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There is strong evidence for brain-related abnormalities in COVID-19 ", It remains
unknown however whether the impact of SARS-CoV-2 infection canbe detected in
milder cases, and whether this can reveal possible mechanisms contributing to brain
pathology. Here, we investigated brain changes in 785 UK Biobank participants (aged
51-81) imaged twice, including 401 cases who tested positive for infection with
SARS-CoV-2 between their two scans, with 141 days on average separating their
diagnosis and second scan, and 384 controls. The availability of pre-infection imaging
datareduces the likelihood of pre-existing risk factors being misinterpreted as
disease effects. We identified significantlongitudinal effects when comparing the two
groups, including: (i) greater reductionin grey matter thickness and tissue-contrast in
the orbitofrontal cortex and parahippocampal gyrus, (ii) greater changes in markers
of tissue damage in regions functionally-connected to the primary olfactory cortex,
and (iii) greater reduction inglobal brain size. The infected participants also showed
onaverage larger cognitive decline between the two timepoints. Importantly, these
imaging and cognitive longitudinal effects were still seen after excluding the 15 cases

who had been hospitalised. These mainly limbic brainimaging results may be the
invivo hallmarks of a degenerative spread of the disease via olfactory pathways, of
neuroinflammatory events, or of the loss of sensory input due to anosmia. Whether
this deleterious impact can be partially reversed, or whether these effects will persist
inthe longterm, remains to be investigated with additional follow up.

While the global pandemic of severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) has now claimed millions of lives across the
world, there has been increased focus by the scientific and medical
community on the effects of mild-to-moderate COVID-19 inthe longer
term. Thereis strong evidence for brain-related pathologies, some of
which could be a consequence of viral neurotropism*? (https://doi.
0rg/10.21203/rs.3.rs-1139035/v1), or of virus-induced neuroinflamma-
tion® (https://doi.org/10.1101/2021.02.23.432474): neurological and
cognitive deficits demonstrated by patients®’, with an incidence of
neurological symptoms in more than 80% of the severe cases®, radio-
logical and post mortem tissue analyses demonstrating the impact of
COVID-19 on the brain®°, and the possible presence of the coronavirus
in the central nervous system found in some studies ™,

In particular, one consistent clinical feature, which can appear
before the onset of respiratory symptomes, is the disturbance in olfac-
tion and gustation in COVID-19 patients™". In a recent study, 100% of
the patientsin the subacute stage of the disease were displaying signs
of gustatory impairment (hypogeusia), and 86% either hyposmia or
anosmia'. Suchloss of sensory olfactory inputs to the brain could lead

toaloss of grey matter inolfactory-related brain regions”. Olfactory —
whether neuronal or supporting — cells concentrated in the olfactory
epithelium are also particularly vulnerable to coronavirus invasion,
and this seems to be also the case specifically with SARS-CoV-2118720,
Within the olfactory system, direct neuronal connections from and
to the olfactory bulb encompass regions of the piriform cortex (the
primary olfactory cortex), parahippocampal gyrus, entorhinal cortex,
and orbitofrontal areas™?,

Most brainimaging studies of COVID-19 to date have focused onacute
cases and radiological reports of single cases or case series based on
CT, PET or MRI scans, revealing abroad array of gross cerebral abnor-
malities ranging from white matter hyperintensities, hypoperfusion
and signs ofischaemic events spread throughout the brain, but found
more consistently inthe cerebrum’. Of the few larger studies focusing
on cerebrovascular damage using CT or MRI, some have either found
no clear marker of abnormalities in the majority of their patients, or
importantly no spatially consistent pattern for the distribution of white
matter hyperintensities or microhaemorrhages, except perhapsinthe
middle or posterior cerebral artery territories and the basal ganglia®.
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Imaging cohort studies of COVID-19, quantitatively comparing data
across subjects through automated preprocessing and co-alignment of
images, aremuchrarer. Forinstance, arecent PET cohort study focusing
on correlates of cognitive impairment has demonstrated, in 29 COVID-
19 patients atasubacute stage, the involvement of fronto-parietal areas
revealed as ®F-FDG hypometabolism'®. Another glucose PET study has
shown bilateral hypometabolism in the bilateral orbital gyrus rectus
and the right medial temporal lobe?. One multi-organ imaging study?*
(and its brain-focused follow-up®) in over 50 previously hospitalised
COVID-19 patients suggested modest abnormalities in T2* of the left
andright thalami compared with matched controls. It remains unknown
however whether any of these abnormalities predates the infection
by SARS-CoV-2. These effects could be associated with a pre-existing
increased brain vulnerability to the deleterious effects of COVID-19 and/
or a higher probability to show more pronounced symptoms, rather
than being a consequence of the COVID-19 disease process.

UK Biobank offers a unique resource to elucidate these questions.
With the data from this large, multi-modal brain imaging study, we
use for the first time a longitudinal design whereby participants had
beenalready scanned as part of UK Biobank before getting infected by
SARS-CoV-2. They were thenimaged again, on average 38 months later,
after some had either medical and public health records for COVID-19,
or had had two positive rapid antibody tests. Those participants were
then matched with controls who had undergone the same longitudinal
imaging protocol but had tested negative to the rapid antibody test or
had no medical record of COVID-19. In total, 401 SARS-CoV-2 infected
participants with usableimaging data at both timepoints wereincluded
in this study, as well as 384 controls, matched for age, sex, ethnicity
and time elapsed between the two scans. These large numbers may
allow us to detect subtle, but consistent spatially distributed sites of
damage associated withthe infection, thus underlining in vivo the pos-
sible spreading pathways of the effects of the disease within the brain
(whether such effects relate to the invasion of the virus itself**® https://
doi.org/10.21203/rs.3.rs-1139035/v1, inflammatory reactions>* https://
doi.org/10.1101/2021.02.23.432474, possible anterograde degeneration
starting with the olfactory neurons in the nose, or through sensory
deprivation”*%), The longitudinal aspect of the study aims to help
tease apart which of the observed effects between first and second
scansarelikely related to the infection, rather thandueto pre-existing
risk factors between the two groups.

Our general approach in this study was therefore as follows: (i) use
brainimaging data from 785 participants who visited the UK Biobank
imaging centres for two scanning sessions, on average 3 years apart,
with401of these having beeninfectedwith SARS-CoV-2inbetween their
two scans; (ii) estimate — from each subject’smultimodal brainimaging
data —hundreds of distinct brainimaging-derived phenotypes (IDPs),
eachIDPbeingameasure of oneaspect of brainstructure or function;
(iii) model confoundingeffects, and estimate the longitudinal change
inIDPs between the two scans; and (iv) identify significant SARS-CoV-2
vs control group differences in these longitudinal effects, correcting
for multiple comparisons across IDPs. We did this for both afocussed
set of a priori defined IDPs, testing the hypothesis that the olfactory
systemis particularly vulnerable in COVID-19, as well as an exploratory
set of analyses considering a much larger set of IDPs. In both cases we
identified significant effects associated with SARS-CoV-2 infection
primarily relating to greater atrophy and increased tissue damage in
cortical areas directly connected to primary olfactory cortex, as well as
to changes in global measures of brain and cerebrospinal fluid volume.

Participants

UK Biobank has been releasing data from the COVID-19 re-imaging
study on arolling basis. As of the 31* of May 2021, 449 adult partici-
pants met the re-imaging study inclusion criteria (see Methods: Study
Design) and were identified as having been infected with SARS-CoV-2
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based on either their primary care (GP) data, hospital records, results
of their diagnostic antigen tests identified through record linkage to
the Public Health datasetsin England, Wales and Scotland, or two con-
cordant antibody-based home lateral flow kit positive results. Of these
449 SARS-CoV-2 positive adult participants, a total of 401 had usable
brainscans atboth timepoints (Tables1and 2). For the 351 for whom we
had a diagnosis date based on their medical records or antigen tests,
the time between diagnosis (a proxy for infection) and their second
imaging scan was on average 141 days (Table 2, Supplementary Fig. 1).

