of EPA 
and DHA for protection against several diseases (Calder 
2006). α-linolenic acid, an omega-3 FA usually found in 
seeds and oils, can be used as a substrate for DHA and EPA 
biosynthesis. Although, its synthesis may be inadequate in 
old people and babies (Brenna 2002) . Altering the fatty acid 
(FA) content in the diet helps to enrich meat from chicken 
with n-3 PUFA (Ribeiro et al. 2013; Konieczka et al. 2017). 
Meat from rabbits contains 60% unsaturated FA and 32.5% 
PUFA, this is higher than what is obtained from other meats 

including farm birds, and it may serve as an important diet in 
humans (Wood et al. 2008). DHA and EPA are the most bio-
active n-3 PUFA; lower activity observed in α-linolenic acid 
is due to its biotransformation to the bioactive EPA which 
is usually lacking in man (17:1); enhancement of DHA and 
EPA in rabbits can be done by animal feeding (Decker and 
Park 2010) .

Micronutrients (vitamins and minerals)

Deficiencies of trace elements result in immune disorder. A 
nutritious and balanced meal has the potential to boost and 
regulate immune cells against COVID as demonstrated in 
Fig. 1. A viable immunity is the most potent tool to combat 
a disease like COVID-19, with no established treatment or 
drug. The increased risk of death due to poor nutrition is 
due to increased severity of infection coupled with slowed 
recuperation.

In addition, an increase in more nutrient demands results 
from infection (WHO 2020a, b). A recent study reported that 
optimum nutritional status helps protect the body against 
infections with viruses (Maggini et al. 2018; Calder 2020). 
Also, another study provided nutritional advice to help cur-
tail lung damages caused by infections with coronavirus and 
other lung issues (Wu and Zha 2020) . Studies have reported 
that deficiency in individual nutrient or combo of nutrients 
affects the immune system by activating immune cells, mod-
ifying the production of signaling molecules, and expres-
sion of genes (Valdés-Ramos et al. 2010). Also, depression 
of immune function and higher vulnerability to infection 
may occur. Proper intake of the required amount of nutrients 
is crucial in the strong maintenance of immune response 
(Gleeson et al. 2004; Fernández-Quintela et al. 2020).

Vitamin A

Studies have shown that consumption of vitamin A-deficient 
diets hampers the potency of attenuated vaccines in bovine 
coronavirus and thereby increases vulnerability of calves 
to infections. Vitamin A also demonstrates a prospective 
headway towards discovering a coronavirus treatment and 
preventing lung problems (Jee et al. 2013) . Vitamin A and 
folate are abundant in the liver, but the levels in lean meat 
are low (Table 1). Vitamin levels are often higher in older 
animals; hence, beef has more vitamins than mutton meat or 
veal (Williams et al. 2007). Chicken meat is the only meat 
with a useful amount of β-carotenes which can serve as a 
precursor for vitamin A which can be enhanced by food for-
tification (Decker and Park 2010) .

Vitamin A and folic acid are often largely present in 
offal meats (Biesalski 2005). Vitamin A is important for 
adequate development. A study recommended the liver as 
a good vitamin A source with 100 g yielding more than 
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the recommended dietary value (USDA 2011). Mucin pro-
duction in the respiratory tract is sustained by vitamin A. 
Mucin serves as a barrier that protects the respiratory tract 
from pathogenic infections (Fan et al. 2015). Vitamin A is 
very crucial in the production of antibodies. It helps in the 
movement of T lymphocytes to infection or inflammation 
site, enabling cells of the mucous membrane involved in 
IgA production to develop an appropriate immune response 
(Mora and Andrian 2006) .

A randomized, single-blinded, and two-arm clinical trial 
of 7 days was executed to evaluate severity and mortality 
rate in ICU patients suffering from COVID-19 that were 
supplemented with vitamin A, B, C, D, and E (Beigmoham-
madi et al. 2020).

Vitamin B

Another wise approach could be to supplement the 
COVID-19 patient with vitamin B. Over two-thirds of 
the daily required vitamin B can be obtained from 100 g 
serving of red meat as they serve as the most bioavail-
able source of vitamin B (Sinclair et al. 1999; Williams 
et al. 2007). A 100 g intake of red meat can yield 25% of 
the everyday required amount of other B vitamins such 
as vitamin B2, B3, pyridoxine, and pantothenic acid (Wil-
liams 2007a, b). Seafood such as herring, oysters, clams, 

anchovies, pilchard, and sardines contain high levels of 
vitamin B12. Mussels, clam, and oysters have a B12 content 
of 15.71, 87.0, and 46.3 mg per 100 g respectively. B12 
content in sardine, salmon, and tuna ranges from 3.8 to 
8.9 mg per 100 g. Clams and mollusks have B12 content 
of 98 mg per 100 g (Watanabe et al. 2001).