In total, 384 adult controls met the inclusion criteria (see Methods:
Study Design) and had usable brain scans at both timepoints (Table 1).
SARS-CoV-2 positive or negative status was identified using UK Biobank
Showcase variable 41000.

Despite the original matched-pairing of the COVID-19 patients and
controls, their age distributions were slightly — though not statistically
significantly — different, due to different patterns of missing/usable
data (Extended Data Fig. 1). Note that the control group is on average
slightly (not significantly) older than the SARS-CoV-2 positive group,
which would be expected to make any change between the two time-
points harder to detect in the group comparisons, rather than easier.
For histograms of interval of time between the two scans in the two
groups, see Extended Data Fig. 2.

The two groups showed no statistical differences across all 6,301
non-imaging phenotypesafter FDR or FWE correction for multiple
comparisons (lowest P,.=0.12, and no uncorrected P values survived
FDR correction). However, due to the stringent correction for multi-
ple comparisons that this analysis imposes, we investigated further
whether subtle patterns of baseline differences could be seen using
dimension reduction with principal component analysis on all 6,301
variables, and using a separate principal component analysis focused
on baseline cognition (see Supplementary Analysis 1). We found no
principal component that differed significantly between the two
groups when exploring all the non-imaging variables. With respect to
cognitive tests, while no single cognitive score was significantly differ-
ent at baseline between controls and future cases, we identified two
cognitive principal components that were different (Supplementary
Analysis1). These subtle baseline cognitive differences suggest slightly
lower cognitive abilities for the future cases when compared with the
controls. Importantly, none of these principal components—cognitive
orotherwise—could statistically account for the longitudinal imaging
results (see below, Additional baseline investigations).

Through hospital records available for participants, we identified 15
ofthe SARS-CoV-2 positive group who were hospitalised with COVID-19,
including 2 whoreceived critical care (Tables2and 3). These hospital-
ised patients were on average older, had higher blood pressure and
weight, and were more likely to have diabetes and to be men, compared
with non-hospitalised cases (Table 3).

Hypothesis-drivenresults

The main case-vs-control analysis between the 401 SARS-CoV-2 posi-
tive cases and 384 controls (Model 1) on 297 olfactory-related cerebral
IDPs yielded 68 significant results after FDR correction for multiple
comparisons, including 6 further surviving FWE correction (Table 4,
Fig.1,Supplementary Table1for fulllist of results). Focusing on the top
10 most significant associations, 8 of these IDPs covered similar brain
regions functionally-connected to the primary olfactory cortex (see
Methods: Hypothesis-driven approach), showing overlap especially in
theanterior cingulate cortex, orbito-frontal cortex andinsula, as well as
inthe ventral striatum, amygdala, hippocampus and parahippocampal
gyrus®. We found greater longitudinal increase in diffusionindices for
the SARS-CoV-2 group in these tailored IDPs defining the functional
connections with the frontal and temporal piriform cortex, as well as
the olfactory tubercle and anterior olfactory nucleus (Table 4, Fig. 1,
Supplementary Table1). The other two of the top 10 IDPs encompassed
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theleftlateral orbitofrontal cortex and parahippocampal gyrus, both
showing greater reduction of grey matter thickness or intensity con-
trast over time in the cases compared with controls (Table 4, Fig. 1,
Supplementary Table1). For those significant IDPs, average percentage
change differences between the two groups was moderate, ranging
from~0.2to~2%, with the largest differences seenin the volume of the
parahippocampal gyrus and entorhinal cortex (Supplementary Table1).
Scatter and box plots, as well as plots showing percentage longitudi-
nal differences with age are available for the top 10 longitudinal IDPs
as Supplementary Longitudinal Plots.

Assecondary analyses, we found that significant longitudinal differ-
ences remained in the same set of significant brain regions surviving
FDR or FWE correction when removing from the SARS-CoV-2 group
those patients who had been hospitalised with COVID-19 (Model 2,
47 IDPs FDR-significant, 3 of which also FWE-significant, Supplemen-
tary Table 1). While fewer results were significant for the comparison
between the 15 hospitalised patients and 384 controls (Model 3, 4
results FDR-significant, Supplementary Table1), likely dueto the large
reductioninsample size for this model, this additional group compari-
sonshowed effectsin the same regions of the parahippocampal gyrus,
orbital cortex, and superior insula. Finally, we found no significant dif-
ferencesbetween the 15 hospitalised patients and 386 non-hospitalised
SARS-COV-2 cases, likely due to the large reductionin sample size, but
effect sizes and direction of these effects suggested stronger detri-
mental effects for the hospitalised cases in the orbitofrontal, insula,
parahippocampal and frontal piriform cortex functionally-connected
brainregions (all |Z|>3, Model 4, Supplementary Table 1).

Across the 3 models comparing SARS-CoV-2 cases with controls
(Models 1-3), the top 4 longitudinal differences were found in the
functionally-connected regions of the temporal piriform cortex (diffu-
sionindex: orientation dispersion) and of the olfactory tubercle (diffu-
sionindex:isotropic volume fraction), aswell asinthe parahippocampal
gyrus (intensity contrast) and lateral orbitofrontal cortex (thickness)
(largest combined |Z| across Models 1-3; Fig. 1). For these results across
Models 1-3, the percentage of SARS-CoV-2 infected participants who
showed a greater longitudinal change than the median value in the
controls was: 56% for the regions connected to the temporal piriform
cortex, 62% for the regions connected to the olfactory tubercle, 57%
left parahippocampal gyrus and 60% for the left orbitofrontal cortex.

While significant IDPs related to grey matter thickness were found,
using our main case-vs-control analysis (Model 1), tobe bilateral for both
the anterior parahippocampal gyrus (perirhinal cortex) and entorhi-
nal cortex, 10 of the 11 remaining significant IDP were left-lateralised
(Supplementary Table 1). We thus directly investigated (left - right)
differences in the SARS-CoV-2 group only for those significant IDPs,
and found that the infected participants did not have significantly more
reduced grey matter thickness onthe left than on the right hemisphere
(lowest Pcor=0.30).

Ofthe top 10 IDPs showing alongitudinal effect between first and sec-
ondscans, none correlated significantly with the time interval between
theirinfection and their second scan, inthe SARS-CoV-2 positive partici-
pants for whom we had a date of diagnosis (n=351; lowest P,.,,=0.08).

Exploratoryresults

2,047 IDPs passed the initial tests of reproducibility (Extended Data
Fig. 3) and data completeness. The main analysis (Model 1) revealed
65 significantlongitudinal differences between the cases and controls
passing FDR correction, including 5 that were FWE-significant (Table 5,
Supplementary Table 1for the complete list of reproducible IDPs and
results). Extended Data Figs. 4 and 5 show the QQ plot relating to the
FDR thresholding, and a summary figure of Z-statistics results for all
2,047 IDPs grouped into different IDP classes.

In particular, in this exploratory analysis covering the entire brain,
33 out of the 65 significant IDPs overlapped with the IDPs selected

a priorifor our hypothesis-driven approach of theinvolvement of the
olfactory system.In addition, we found significant longitudinal effects
inglobal measures of volume, such as the CSF volume normalised for
head size and the ratio of the volume of the segmented brain to the
estimated totalintracranial volume generated by FreeSurfer, as well as
inthe volume of the left crus Il of the cerebellum, the thickness of the
left rostral anterior cingulate cortex and diffusion index in the supe-
rior fronto-occipital fasciculus (Table 5, Supplementary Table 1, see
examplesin Extended DataFig. 6). For those significant IDPs, average
percentage change differences between the two groups was moder-
ate, ranging from-0.2 to -2% (except for two diffusion measuresin the
fimbriaat>6%, due to the very small size of these regions-of-interest),
withthelargest differences seeninthe volume of the parahippocampal
gyrus and caudal anterior cingulate cortex (Supplementary Table 1).
Scatter and box plots, as well as plots showing percentage longitudi-
nal differences with age are available for the top 10 longitudinal IDPs
as Supplementary Longitudinal Plots.