The combination of C and E vitamins serves as a poten-
tial antioxidant treatment for COVID-19 cardiac compli-
cations (Wang et al. 2020). More so, there is no adequate 
fact on vitamin E use as an agent for prevention or treat-
ment against COVID-19. It is suitable to maintain nutri-
tional habits, alongside a healthy nutritious diet containing 
enough minerals, antioxidants, and vitamins. Bio-availa-
ble vitamin B can be obtained from meat. However, its 
concentrations vary considerably in meats from different 
animal species. High temperatures during meat process-
ing lower the levels of vitamin B (Lombardi-Boccia et al. 
2005). The daily recommended amount of vitamin B12 for 
an adult is 22 µg, and this can be obtained through the 
consumption of 100 g of beef (LARN 1996). Studies have 
revealed that 100 g consumption of rabbit meat can yield 
triple the vitamin B12 daily requirement (DR), comprising 
about 8% vitamin B2, 21% vitamin B6, 12% vitamin B5, 
and 77% vitamin B3 (Hernàndez and Dalle Zotte 2010) . 
However, pork yields 37% of the RDI for vitamins B1, B2, 
B6, and B12 (Esteve et al. 2002).

Fig. 1   Role of macrophagic cells and micronutrients against COVID infection
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For niacin, a consumption of 100 g of chicken breast will 
yield 56% of the DR and 27% DR of B6 vitamin, while a 
consumption of 100 g of turkey breast will provide 31% DR 
of niacin and 29% DR of vitamin B6 (USDA 2011). Regu-
latory T cells (Treg) are known for their high expression of 
vitamin B9 receptors; vitamin B9 (folic acid) is a survival 
factor, and it helps in preventing excessive immune response 
(Hernàndez and Dalle Zotte 2010; Sakaguchi et al. 2009). 
Inadequate vitamin B9 may result in a low population of 
Treg cells, thereby resulting in upregulation in the suscepti-
bility of the organism to sudden inflammation outburst, as 
observed during the fatal stage in patients with COVID-19 
(Kinoshita et al. 2012).

Vitamin C

It is a water soluble micronutrient that acts as an antioxi-
dant. Vitamin C cannot synthesize in the body because of 
the absence of the enzyme that is a key factor for its de novo 
biosynthesis. It blocks oxidative stresses via reduction or 
prevention of generation of reactive oxygen and nitrogen 
species (Xu et al. 2021; Aldwihi et al. 2021). Vitamin C 
provides support to the immune system, protecting it against 
the coronavirus. Vitamin C can be used as an alternative 
treatment in COVID-19 cases. Reports from some con-
trolled trials showed that sometimes, patients administered 
with vitamin C showed a reduced occurrence of pneumonia. 
However, high-dose administration in patients is yet to be 
approved (Hemila 1997).

Vitamin C influences various aspects of immunity such 
as development and function of adaptive and innate immune 
cells, aiding activities of the epithelial barrier, translocation 
of white blood cells to infection sites, phagocytosis, killing 
of microbes, and producing antibodies. The deficiency of 
vitamin C results in susceptibility to worse respiratory infec-
tions (Hemila 2017).

A study reported a reduced risk of pneumonia due to 
intake of vitamin C supplements (Hemilä and Chalker 2013) 
. The mortality risk is reduced in aged people by adding 
vitamin C to foods (Hemila and Louhiala 2013). Vitamin C 
intake decreases the virulence period of infections associated 
with the upper region of the respiratory tract and decreased 
significantly the risk of infection when administered as a 
preventative measure to people who undergo enhanced phys-
ical stress (Hemilä and Chalker 2013). The intake of vitamin 
C-deficient foods by a healthy young adult (humans) results 
in reducing vitamin C content in mononuclear cells by half 
and reduced ability of the T lymphocyte-mediated immune 
responses in recalling antigens (Jacob et al. 1991).

Recently, investigations to validate its effect in severe 
COVID-19 treatment have begun (Carr 2020). Vitamin C 
may possess effects on viral infections of the respiratory 
tract especially when specific therapy for COVID-19 is 

absent. It is noteworthy that vitamin C increases the resist-
ance to coronavirus and under certain conditions reduce 
the risk of infections of the lower respiratory tract (Hemilä 
2003; Hemilä and Douglas 1999).

For severe conditions of COVID-19 which require ICU, 
its high-dose intravenous administration is highly valu-
able for such patients. Numerous trials of its high-dose i/v 
administration have demonstrated varied outcomes regard-
ing laboratory and clinical results for acute lung injury and 
acute respiratory suffering disease (Hemilä and Chalker 
2020) .

Its combination with glycyrrhizic acid was proposed for 
COVID-19 treatment by bioinformatical network pharma-
cology. In another case, its co-administration with querce-
tin was also suggested. But, further investigations did not 
provide a strong indication for the utility of its high dose 
or its combination with zinc for the treatment. At present, 
pilot-scale studies are ongoing such as in Canada (LOVIT-
COVID) and Italy (NCT04323514) for proving its utility for 
improving the condition of COVID-19 patients (Clemente-
Suárez et al. 2021).

In a single case report, a 74-year-old female suffering 
from COVID-19 ARDS was supplemented with vitamin C 
(1 g bis in die upto six days orally) and after that, 11 g/day 
for 10 days as a continuous infusion. Her clinical status was 
improved within 5 days of treatment and she was capable of 
halting mechanical ventilation (Waqas Khan et al. 2020) .

Seventeen patients (age 64 ± 14 yrs, M:F = 10:7) of the 
USA suffering from SARS-CoV-2 were administered intra-
venously with vitamin C (1 g ter in die for 3 days). It was 
observed that there was a significant decline in ferritin and 
D-dimer intensities and a fraction of FiO2 that helps in inspi-
ration of oxygen (Hiedra et al. 2020).

In China, 34-year-old subject (male) with COVID-19-as-
sociated symptoms (dry cough, fatigue, reduced hunger, 
and subjective fever) was given vitamin C (3 g per day) in 
combination with antiviral and antimicrobial cures. After 
14 days of this ailment, it improved her SpO2 levels that 
assured her improved clinical condition (Chen et al. 2021) .

A female patient (66 years old) from China suffering from 
COVID-19-associated shortness of inhalation and continu-
ous fever received orally (200 mg ter in die) of vitamin C 
with diammonium glycyrrhizinate. After 7 days of the fol-
lowing treatment, her condition was improved and she was 
completely healthy (Ding et al. 2020).

For twelve Chinese patients with severe (n = 6, 56 years 
old) or critical (n = 6; 63 years old) COVID-19 pneumonia, 
a high dose of vitamin C (162.7 and 178.6 mg/kg/day) was 
administered intravenously. There was a significant decline 
in counts of C-reactive protein, lymphocyte, and CD4+ T 
cells, as well as an enhancement of organ failure score, 
which was improved in the severe group in contrast to the 
critical group (Zhao et al. 2020).
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Twelve trials with 1766 subjects of ICU conditions 
showed that its administration shortened the stay in ICU by 
8%. Another 8 trials demonstrated that its administration 
declined the period of mechanical ventilation in patients who 
needed the longest ventilation (Hemilä and Chalker 2019).

Vitamin D

Vitamin D fights against acute infections of the respiratory 
tract. Recent studies reported a reduced risk of infections 
with COVID-19 on increased intake of vitamin D as shown 
in Fig. 2. It plays a critical role by affecting the maturation of 
immune cells (Grant et al. 2020). Studies reported a reduced 
level of vitamin D in healthy individuals particularly at the 
end of winter season, this coincides with COVID-19 dis-
covery in winter of 2019 (Arabi et al. 2020). Vulnerable 
patients are advised to increase their vitamin D intake. Due 
to the stay-at-home order, there is reduced exposure of peo-
ple to sunlight. Therefore, it is very important to increase the 
consumption of dietary sources rich in vitamin D (Zabeta-
kis et al. 2020). Vitamin D-rich foods include oily fish and 
cod liver oil, among others (Larsen et al. 2011). The lack 
of vitamin D in cold weather periods is connected to viral 
outbreaks. The proper vitamin D level prevents the risk of 
chronic conditions like high blood pressure, cancer, heart 
diseases, stroke, diabetes, and hypertension in people with 
respiratory infections (Muscogiuri et al. 2017).