For the secondary analyses, when comparing the non-hospitalised
casestothe controls (Model 2), the same general pattern emerged, albeit
with a reduced number of significant results: one olfactory-related
region, the functionally-connected areas to the temporal piriform
cortex, showed significant longitudinal difference between the two
groups in diffusion index, as well as one global volume measure (CSF
normalised), and diffusionindex in the superior fronto-occipital fas-
ciculus (Model 2, 4 FDR-corrected, 1 FWE-corrected, Supplementary
Table1). Despitethe considerably limited degrees of freedom in Models
3 and 4, many results survived multiple comparison correction, par-
ticularly for IDPs of cortical thickness, with anemphasis on the anterior
cingulate cortex for Model 3 (66 FDR-corrected, 3 FWE-corrected), and
awide distribution across prefrontal, parietal and temporal lobes for
Model 4 (29 FDR-corrected, Fig. 2).

As many of the top exploratory and hypothesis-driven results
included IDPs of cortical thickness and of mean diffusivity, we further
conducted an exploratory visualisation of the vertex-wise thickness,
and voxel-wise mean diffusivity longitudinal differences between the
cases and controls over the entire cortical surface and brain volume,
respectively (Fig. 2). Grey matter thickness showed bilateral longitu-
dinal differences in the parahippocampal gyrus, anterior cingulate
cortex and temporal pole, as well as in the left orbitofrontal cortex,
insula and supramarginal gyrus.

When visually comparing hospitalised and non-hospitalised cases,
these longitudinal differences showed a similar pattern, especially in
the parahippocampal gyrus, orbitofrontal and anterior cingulate cor-
tex, but also markedly extending, particularly in the left hemisphere,
to many fronto-parietal and temporal regions. Mean diffusivity dif-
ferences in longitudinal effects between cases and controls was seen
mainly in the orbitofrontal cortex, anterior cingulate cortex, as well as
inthe leftinsula and amygdala.

While results seenin IDPs of grey matter thickness seemed toindicate
that the left hemisphere is more strongly associated with SARS-CoV-2
infection, a direct (left - right) comparisons of all lateralised IDPs of
thickness across the entire cortex showed no overall statistical differ-
ence between the two groups (lowest P;,.=0.43, and with no results
surviving FDR correction).

Cognitive results

Using the main model used to compare longitudinal imaging effects
between SARS-CoV-2 positive participants and controls (Model 1),
we explored differences between the two groups in 10 scores from
6 cognitive tasks. These 10 scores were selected using a data-driven
approachbased on out-of-sample participants who are the most likely
to show cognitive impairment (Supplementary Analysis 2). After FDR
correction, we found asignificantly greater increase of the time taken
to complete Trails A (numeric) and B (alphanumeric) of the Trail Making

Nature | www.nature.com | 3



Article

Test in the SARS-CoV-2 infected group (Trail A: 7.8%, P nc0=0.0002,
P:..=0.005; Trail B: 12.2%, P c0r=0.00007, P, .=0.002; Fig. 3). These
findings remained significant when excluding the 15 hospitalised
cases (Model 2: Trail A: 6.5%, P o =0.002, P, .=0.03; Trail B: 12.5%,
Puncorr=0.00009, P;,,.=0.002).

In the SARS-CoV-2 group only, post hoc associations between the
most significant cognitive score showing longitudinal effect using
Model1(durationto complete Trail B, as reported above) and the top 10
results fromeach of the hypothesis-driven and exploratory approaches
revealed a significant longitudinal association with the volume of the
mainly cognitive lobule crus Il of the cerebellum (r=-0.19, P;,.=0.020).

Additional baseline investigations

Whenlookingatbinary baseline differences between controls and future
cases, none of the IDPs with significant longitudinal effects for either
hypothesis-driven or exploratory approaches demonstrated significant
differences at baseline between the two groups (lowest P;,.=0.59, noth-
ing surviving FDR correction; Supplementary Table 2). When applying
age-modulation in the two-group modelling of IDPs at baseline, a few
of the IDPs demonstrated significant differences between control and
future SARS-CoV-2 groups, mainly for diffusionindicesin the olfactory
functional networks, as well as in the subcortical grey matter. As some
IDPs cover spatially extended regions of the brain, we visually explored
whether these baseline differences had any spatial overlap with our lon-
gitudinal results, but found none (Supplementary Fig. 2). The full list of
(binary and age-modulated) results from group comparisons between
the two groups at baseline are available in Supplementary Table 2 (and
separately, at the second timepoint, in Supplementary Table 3). We also
provide the scatter and boxplots, as well as the percentage differences
withage atbaseline for the top 10 significant longitudinal IDPs from the
hypothesis-drivenand exploratory approaches (Supplementary Plots).

Inaddition, none of the 10 pre-selected cognitive variables showed
significant difference at baseline between SARS-CoV-2 and control
groups (min P,,,=0.08). With age-modulation, only one cognitive
score, time to complete Pairs Matching round, showed a trend dif-
ference at baseline (P ,¢0<0.05, Pf,.=0.29, not passing FDR). This is a
different cognitive score from the one showing longitudinal cognitive
effects between the two groups, the UK Biobank Trail Making Test.

We also repeated the main analysis modelling for those top 10 IDPs
found to show longitudinal differences between the SARS-CoV-2
and control groups, across both hypothesis-driven and exploratory
approaches. For each of 6,301 non-imaging variables available (see
Methods: Additional analyses — Baseline group comparisons), we
included that variable as an additional confounder in the longitudinal
analyses. Onthe basis of the regression Z-statistic values, the strength
ofthe original associations was notreduced by more than 25% for any
of the non-imaging variables.

We further carried out the same analyses, but using dimension reduc-
tion (principal component analysis) applied to these 6,301 non-imaging
phenotypes (d=1to d=700), and also just focusing on cognition, with
540 cognitive variables (d=10). We found no substantial reductionin
our longitudinal results with any of these principal components. In
particular, for cognition where two components were significantly dif-
ferent at baseline (PCland PC4, Supplementary Analysis 1), the strong-
estreductioninZwasfound for crusllof the cerebellum when adding
PCltothemodel, withadecreaseinZ of only 5.7 % (from Z=4t0 Z=3.77),
while the Z values associated with all the other IDPs were reduced by
lessthan5%. Adding PC4 to our main model reduced Z by 0.4% at most.

Additional, out-of-sample tests of longitudinal effects
of pneumonia and influenza

Toinvestigate whether pneumonia might have had animpactonourlon-
gitudinal findings, we assessed the age-modulated effects associated
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with pneumoniainan out-of-sample UK Biobank cohort that had been
scanned twice. We identified 11 participants who contracted pneumo-
nia not related to COVID-19 between the two scans, matched these
to 261 controls, and applied our main analysis (Model 1) to these two
groups. Thislongitudinal investigation showed some significant group
differences in IDPs, but with no overlap with those IDPs we found for
SARS-CoV-2 (allin the white matter, Supplementary Analysis 3). Over-
all, correlation between all IDPs’ (unthresholded) Z-statistics from
pneumoniaand SARS-CoV-2 longitudinal group comparisons was very
low (r=0.057).

The sample size of cases who contracted influenza between the two
scans inthe out-of-sample UK Biobank cohort was unfortunately much
smaller (n=5, including n=3 hospitalised cases), likely due to the low
probability ofinfluenza being recorded by a medical professional (GP
or hospital). Nevertheless, for completeness, we also assessed longi-
tudinally these two very small groups, compared with 127 matched
controls. No result was significant for the 5influenza cases, although
afew IDPs showed significant longitudinal age-modulated effects,
with just one IDP in the brainstem common to the SARS-CoV-2 find-
ings (Supplementary Analysis 4). Correlation of Z-statistics between
influenza and SARS-CoV-2 longitudinal group comparisons was again
low (r=0.077).