Vitamin D performs a series of function in the body, such 
as protection of the respiratory tract, tight junction preserva-
tion, and elimination of encapsulated viruses via cathelici-
din and defensin activation, and decreases pro-inflammatory 
cytokine production by the innate immune system; thus, the 

risk of cytokine storm development is reduced, which will 
consequently lead to pneumonia. Considering that going 
outside is not very feasible and the exposure to sunlight 
is limited, foods now serve as the best alternative source 
of vitamin D. Fish, egg yolk, liver, yogurt, and milk are 
known foods that contain vitamin D. Several body defense 
cells possess vitamin D receptors which enhance efficacy 
after bonding to ligands, and therefore, vitamin D greatly 
impacts on immunity. Vitamin D promotes monocyte dif-
ferentiation into macrophages, thereby increasing their kill-
ing capacity, affecting cytokines release, and promoting 
antigen presentation. Additionally, metabolites of vitamin 
D help in regulating the release of proteins with antimicro-
bial properties that destroy pathogens and therefore reduce 
infections of the lungs (Gombart 2009; Greiller and Mar-
tineau 2015). Research has shown that vitamin D is present 
in meat (Ovesen et al. 2003). Cholecalciferol (vitamin D3), 
which is obtained through skin exposure to sunlight, has 
greater potency than ergocalciferol (vitamin D2) found in 
mushrooms (Holick 2008; Norman 2008). Vulnerability to 
respiratory tract infection has been reported in some studies 
in people with low vitamin D in the blood (Cannell et al. 
2006; Jollie et al. 2013 Also, several meta-analyses reported 
that the addition of vitamin D to food decreases the risk of 
respiratory tract infections in humans (Charan et al. 2012; 
Autier et al. 2017). Its lack impedes the functions of the 
immune system due to its immunomodulatory role, thereby 
increasing inborn immunity by antiviral peptide production, 
which helps in the improvement of mucosal defenses (Gom-
bart et al. 2005; Wang et al. 2010).

Recently, some reviews propounded that low vitamin 
D in the blood results in compromised immune functions 

Fig. 2   Mechanstic illustration of vitamin C, vitamin D and zinc against COVID virus infection
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in the respiratory tracts; thus, severity as well as mortal-
ity increases in patients with COVID-19. Also, its anti-
viral effects inhibit directly viral replication, have been 
reported in recent data, and are also effective in immu-
nomodulatory and anti-inflammatory away (Teymoori-
Rad et al. 2019). Poultry products are good sources of 
ribof lavin, pyridoxine, and vitamin B3 (Borenstein 
1981). Unlike the riboflavin content, the thiamine con-
tent of muscles is drastically reduced when muscles are 
cooked (Al-Khalifa and Dawood 1993) . For patients with 
COVID-19, an Italian research group suggested a dietary 
protocol that is involving vitamin D supplementation for 
those who are deficient (Caccialanza et al. 2020) .

Various data based on clinical trials revealed its vary-
ing results on respiratory tract infections. Thirty-nine 
types of research (14 clinical trials, 8 case–control, 4 
cross-sectional, and 13 cohort studies) indicated a sig-
nificant impact of low level of vitamin D and more threat 
of both upper and lower respiratory tract infections from 
observational investigations. However, inconsistent out-
comes were reported from RCTs (Jollie et al. 2013).

Twenty-five randomized controlled investigations 
(meta-analysis) revealed that its supplementation inter-
connected with low threat of acute respiratory infections 
(OR = 0.88 and p < 0.001). Its positive effect was even 
more pronounced in subjects with vitamin D deficiency 
at the start of intervention (Martineau et al. 2017).

Some research suggests a link between vitamin D 
insufficiency and liability to COVID infection and dis-
ease severity. Ilie et al. conducted a study in 20 European 
countries and observed a negative correlation between its 
mean serum levels and COVID-19 belongings and mortal-
ity rate. Rigorously, its lower level has been recognized in 
geriatric patients, particularly in Spain, Italy, and Swit-
zerland (Ilie et al. 2020).

Seven retrospective investigations (1368 subjects with 
COVID-19) found its mean serum level of 22.9 nmol/l. Its 
lower serum levels were linked with subjects with poor 
disease forecasting in contrast to those with good results, 
demonstrating a standardized mean difference of − 5.12 
(p = 0.012). It was summarized that its deficiency shows 
an independent fundamental role in COVID-19 severity 
(Munshi et al. 2020).

A consequent study with an Israeli cohort of 7807 
patients recognized its low level among those who con-
firmed positive for COVID-19 contrasted to negative. Its 
lower level was measured as an independent threat factor 
for COVID-19 (p < 0.001) and hospitalization (p < 0.05) 
(Merzon et al. 2020).

Vitamin E

Tocopherol (vitamin E) is an effective immune-enhancing 
nutrient. It protects PUFA which usually enriches immune 
cells from oxidation. Marine fish are known for their expres-
sion of vitamin E. Salmon and shellfish can yield about 15% 
of vitamin E DR Coquette et al. 1986) . Chicken meat also 
contains vitamin E. Twelve milligrams is a DR of vitamin 
E according to EFSA NDA Panel (Holland et al. 1993). 
Fortified meat and dietary supplements with α-tocopheryl 
acetate can also serve as vitamin E sources; this possesses 
high anti-inflammatory properties. Vitamin E in muscle cell 
membranes helps to reduce lipid oxidation and could help 
prevent protein oxidation. Meats supplemented with vitamin 
E have a long shelf life and an improved color, flavor, and 
texture (EFSA NDA Panel 2015). It also plays a significant 
role in enhancing of immune reactions by inactivating and 
inhibiting free radicals (Zhang et al. 2010). Oral intake of 
vitamin E helps in the improvement of response by T cell 
and macrophage activities against infective agents and it 
reduces vulnerability to upper respiratory tract infections 
in older patients (Maggini et al. 2007; Meydani et al. 2005, 
2004; Pae et al. 2012).

Vitamins C and E had been considerably authenticated 
to diminish lung infection in animals, and similar outcomes 
were obtained in geriatric patients. While, they had no 
advantage in children suffering from pneumonia (Murni 
et al. 2021).

Minerals

Selenium supplementation displays potential for COVID-19 
treatment. Red meat supplies more than 20% RDI per 100 g 
served, although selenium levels in meat are likely to be 
greatly influenced by the location where animals were fed as 
well as the season (Williams 2007a, b). Zinc supplementa-
tion helps lower symptoms of COVID-19 such as stooling 
and reduces infections of the respiratory tract. The increas-
ing risk in the development of acute infections of the respira-
tory tracts results due to low iron levels in the body (Guillin 
et al. 2019; Wu et al. 2019). Zinc, a trace element, plays a 
significant role in immune cell development and is known 
for its crucial role as a cofactor for many enzymes (Prasad 
2008). An inadequate amount of zinc can lead to defective 
immunity resulting in increased vulnerability to pneumo-
nia (Walker and Black 2004; Hess et al. 2009). Increasing 
zinc intakes help against infections with COVID-19 due to 
reduced replication of the virus; it also reduces gastroin-
testinal effects and decreases respiratory symptoms (Zheng 
et al. 2020).

Studies have shown that an average intake of 40 mg of 
zinc per day may help in controlling RNA-viruses such as 
coronaviruses and influenza (McCarty and DiNicolantonio 
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2020). Research has shown that a man’s zinc status is among 
the vital factors determining immunity to infections with 
virus, stating that low intake of zinc in a population increases 
the risk of contracting infections such as HIV (Read et al. 
2019). Best sources of iron and zinc include beef and lamb 
meats, with 100 g of meat providing a portion of the daily 
adult requirements. Heme iron, which is mainly found in 
meat, is well absorbed; meat protein promotes iron absorp-
tion from meat. The rate of absorption of iron from meat is 
higher than that from plants (heme iron); an example is the 
absorption of folic acid which is tenfold higher compared 
to vegetables (Biesalski 2005). In addition, the absorption 
of zinc from animal protein diet is higher than plant foods; 
therefore, vegetarians should increase their zinc intake by 
50% higher (National Health and Medical Research Coun-
cil 2006). Studies on human subjects reported that people 
on a low-copper diet have reduced lymphocyte proliferation 
and decreased IL-2 production, and copper administration 
reverses these effects (Hopkins and Failla 1997). Raw lean 
cuts from beef and veal have a copper content ranging from 
0.055 to 0.190 mg per 100 g, while the copper content from 
100 g of lamb and mutton ranges from 0.090 to 0.140 mg 
and 0.190 to 0.240 mg respectively. The consumption of 
100 g meat or liver daily can yield half of the daily required 
micronutrients such as iron, selenium, zinc, and vitamins 
(Chan et al. 1995). Nutritional status maintenance is very 
crucial in combating COVID-19 (Williams 2007a, b).