Discussion

To our knowledge, this is the first longitudinal imaging study of
SARS-CoV-2 where participants were initially scanned before any had
beeninfected. Ourlongitudinal analyses revealed a significant, delete-
rious impact associated with SARS-CoV-2. This impact could be seen
mainly in the limbic and olfactory cortical system, for instance with a
change in diffusion measures — that are proxies for tissue damage —
inregions functionally connected with the piriform cortex, olfactory
tubercle and anterior olfactory nucleus, as well asamore pronounced
reduction of grey matter thickness and contrast in the SARS-CoV-2
infected participants in the left parahippocampal gyrus and lateral
orbitofrontal cortex. While the greater atrophy for the SARS-CoV-2
positive participants was localised to afew, mainly limbic, regions, the
increase in CSF volume and decrease of whole brain volume suggests
anadditional diffuse loss of grey matter superimposed onto the more
regional effects observedin the olfactory-related areas. Itis worth not-
ing that these structural and microstructural longitudinal significant
differences are modest in size, the strongest differences in changes
observed between the SARS-CoV-2 positive and control groups cor-
responding to around 2% of mean baseline IDP value (Supplementary
Tablel). This additional loss in the infected participants of 0.7% on aver-
ageacrossthe olfactory-related brain regions — and specifically ranging
from1.3% to 1.8% for the FreeSurfer volume of the parahippocampal/
perirhinal and entorhinal cortex — can be helpfully compared with, for
instance, the longitudinal loss per year of ~0.2% (in middle age) to 0.3%
(inolder age) of hippocampal volume in community-dwelling individu-
als®, Our statistics also represent an average effect; not every infected
participant will display brain longitudinal abnormalities. Compar-
ing the few patients (n=15) who had been hospitalised with COVID-19
against non-hospitalised cases showed a more widespread pattern of
greater reductionin grey matter thickness in fronto-parietal and tem-
poral regions (Fig. 2). Finally, significantly greater cognitive decline,
which persisted even after excluding the hospitalised patients, was
seeninthe SARS-CoV-2 positive group between the two timepoints, and
this decline was associated with greater atrophy of crus II, a cognitive
lobule of the cerebellum.

Much has been made of the benefit of using a longitudinal design
to estimate, for example, trajectories of brain ageing and cognitive
decline***. The longitudinal nature of the UK Biobank COVID-19
re-imaging study, with the baseline scan acquired before infection by
SARS-CoV-2 and the second scan afterinfection, reveal differences over



time above and beyond any potential baseline differences, thereby help-
ing disentangle the (direct or indirect) contribution of the pathogenic
process from pre-existing differences in the brain, or risk factors, of
future COVID-19 patients. An illustrative example of the benefit of a
longitudinal design is that, if looking solely at cross-sectional group
comparisons at the second timepoint post infection (i.e., the analy-
sis that would, by necessity, be carried out in post hoc studies), the
strongest effectis seenin the volume of the thalamus. This effect disap-
pears when taking into account the baseline scans however, since the
thalamus of the participants who will later become infected appears to
already differ from the controls years before infection. This highlights
the difficulties ininterpreting cross-sectional post-infectionimaging
differences asbeing necessarily the consequence of theinfectionitself.
When looking at brain imaging baseline differences between the two
groups across all IDPs, particularly in an age-modulated way, we did
find a few further significant baseline differences beyond the volume
ofthethalamus (Supplementary Table 2). These were principally using
diffusionimaging, butalso using grey matter volumein the subcortical
structures. Importantly, none of these baseline imaging differences spa-
tially overlapped with the regions found to be different longitudinally
(SupplementaryFig.2). As this study is observational, as opposed toa
randomised interventional study, one cannot make claims of disease
causality with absolute certainty however, but interpretational ambi-
guities are greatly reduced compared with post hoc cross-sectional
studies. The question remains as to whether the two groups are actu-
ally perfectly matched, as controls and cases could not be randomised
apriori. Across the main risk factors, as well as thousands of lifestyle,
health data and environment variables available in UK Biobank, we
did notidentify any significant differences when looking at each vari-
ableinisolation (only a few variables showed some trends at P<0.001
uncorrected, see Supplementary Table 4). This does not preclude the
possibility of a sub-threshold pattern of baseline differences making
one group more at risk of getting infected by SARS-CoV-2, and this risk
perhapsinteracting with the effects of the coronavirus. This motivated
the use of principal component analyses, which revealed two signifi-
cant components suggesting subtle lower cognitive abilities in the
participants who got infected later on (Supplementary Analysis 1).
Importantly, neither of these two cognitive components had any bear-
ing onourlongitudinalimaging results (reducing at most the strength
of Z-statistics from Z=4 to Z=3.77 for the crus Il of the cerebellum, when
added in as an extra confound to the longitudinal analysis). Whether
any of these imaging and cognitive differences at baseline played a
subsequentrole in those patients being morelikely to get infected by
the coronavirus, or to develop symptoms frominfection, would need
further investigation.

Our cohort-based, quantitative imaging study, unlike the major-
ity of single case and case series studies published so far, does not
focus on gross abnormalities that could be observed at the single
subject-level with a naked eye, such as microhaemorrhages or (sub)
acute ischaemic infarctions’.It does however rely on an anatomically
consistent pattern of abnormalities caused by the disease process, a
common spatial distribution of these pathological alterations across
theinfected participants, which could be uncovered by aligning all the
imagestogether ina common space, followed by applying a pipeline
of modality-specific image processing algorithms. This automated,
objective and quantitative processing of the images facilitates the
detection of subtle changes that would not be visible at the individual
level, but which point to a possible mechanism for the neurological
effects of the coronavirus infection. Our hypothesis-driven analyses
revealed a clear involvement of the olfactory cortex, which was also
found in the exploratory analyses and the vertex-wise and voxel-wise
maps of cortical thickness and mean diffusivity. While no differences
were seeninthe olfactory bulbs or piriform cortex per se (bothlocated
inaregion above the sinuses prone to susceptibility distortionsin the
brainimages, and both being difficult to segment in MRI data), we

identified significant longitudinal differences in a network of regions
functionally-connected to the piriform cortex, mainly constituted of
theanterior cingulate cortex and orbitofrontal cortex, aswell asthe ven-
tral striatum, amygdala, hippocampus and parahippocampal gyrus®.
Some of the most consistent abnormalities across hypothesis-driven
and exploratory analyses and all group comparisons were revealed in
the left parahippocampal gyrus (Table 4, Fig.2, Supplementary Table 1)
—alimbicregion ofthe brainthat plays a crucial, integrative role for the
relative temporal order of events in episodic memory®*. Importantly,
itis directly connected to the piriform cortex and entorhinal cortex,
which are both part of the primary olfactory cortex?**. Similarly, the
orbitofrontal cortex, which we also found altered in the SARS-CoV-2
positive group, is often referred to as the secondary olfactory cortex,
as it possesses direct connections to both entorhinal and piriform
cortex®, as well as to the anterior olfactory nucleus??. In fact, ina
recent functional connectivity study of the primary olfactory cortex,
the orbitofrontal cortex was found to be connected to all four primary
olfactory regionsinvestigated (frontaland temporal piriform cortex,
anterior olfactory nucleus and olfactory tubercle), possibly explaining
why it is reliably activated even in'basic and passive olfactory tasks®.
Using the same olfactory connectivity maps, which overlap cortically
in the orbitofrontal cortex, anterior cingulate cortex and insula, we
found a more pronounced increase of diffusion metrics indicative of
tissue damage in the SARS-CoV-2 group. The voxel-wise map of mean
diffusivity pinpointed these longitudinal differences in the orbito-
frontal and anterior cingulate cortex, as well as in the insula and the
amygdala. Theinsula isnot only directly connected to the primary
olfactory cortex?, but is also considered to be the primary gustatory
cortex. “Area G” (i.e., the dorsal part of the insula at the junction with
the frontaland parietal operculum), in turn connects with the orbito-
frontal cortex®. The vertex-wise and voxel-wise visualisation of both
greater loss of grey matter and increase in mean diffusivity in the insula
spatially correspond in particular to the area of consistent activation
to all basic taste qualities®. Finally, the exploratory analysis revealed
amore pronounced loss of grey matterin crusll, part of the cognitive,
andolfactory-related lobule VIl of the cerebellum®, Theseresultsarein
line with previous post-infection PET findings showing, in more severe
cases, FDG hypometabolism in the insula, orbitofrontal and anterior
cingulate cortex, as well as lower grey matter volume in the insulaand
hippocampus®#°,

Early neurological signs in COVID-19 include hyposmia and hypo-
geusia, which appear to precede the onset of respiratory symptoms
in the majority of affected patients****, In addition, a heavily-debated
hypothesis has been that an entry point of SARS-CoV-2 to the central
nervous system is via the olfactory mucosa, or the olfactory bulb?'8,
(The coronavirusitself would not necessarily need to enter the central
nervous system; anterograde degeneration from olfactory neurons
might suffice to generate the pattern of abnormalities revealed in our
longitudinal analyses.) The predominance observed in other studies
of hyposmic and anosmic symptoms — whether caused directly by
loss of olfactory neurons or by perturbation of supporting cells of
the olfactory epithelium®? — could also, through repeated sensory
deprivation, lead toloss of grey matter in these olfactory-related brain
regions. Very focal reductioningrey matter in the orbitofrontal cortex
andinsulahave been observed forinstancein patients with severe olfac-
tory dysfunctionina cross-sectional study of chronic rhinosinusitis®.
A more extensive study of congenital and acquired (post-infectious,
chronic inflammation due to rhinosinusitis, or idiopathic) olfactory
loss also demonstrated an association between grey matter volume
and olfactory functionin the orbitofrontal cortex". It also showed that
duration of olfactory loss for those with acquired olfactory dysfunction,
ranging from O to over 10 years, was related to more pronounced loss of
grey matter in the gyrus rectus and orbitofrontal cortex”. On the other
hand, it has beenreportedin alongitudinal study that patients with idi-
opathicolfactoryloss had higher grey matter volume after undergoing
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olfactory trainingin various brainregionsincluding the orbitofrontal
cortex and gyrus rectus*. This raises the interesting possibility that
the pattern of longitudinal abnormalities observed herein the limbic,
olfactorybrainregions of SARS-CoV-2 positive participants, if they are
indeed related to olfactory dysfunction, might be attenuated over time
if the infected participants go on to recover their sense of smell and
taste. There is for instance some very preliminary evidence, in a few
previously hospitalised COVID-19 patients, that brain hypometabolism
becomesless pronounced when followed-up 6 months later, evenifit
doesnotentirely resolve®*, In our much milder cohort, structural (as
opposed to functional) changes might take longer and require larger
numbersto be detected. When we tested whether time between infec-
tion and second brain scan had any relationship — positive, indicative
ofrecovery, or negative, indicative of an ongoing degenerative process
—with the grey matter loss or increase in diffusivity in the significant
IDPs, we found no significant effect. This result is also possibly owing
to therelatively small range in duration of infection at the time of this
study, between1and 13 months for those 351infected participants for
whom we had a diagnosis date, and particularly with less than 20% of
these participants having been infected for over 6 months (Supple-
mentary Fig. 3). Another source of variability is that each individual
in our cohort was infected between the months of March 2020 and
April 2021, periods that saw various dominant strains of SARS-CoV-2.
Of those 351 participants for whom we have a proxy date of infection,
but no formal way of assessing the strain responsible for theinfection, a
small minority of the participants were likely infected with the original
strain, and a majority with the variants of concern present in the UK
from October 2020 onwards (predominantly Alpha, but also Betaand
Gamma), while presumably very few participants, if any, were infected
with the Delta variant, which only appearedin the UK in April 2021. Since
the second scans have been acquired over a relatively short period in
these positive participants (February-May 2021), SARS-CoV-2 strains
and time between infection and second scan are also highly collinear.
Additional follow-up of this cohort, not only increasing the number of
casesinfected for 6 months or longer, but also including cases infected
by the Delta variant, would be particularly valuable in determining the
longer-term effects of infection on these limbic structures, as well as
possible differential effects between the various strains.

For various possible explanations for our longitudinal brainresults,
please see Supplementary Discussion.

Many of our results were found using imaging biomarkers of grey
matter thickness or volume, which can be sensitive markers of a neu-
rodegenerative process compared with other imaging modalities*,
and are robust measurements that makes themideal in alongitudinal
setting®. In fact, the longitudinal differences between the SARS-CoV-2
positive and control groups, while significantly localised in a limbic
olfactory and gustatory network, seemed also — at a lower level — to
begeneralised, asillustrated inthe significant shiftin the distribution
of Zvalues over the entire cortical surface (Supplementary Fig. 4). This
meansthatthereisanoverall stronger decrease of grey matter thickness
acrosstheentire cortexintheinfected participants, but that this effect
is particularly dominantin the olfactory system. A marked atrophy of
fronto-parietaland temporal regions can also be seen when contrasting
hospitalised and non-hospitalised cases, suggesting increased damage
inthe more moderate and severe cases, with an additional significant
shiftin Z values (Supplementary Fig. 4). The pattern of loss of grey
matter in the hospitalised patients compared with the milder cases
isin line with PET-FDG reports showing fronto-parietal and temporal
decrease in glucose in hospitalised COVID-19 patients'**.

The overlapping olfactory- and memory-related functions of the
regions shown to alter significantly over timein SARS-CoV-2, including
the parahippocampal gyrus/perirhinal cortex, entorhinal cortex and
hippocampusin particular (Supplementary Table1), raise the possibil-
ity that longer-term consequences of SARS-CoV-2 infection might in
time contribute to Alzheimer’s disease or other forms of dementia®.
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This has led to the creation of an international consortium including
the Alzheimer’s Association and representatives from more than 30
countries to investigate these questions? In our sample of infected
participants with mainly mild symptoms, we found no signs of memory
impairment. However, these SARS-CoV-2 positive participants showed
aworsening of executive function, taking a significantly greater time
to complete trail A and particularly trail B of the Trail Making Test
(Fig. 3). These findings remained significant after excluding the few
hospitalised cases. While the UK Biobank version of the Trail Making
Testis carried out online and unsupervised, there is good to very good
agreement with the standard paper-and-pencil Trail Making Test on its
measurements for completion of the two trails*®, two measures known
to be sensitive to detect impairment of executive function and atten-
tion, for instance in affective disorders and in schizophrenia***%, and
todiscriminate mild cognitive impairmentand dementiafrom healthy
ageing®. In turn, the duration to complete the alphanumeric trail B
was associated post hoc with the longitudinal changes in the cogni-
tive part of the cerebellum, namely crus II, whichiis also specifically
activated by olfactory tasks***°. In line with this result, this particular
part of the cerebellum has beenrecently shown to play a key role in
the association with (and prediction of future) cognitive impairment
in patients with stroke (subarachnoid haemorrhage)®. On the other
hand, the parahippocampal gyrus and other memory-related regions
did not show in our study any alteration on a functional level, i.e., any
post hoc association with the selected cognitive tests. It remains to
be determined whether the loss of grey matter and increased tissue
damage seeninthese specific limbic regions may in turn increase the
risk for these participants of developing memory problems https://
doi.org/10.1093/braincomms/fcab295, and perhaps dementia in the
longer term>**2,