Iron

Iron is basically found in a series of foods as heme and non-
heme irons. Heme iron can be found only in the flesh of ani-
mals with its origin from hemoglobin and myoglobin, read-
ily bioavailable and easily absorbed as an intact molecule by 
the intestinal lumen (Hallberg and Hulthen 2000; Simpson 
and McKie 2009). Heme iron can be obtained by consuming 
foods such as lamb, beef, and mutton. The benefit of heme 
iron in meat is that it is more biologically available with red 
meat having 72 to 87% and rabbit and pork meat having 56 
to 62% (Lombardi-Boccia et al. 2002). Non-heme iron can 
be obtained from animal flesh when animals eat plant foods 
containing non-heme iron and also from fortified foods. 
Non-heme iron can also be obtained from the consumption 
of spinach, beans, breakfast fortified with cereals and lentils, 
and enriched breads.

Iron is the most abundant transitional metal that is present 
in the body. It is a crucial constituent for all alive cells since 
it plays a key role in metabolic processes such as energy 
production, transportation, and storage of oxygen, drug 
detoxification and synthesis, and repairing and transcrip-
tion of DNA (Habib et al. 2021). It mainly bounds to mac-
romolecules such as hemoglobin, transferrin, ferritin, and 
other iron-containing proteins. Unbounded iron (labile or 

catalytic iron) is considered a transitional pool of extracel-
lular and cellular iron. Moreover, iron status and nutrition 
are modifiable modulators of the immunologic response to 
SARS-Cov-2 mRNA vaccines (Gozzi-Silva et al. 2021).

It is proposed that SARS-CoV-2 may need iron for rep-
lication and other roles, offering a prospective mechanism 
for greater pathogenicity in the existence of high SCI. 
Chakurkar et al. 2021 reported the role of ferrotoxicity in 
COVID-19 and the concept that SCI is a sign of poor results 
in COVID-19. Tissue injury either from a direct cytopathic 
effect can result in rise in their level or inflammation or 
ischemia leads to a burst release of intracellular iron stores 
(Chakurkar et al. 2021).

Iron chelation therapy is beneficial in COVID-19 because 
it is well known that SARS-CoV-2 requires iron for viral 
replication (Liu et al. 2020). So, this therapy can be a novel 
approach to COVID-19 treatment. This therapy signifies a 
pillar in the treatment of iron overload due to a wide spec-
trum of diseases and multiple chelating agents are cur-
rently registered and usually employed in clinical practice 
(Perricone et al. 2020). Bipyridyl and desferoxamine (iron 
chelators) are under clinical trial for COVID-19 patients 
(NCT04333550) (Romeo et al. 2001).

Banchini et al. suggested that iron helps in exploring both 
endogenous (insulin, heparin, and erythropoietin) and exog-
enous options (vitamins D and C, toclizumab, carvedilol), 
relating to hepcidin control in the setting of COVID-19 
(Banchini et al. 2020). Abbas et al. also suggested the use 
of iron chelators to reduce disease severity in COVID-19 
infection (Abbas and Mostafa 2020) .

Zinc

Zinc is an essential nutrient that must continuously be 
added to diets since it cannot be synthesized and stored in 
the body (Maggini et al. 2010) . The lack of zinc, even in 
a low grade, leads to acquired and innate immune system 
disorder (Shankar and Prasad 1998). Zinc supplementation 
is effective and cost-effective intervention method used to 
treat and prevent respiratory tract infections and diarrhea, 
especially in children living in poor areas (Baqui et al. 2003; 
Brooks et al. 2005). Apart from iron, beef, and lamb meat, 
pork meat can also be considered a rich dietary zinc source 
(Wyness et al. 2011).A total of 100 g of beef meat can yield 
26% of zinc.

Zinc is considered to fortify the body’s antiviral machin-
ery and its ions (Zn2+) play significant roles in the growth, 
replication, differentiation, and immune cell functions. 
Physical processes such as virus binding, infection, and 
uncoating, as well as inhibition of polymerase enzymatic 
processes and viral protease, connote the antiviral proper-
ties of Zn against different viruses (Overbeck et al. 2008; 
Haddad et al. 1999). Phytates make zinc from plant sources 
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less bioavailable than animal sources like meat (Mocche-
giani et al. 2000). Zinc deficiency in old people is associated 
with age-related immune response dysregulation (Prasad 
et al. 1993). Its supplementation in diets has been reported to 
improve immunity in old people (Mocchegiani et al. 1999). 
Its deficiency in the elderly is considered a risk factor result-
ing in susceptibility to infection. Zinc supplementation plays 
a crucial role in the prevention of infectious diseases (Kaja-
nachumpol et al. 1995).