Limitations of this study include the lack of stratification of severity
of the cases, beyond the information of whether they had been hospi-
talised (information on O, saturation levels and details of treatment or
hospital procedures is currently available on only a few participants);
lack of clinical correlates as they are not currently available as part
of the UK Biobank COVID-19-related links to health records (of par-
ticular relevance, potential hyposmic and hypogeusic symptoms and
blood-based markers of inflammation); lack of identification of the
specific SARS-CoV-2 strain having infected each participant; small
number of participants from Asian, Black or other ethnic background
other than White; and some of the cases and controls’ SARS-CoV-2
infection status being identified through antibody lateral flow test
kits that have varied diagnostic accuracy®’. However, it is worth not-
ing that any potential misclassification of controls as positive cases
(duetofalse positives in testing) and positive cases as controls (due to
the absence of confirmed negative status and/or false negative tests)
could only bias our results toward the null hypothesis of no difference
between cases and controls. For those cases, no distinctionis possible
at present to determine whether a positive test is due to infection or
vaccination, so potential cases identified only through lateral flow test
invaccinated participants were notincluded in this study. Information
on the vaccination status (except for those identified through lateral
flow test), and how both vaccination dates mightinteract with the date
of infection, is also currently unavailable. While the two groups were
not significantly different across major demographic and risk factor
variables, weidentified asubtle pattern of lower cognitive abilitiesinthe
participants whowent onto beinfected, but this could not explain away
ourlongitudinal findings. The future positive cases also showed lower
subcortical volume, and higher diffusion abnormalities at baseline
compared with the controls, in brain regions not overlapping with our
longitudinal results. Oneissueinherent to therecruitment strategy of
UK Biobank, based on participants volunteering after being contacted
at home for a possible re-imaging session, is the high number of mild
cases. This can be seen however as astrength of this study: the majority
ofthe brainimaging publications so far have focussed on moderate to
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severe cases of COVID-19%, hence there is afundamental need for more
information on the cerebral effects of the disease inits milder form. The
UK Biobank COVID-19 re-imaging study is ongoing, and further infor-
mationwill eventually be made available. On the statistical approach,
we have chosen a model form given strong priors of highly increased
detrimental effects of SARS-CoV-2 and greater vulnerability of the brain
withage. Using this objective model and rigorous statistical inference,
we found significant and interpretable results. We have not tested all
possible models for all possible IDPs; instead, we have focussed on one
possible model drawn fromindependent, existing literature and found
thatitis “useful”, i.e., statistically significant. The model may not be
optimalforeveryfeature considered; in other words, this model might
not be the most sensitive possible model for every IDP. However, the
main expected outcome in such cases would be that we would fail to
find significant results, and not that there would be any inflation of
false positives. Finally, on the imaging side, our exploratory approach
revealed significant longitudinal differencesin the volume of the whole
brainstem, but the UK Biobank scanning protocol and processing does
notallow us to clarify which specific nuclei (e.g., potentially those that
arekey autonomicand respiratory control centres) mightbeinvolved,
with the exception of the substantia nigra.

This is the first longitudinal imaging study comparing brain scans
acquired from individuals before and after SARS-CoV-2 infection to
those scans from a well-matched control group. It also is one of the
largest COVID-19 brain imaging studies, with 785 participants includ-
ing401lindividuals infected by SARS-CoV-2.Its unique design makes it
possible to more confidently tease apart the pathogenic contribution
associated, directly or indirectly, with the infection from pre-existing
risk factors. By using automated, objective and quantitative meth-
ods, we uncovered a consistent spatial pattern of longitudinal abnor-
malities in limbic brain regions forming a mainly olfactory network.
Whether these abnormal changes are the hallmark of the spread of the
pathogeniceffects, or of the virusitselfin the brain, and whether these
may prefigure afuture vulnerability of the limbic systemin particular,
includingmemory, for these participants, remains to be investigated.
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Fig.1|Mostsignificantlongitudinal group comparisonresults-
hypothesis-driven approach. Thetop four regions consistently showing
longitudinal differences across the three models comparing SARS-CoV-2 cases
and controls demonstrated either a significantly greater reductioningrey
matter thickness and intensity contrast, oranincreasein tissue damage
(largest combined|Z| across Models1-3). All three models pointed at the
involvement of the parahippocampal gyrus, while Models1and 2 also showed
thessignificantinvolvement of the functional connectionsof the primary
olfactory cortex and of the left orbitofrontal cortex. For each region, the IDP’s
spatial region ofinterestis shownat the top inblue, overlaid either on the
FreeSurfer average inflated cortical surface, or the TLtemplate (leftis shown
onright). Bottomleft for each IDP are the longitudinal percentage changes
with age for the two groups (controlsinblue,infected participants in orange),
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obtained by normalising AIDP using as baseline the values for the
corresponding IDPs across the 785 participants’scans. These are created using
alO-yearsliding window average, with standard errorsin grey. The somewhat
counter-intuitive increasein thickness in the orbitofrontal cortexin older
controls hasbeen previously consistently reported instudies of ageing>**.
Bottomrightare the scatter and box plots showing the differencein cortical
thickness, intensity contrast, or diffusion indices between the two timepoints
for the 384 controls (blue) and 401 infected participants (orange), allowing the
visual comparison between the two groupsinabinary way (hence
under-estimating the effects estimated when modulating with age, see
Methods: Statistical Modelling — Main longitudinal model, deconfounding).
Inredcirclesare the 15 hospitalised patients. OD, orientation dispersion;
ISOVF, isotropic volume fraction. All y axes represent % change.
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Fig.2|Vertex-wise and voxel-wise longitudinal group differencesingrey
matter thickness and mean diffusivity changes. Top row. Main analysis
(Model1): The thresholded map (|Z|>3) shows that the strongest, localised
reduction of grey matter thicknessin the 401 SARS-CoV-2 positive participants
compared with the 384 controls are bilaterally in the parahippocampal gyrus,
anterior cingulate cortex and temporal pole, as well asin the left orbitofrontal
cortex, insulaand supramarginal gyrus. Similarly, the strongest longitudinal
differencesin meandiffusivity (|1Z|>3, leftis shown onright) could beseenin
the orbitofrontal cortex and anterior cingulate cortex, as well asin the left

10 | Nature | www.nature.com

insulaand amygdala. Bottom row. Secondary analysis (Model 4): The
thresholded cortical thickness map (|Z|>3) demonstrated longitudinal
differences betweenthe 15 hospitalised and 386 non-hospitalised SARS-CoV-2
positive casesinthe orbitofrontal frontal cortex and parahippocampal gyrus
bilaterally, right anterior cingulate cortex, as well as marked widespread
differencesin fronto-parietal and temporal areas, especially in the left
hemisphere. We show the voxel-wise or vertex-wise longitudinal effects for
illustrative purposes, avoiding any thresholding based on significance (as this
would be statistically circular - similar to our previous analyses reported in*®).
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Fig.3|Percentagelongitudinal change for SARS-CoV-2 positive
participants and controls, in the duration to complete Trails Aand B of the
UK Biobank Trail Making Test. Absolute baseline (used to convert
longitudinal change into percent change) estimated across the 785
participants. These curves were created using a 10-year sliding window across
casesand controls (standard errorsingrey).
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Table 1| Main demographics for the 401 SARS-CoV-2 positive cases and 384 controls.

SARS-CoV-2 Positive Controls Puncorr
Cases
Number of subjects 401 384
Age atScan 1, mean % SD (range) 58.9+7.0 (46.9-80.2) 60.2+7.4(471-79.8) 0.15
Age at Scan 2, mean * SD (range) 62.1+6.7(51.3-81.4) 63.3+71(51.3-81.3) 0.08
Sex, male/female 172 (42.9%) [ 229 (571%) 164 (42.7%) [/ 220 0.96
(57.3%)
Ethnicity, white/non-white* 388(96.8%) /13 (3.2%) 373(971%) /11 (2.9%) 0.76
Years between Scans1and 2, 3.2+1.6 (1.0-7.0) 3.2+1.6(1.0-6.9) 0.98
mean % SD (range)
Systolic blood pressure [mnmHg] 130.3+17.3 13211176 0.16
Diastolic blood pressure [nmHg] 787+10.6 79.0+£10.2 0.63
Diagnosed diabetes 18 (4.5%) 16 (4.2%) 0.82
Weight [kg] 76.4+15.8 75.2+14.4 0.65
Waist/Hip ratio 0.87+0.09 0.86+0.09 0.37
BMI [kg/m?] 26.7+4.4 26.6+4.3 0.61
Alcoholintake frequency 31+13 3.0+14 1.00
Tobacco smoking 0.61+0.92 0.65+0.89 0.87
Townsend deprivationindex -1.56+29 -1.6+2.9 0.65

We used the ‘Last Observation Carried Forward’ (LOCF) imputation method (Methods: Additional analyses — Baseline group comparisons). Non-parametric tests were used whenever a variable
for each group was not normally distributed (Lilliefors P < 0.05). Two-sample Kolmogorov-Smirnov test was used for age at Scan 1or Scan 2, years between Scan 1and Scan 2, alcohol intake
frequency, and tobacco smoking; chi-square test for sex, ethnicity, and diagnosed diabetes; and Mann-Whitney U-test was used for the systolic and diastolic blood pressures, weight, waist/hip
ratio, BMI and Townsend deprivation index.

*The white/non-white distinction was made as numbers were too low to allow for a finer distinction
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Table 2 | Main clinical information available for the

SARS-CoV-2 positive cases

N, or mean +SD
(range)

Total number of positive cases 401

Origin of diagnosis

-GP n

- Hospital 2

- Diagnostic antigen test from Public Health records 338

- Antibody home-based lateral flow kits 50

Number of infected participants with available 351

information on date of diagnoses

ADays of SARS-CoV-2 infection before Scan 2,
mean +SD (range)

141£79 (35-407)

Total number of hospitalised patients 15
- COVID-19 as primary cause "
- COQOVID-19 as secondary cause 4

- Days of hospitalization, meanSD (range)

11.1£11.0 (1-40)

- Critical care unit

2

- Invasive ventilation

- Continuous positive airway pressure

- Non-invasive ventilation

- Unspecified oxygen therapy

1
1
1
1

Of note, of the 401 participants in our SARS-CoV-2 positive group in our main analyses, 50
were identified as cases via two different antibody home-based lateral flow kits and do not

have date of diagnosis in their primary care or hospital records.
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Table 3 | Comparison between hospitalised vs non-hospitalised SARS-CoV-2 positive cases

Hospitalised Non-hospitalised Puncorr
Number of subjects 15 386
Age atScan1, mean *SD (range) 65.4+89(51.6-80.2) 58.7+6.8(46.9-77.0) 0.0028
Age atScan 2, mean +SD (range) 681+8.4(54.9-81.4) 61.9+6.5(51.3-80.0) 0.0058
Sex, male/female 10 (66.7%) / 5 (33.3%) 162 (42.0%)/ 224 (58.0%) 0.058
Ethnicity, white/non-white* 15 (100%) / O (0%) 373(96.6%)/13(3.4%)  0.47
Years between Scan1and 2, mean + SD (range) 27+1.4(1.0-5.8) 3.2+1.6(1.1-7.0) 0.50
Systolic blood pressure [mnmHg] 140.6 +16.6 129.9£17.2 0.022
Diastolic blood pressure [nmHg] 85.0+10.5 78.4+10.5 0.028
Diagnosed diabetes 4(26.7%) 14 (3.6%) <0.001
Weight [kg] 85.9+12.0 76.0+15.8 0.0072
Waist/Hip ratio 0.94+0.07 0.87+0.09 0.0015
BMI [kg/m?] 29.3+37 266+4.4 0.0076
Alcoholintake frequency 31117 31113 1.00
Tobacco smoking 0.80+1.0 0.60+0.91 0.75
Townsend deprivation index 21+£26 -1.5+2.9 0.42

For statistical procedures, please refer to Table 1.
*The white/non-white distinction was made as numbers were too low to allow for a finer distinction
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Table 4 | Hypothesis-driven olfactory approach: top 10 out of 68 significant longitudinal group comparison results

Main Analysis (Model 1): AILSARS-CoV-2cases Model 2: Non-hospitalised Model 3: Hospitalised Model 4: Hospitalised
(n=401) vs controls (n=384) cases (n=386) vs controls cases (n=15) vs controls (n=15) vs non-hospitalised
(n=384) (n=384) cases (n=386)
Imaging-Derived % SE Y4 Puncorr Pfwe y4 Puncorr Pfwe Y4 Puncorr Pfwe z Puncorr Pfwe

Phenotype (IDP)

Temporal piriform 0.34 008 4.2 0.000023 0.0068 39 0.000081 0.0217 25 0.013985 09176 05 0627678 1
cortex functional
network - OD

Olfactorytubercle 122 0.31 39 0.000102 0.028 34 0000623 01319 28 0004439 06576 14  0.155595 1
functional network -
ISOVF

Frontal piriform 0.39 01 3.8 0000146 0.0386 3.4 0.000671 01417 24 0.017728 0.9532 1.3 0.202213 1
cortex functional
network - MD

Temporal piriform 0.38 0.1 3.8 0.00015 0.0396 33 0.000849 017177 25 0.0N1746 0.8913 14  0.172706 1
cortex functional
network - MD

Olfactory tubercle 0.39 0.1 3.8 0.000171 0.0446 33 0.000946 0.188 25 0.011856 0.8931 1.4 0173673 1
functional network -
MD

Lateral orbitofrontal -0.76 0.2 -3.8 0.000172 0.0449 -29 0.003178 0.48 -31 0001957 04541 1.9 0.061739 0.9999
cortex L - thickness
(DKT atlas)

Temporal piriform 112 0.3 37 0.000222 0.0564 3.3 0.001068 0.2088 26 « 0009838 0.8562 13 0.18374 1
cortex functional
network - ISOVF

Anterior olfactory 042 omn 37 0.000242 0.0621 35 0.000559 01213 -~ 1.9 0060313 0.9993 0.8 0.432506 1
nucleus functional
network - MD

Parahippocampal -092 025 -37 0.000276 0.0685 -2.7 0.006201 0.704 -3.5 0.000507 0.212 20 0.042678 0.998
gyrusL -intensity
contrast (Desikan)

Anterior olfactory 127 035 36 0000286 0.0701 3.3 0.000985 0.1957 24 0.016069 0.9399 11 0.268503 1
nucleus functional
network - ISOVF

The top 10 significant results, all surviving false discovery rate (FDR) correction, based on 297 imaging-derived phenotypes (IDPs), ranked based on their uncorrected P-values for our main
analysis (Model 1), showing where the 401 SARS-CoV-2 infected participants and 384 controls differed over time. Associations with a total of 68 IDPs in total survived correction for multiple
comparisons using FDR for Model 1 (full list of results in Supplementary Table 1). We report differences in longitudinal change (as a % of mean baseline value) between the two groups, standard
error (SE) on these % changes for Model 1, as well as uncorrected and family-wise error (FWE) corrected P values. Results in italics survive correction for multiple comparisons using FDR for
each corresponding Model. Results in bold also survive correction formultiple comparisons using FWE for each corresponding Model. Note: the Z-statistics reflect the statistical strength of the
longitudinal group-difference modelling, and are not raw data effect sizes. All significant results involved either grey matter thickness, grey-white intensity contrast or proxy measures of tissue
damage (mean diffusivity MD, isotropic volume fraction ISOVF, and orientation dispersion OD). L is left.
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Table 5 | Exploratory approach: top 10 out of 65 significant longitudinal group comparison results