At lower concentrations, a combination of zinc ions 
(Zn2+) and zinc ionophores prevents replication of SARS-
CoV, via inhibiting elongation of RdRP and reducing bind-
ing of RNA template. Resemblances among RdRP of SARS-
CoV and SARS-CoV-2 may be responsible for inhibition 
of replication of SARS-CoV-2 in cell culture. According to 
one hypothesize, oral or i/v administration of zinc ascorbate 
could be beneficial in prevention and ailment of COVID-19, 
because of the higher intracellular Zn2+ concentration that 
inhibits SARS-CoV-2 replication (Lee et al. 2009).

Various clinical trials are presently ongoing for analyzing 
the effect of zinc in different forms for COVID-19 (Cingo-
lani 2021) .

Forty-eight subjects (randomized double-blind study) suf-
fering from cold got zinc acetate lozenges (80 mg/day) or 
placebo within 24 h once the symptoms begin. In contrast 
to placebo, there was a significant short in cold symptoms 
and total severity score of all symptoms (p value < 0.002) in 
zinc supplementation (Prasad et al. 2000).

Four patients suffering from COVID-19 received a high 
dose of zinc (207 mg/day) orally that resulted in better oxy-
genation and fast resolution of quickness of inhalation later 
after 1 day of ailment (Yao et al. 2020).

Sometimes, zinc has been recommended for improving 
common cold symptoms. A total of 100 subjects (rand-
omized, double-blind, placebo-controlled study) with com-
mon cold received 13.3 mg zinc. In contrast to placebo, 
it considerably declined period of symptoms of common 
cold, from 7.6 to 4.4 days. In the case study, it was observed 
that the combination of azithromycin (500) + naproxen 
(500) + vitamin C (1000) + zinc + vitamin D3 (1000) resulted 
in significant outcomes in course of COVID-19 treatment 
(Khodavirdipour 2021) .

Selenium

Selenium plays a role in the regulation of several physiologi-
cal functions and is also an integral part of selenoproteins; 
they form part of the body’s antioxidant defense system 
(e.g., glutathione peroxidase). The recommended intake of 
selenium for females and male adults is 60 and 70 μg per day 
in the UK and 55 and 70 μg per day in the USA respectively 
(Reilly 1998). This requirement often cannot be achieved 

because the selenium concentration in foods is different for 
different regions and countries.

Among red meats, lamb and beef meats have high sele-
nium levels, followed by mutton and veal. Among white 
meats, reasonable selenium level is found in chicken (Bou 
et al. 2005). Low selenium level in the body leads to decrease 
in immune system function, cognitive decline, and mortal-
ity. Antiviral effects were observed under the higher intake 
of selenium or supplementation (Rayman 2012) . Studies 
have shown an increase in selenium levels of beef from ani-
mals given dietary supplementation of selenium (Juniper 
et al. 2008; Dokoupilová et al. 2007). Seafood is also a good 
dietary source of selenium; they ranked 17th according to 
selenium level by the USDA National Nutrient Database 
(Ralston 2008). Selenium obtained from fish is bioavailable 
and higher in amount than yeast (Fox et al. 2004).

Copper

Copper (Cu) is crucial at ensuring strong immunity; it plays 
a vital role in the normal functioning of helper T cells, neu-
trophils, natural killer cells, macrophages, and B cells that 
help in the destruction of infectious microorganisms and 
production of specific antibodies and cell-mediated immu-
nity. The lack of copper in humans causes white blood cells 
to decrease, immune reactions, and abnormalities in bone 
and connective tissue (Percival 1998). Cu2+ also plays a cru-
cial role by its active participation in immune cell growth 
and differentiation (Li et al. 2019). Cu2+ is found in foods 
such as crustaceans, mollusks, fish, and land meats; its defi-
ciency affects innate and adaptive immunity (Munoz et al. 
2007). Its supplementation helps in restoring the secretion 
and activity of Inter-leukin-2, which is very helpful for cyto-
toxicity of NK cell and T helper cell proliferation. A recent 
study reported the sensitivity of new coronavirus strains 
(SARS-CoV-2) to a copper surface (Van Doremalen et al. 
2020). Other studies have revealed blockage of papain-like 
protease-2 by Cu2+, a protein required for replication by 
SARS-CoV-1; therefore, the need for high demand of cop-
per supplementation is essential (Baez-Santos et al. 2015; 
Han et al. 2005). Due to the high competition in the absorp-
tion of Cu and Zn in the jejunum through metallothionein, 
high doses of zinc (greater than 150 mg per day) can lead 
to deficiency of Cu in healthy individuals. Therefore, it is 
possible that people taking Zn supplement regularly could 
be susceptible to contacting SARS-CoV-2.

Low Cu2+ levels can lead to stress responses by patho-
gens; hence, an optimal Cu2+ level is required. Presently, 
there is limited understanding of the effect of medicinal use 
of Cu2+ as related to COVID-19. The intake of Cu affects the 
immune function of a host as well as micronutrients metabo-
lism which helps prevent virulence. Hence, Cu2+ intake is 
beneficial in patients with COVID-19 (Rahaa et al. 2020).
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Magensium

Magnesium plays a pivotal role in immune system function 
regulation by strongly affecting immunoglobulin production, 
immunoglobulin M (IgM) lymphocyte binding, immune cell 
adhesion, T helper-B cell adherence, antibody-dependent 
cytolysis, and response of macrophages to lymphokines 
(Liang et al. 2012). Its role in an immune response against 
viral infections has been reported (Chaigne-Delalande et al. 
2013). Magnesium plays a key role both in physiology and 
pathology. Newly, it has been hypothesized that its low level 
may favor the transition from mild to critical clinical mani-
festations of COVID-19. Decreased NK and T-cell cyto-
toxicity because of magnesium deficiency may illuminate 
the vulnerability of elder, hypertensive, obese, and diabetic 
patients to SARS-CoV-2 infection (Faa et al. 2021). Further-
more, its deficiency upregulates pro-inflammatory cytokine 
creation in monocytes and raises NFkB expression (Fanni 
et al. 2020).

Despite the nonexistence of controlled trials, magnesium 
supplementation for supportive treatment in COVID-19-suf-
fering patients should be encouraged. This may be valuable 
in all phases of the COVID-19. It is very well known that 
magnesium is involved in over 600 enzymatic reactions in 
human cells. Its level may explain an increased risk of severe 
COVID-19 (Fanni et al. 2020).

A combined oral treatment of older COVID-19 patients 
with magnesium, vitamin D, and vitamin B12 reduced the 
percentage of patients needing oxygen and ICU support (Tan 
et al. 2020a, b).

An observational cohort study was executed for evalu-
ating the combined effect of vitamin D, magnesium, and 
vitamin B12 in older subjects (≥ 50 years) with COVID-19. 
Eighteen subjects received DMB already onset of primary 
outcome and 26 subjects did not. Fewer treated subjects than 
controls needed beginning of oxygen therapy amid hospi-
talization (17.6 vs 61.5%, p = 0.006) (Tan et al. 2020a, b).

Conclusion

It is well established that diet influences immune levels, and 
poor diet is the most rampart culprit in cases of weakened 
immunity worldwide. Nutritional status can greatly impact 
a person’s total well-being, decrease non-communicable dis-
eases, and reduce vulnerability to growing infections. The 
immune system protects the body from pathogenic organ-
isms such as SARS-COV-2 by its surveillance activities. Its 
activity is affected when individuals become infected with 
microorganisms that cause diseases, leading to an increased 
rate of metabolism that demands substrates, molecules, and 
energy sources such as micronutrients (folic acid, Zn, Mg, 
Mn, Se, Fe, Cu, B-vitamins, vitamin E, vitamin D, vitamin 

C) and macronutrients (carbohydrates, fats, and proteins) 
that can only be derived from dietary sources by the con-
sumption of foods. The lack of any of these important micro-
nutrients could cause an altered immune response. These 
nutrients provide the immune system with vital supporting 
roles in its fight against pathogens and thereby reducing the 
risk associated with infections. Prior to admission, COVID-
19 patients should be checked for nutrient deficiencies using 
standard screening tools to determine effective treatment and 
dietary regimens.

A series of studies was found to have demonstrated the 
enhancing potentials of macronutrients (carbohydrates, pro-
teins, and fats) and micronutrients (vitamins, copper, zinc, 
iron, calcium, magnesium, and selenium) in supporting the 
immune system’s fight against respiratory infections. Each 
of these nutrients performs a vital role as an antiviral defense 
in COVID-19 patients. As the exploration for the effective 
cure for COVID-19 continues, particular micro- and macro 
nutrients may effect the severity of infection, symptoms, and 
outcomes related to the diseases.
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