Main analysis - Model 1: Al SARS-CoV-2 cases
(n=401) vs controls (n=384)

Model 2: Non-hospitalised
cases (n=386) vs controls
(n=384)

Model 3: Hospitalised cases
(n=15) vs controls (h=384)

Model 4: Hospitalised
(n=15) vs non-hospitalised
cases (n=386)

Imaging-Derived
Phenotype (IDP)

%

SE

Y4

Puncorr

Pfwe

z Puncorr Pfwe

4 Puncorr Pfwe

Y4

Puncorr

Pfwe

Ratio brain
volume/estimated
totalintracranial
volume

-0.29

0.06

-4.6

0.000004

0.0083

-3.2 0.00M75 0.7836

-4.5 0.000006 0.0708

-3.4

0.000787

0.8043

Normalised CSF -
volume

1.52

0.35

4.3

0.000016

0.0277

4.1 0.000047  0.0791

1.8 0.068896 1

0.5

0.620269

Lateral ventricle
R-volume

17

04

4.3

0.000019

0.0329

37 0.000239 0.3009

27 0.006833 0.998

1.2

0.218988

Temporal piriform
cortex functional
network - OD

0.34

0.08

4.2

0.000023

0.0405

39 0.000081 01293

25 0013985  0.9999

0.5

0.627678

Superior
fronto-occipital
fasciculus-ICVF

-0.79

0.19

0.000025

0.0431

0.000017 0.0297

-1 0.278361 1

0.5

0.584195

Brainvolume
without ventricles -
surface model
estimate

-0.3

0.07

-4.1

0.000043

0.0685

0.003266 0.9776

0.00007 0.302

2.7

0.007248

0.9994

Rostral anterior
cingulate cortex
L - thickness
(Desikan)

0.29

-4.1

0.000043

0.069

-29 0.003812 0.9877

-4.3 < 0.00002 0.1483

2.3

0.021995

Brain volume
without ventricles

-0.3

0.07

-4.1

0.000045

0.0712

0.003412  0.9813

-4.0  0.000073 0.3086

0.007081

0.9992

Supratentorial
volume without
ventricles

-0.32

0.08

-4.0

0.000057

0.0901

0.003349  0.9799

-3.8 0.000167  0.4577

-2.5

0.012125

Cerebellumcrus
11 - volume

-0.78

0.19

-4.0

0.000064

0.1

-31 0.001986  0.9139

-3.3 0.000932 0.8377

21

0.037117

The top 10 significant results show where the 401 SARS-CoV-2 positive participants and 384 controls differed over time, ranked based on their uncorrected P-values for Model 1. Associations
with a total of 65 imaging-derived phenotypes (IDPs) survived correction for multiple comparisons using false discovery rate (FDR) for Model 1 (full list of results in Supplementary Table 1). In
italics, the findings surviving correction for multiple comparisons using FDR for each Model; in bold, those surviving using family-wise error (FWE). Note: the Z-statistics reflect the statistical
strength of the longitudinal group-difference modelling, and are not raw data effect sizes. In addition to global measures relating to loss of brain volume (such as an increase of CSF volume),
most of the top exploratory localised results implicate the primary connections of the olfactory system, as well as the rostral anterior cingulate cortex and the crus Il of the cerebellum, both
also olfactory-related regions. Intra-cellular volume fraction ICVF, orientation dispersion OD. L is left, Ris right.
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Methods

Ethics

Human subjects: UK Biobank has approval from the North West
Multi-centre Research Ethics Committee (MREC) to obtain and dissemi-
nate dataand samples from the participants (http://www.ukbiobank.
ac.uk/ethics/), and these ethical regulations cover the workin this study.
Written informed consent was obtained from all participants.

Study Design

As part of the UK Biobank imaging study*’, thousands of subjects had
received brainscans before the start of the COVID-19 pandemic. Multi-
modal brainimaging data, collected at four sites with identicalimaging
hardware, scanner software and protocols, and passing quality controls,
was obtained from 42,729 participants over the age of 45 years, and
made available to researchers worldwide.

Before the COVID-19 pandemic, longitudinal (first- and
second-timepoint scanning) had already begun in the UK Biobank
imaging study, with about 3,000 participants returning for a second
scan prior to scanning being paused in 2020 as aresult of the pandemic.
Morerecently, startingin February 2021, hundreds of UK Biobank par-
ticipants who had already taken part in UK Biobank imaging before
the pandemic were invited back for a second scan. This COVID-19
re-imaging study was set up to investigate the effects of SARS-CoV-2
infection by comparing imaging scans taken from participants before
vs after infection.

Thefulllist ofinclusion criteria for the participantsin this re-imaging
study is as follows:

« had already attended animaging assessment at one of the three imag-
ingsites (the fourth opened just before the pandemic began),

« still lived within the catchment area of the clinic they attended for
their first imaging assessment,

« had no incidental findings identified from their scans taken at the
firstimaging visit,

+ had not withdrawn or died

« had avalid email and postal address,

« had high-quality scans from the first imaging visit,

« lived within 60 km of the clinic (extended to 75 kmin Feb 2021), due
to travel restrictions during the lockdown period.

(See for more details the online documentation: https://biobank.
ndph.ox.ac.uk/showcase/showcase/docs/casecontrol_covidimaging.
pdf)

Amongst those, some participants were identified as having been
infected with SARS-CoV-2 based on: (i) results of diagnostic antigen
tests identified through linkage to health-related records, or (ii) their
primary care (GP) data or hospital records, or (iii) results of two anti-
body tests.

The diagnostic antigen testsresults datafor England, Scotland, and
Wales are made available onan ongoing basis by UK Biobank, and these
dataare provided by Public Health England (PHE), Public Health Scot-
land (PHS), and Secure Anonymised Information Linkage (SAIL, the
databank from Wales), respectively. The data containinformation on
the date when the specimen was taken, origin (binary code for whether
the patient was aninpatient when the specimen was taken), and result
(binary codeor positive and negative for SARS-CoV-2) of the tests along
with encoded participant IDs (see biobank.ctsu.ox.ac.uk/crystal/ukb/
docs/c19link_phe_sgss.pdf for further information on how regular
updates of SARS-CoV-2 test resultsin England are made in UK Biobank).

For the primary care (GP) data, UK Biobank used this following set
of codes: 1. TPP: Y213a, Y228d, XaLTE (if the event date is after January
1st, 2020), Y22b8, Y23f7,Y20d]1, Y24ad, Y246f, Y269d, Y230, Y2a3b,
Y2al5, Y212f, Y26al, Y26b2, Y23e9, Y211c, Y23ec, Y2a3d; 2. EMIS:
EMISNQCO0303, 720293000, 720294006, 840535000, 840536004,
870361009, 870362002, 871552002, 871553007, 871555000,
871556004, 871557008, 871558003, 871559006, 871560001, 871562009,

1240581000000104, 1300721000000109, 1321541000000108,
1321551000000106, 1321661000000108, 1324881000000100. For
the hospital records, the code used to identify positive SARS-CoV-2
cases was ICD10: U07.1. The dates of the records for both GP and hos-
pital data were extracted along with the encoded participant IDs. In
particular, the hospital records containinformation on admission and
dischargeincluding episode start and end dates, primary and secondary
causes for admission, critical careif applicable, and types of operations
or procedures performed. We first identified hospitalised infected
patients who had the ICD code UO7.1as a primary or secondary cause,
and extracted information (e.g., admission/discharge date) relating
totheepisodes. OPCS-4 codes E85.1, E85.6, E85.2, and X52.9 were used
to find out whether the patients were provided respiratory support
during the episodes. No other information, for instance symptoms
such as hyposmia or hypogeusia of particular relevance, were made
available in these medical records.

Participants were also invited to take ahome-based lateral flow (For-
tress Fast COVID-19 Home test, Fortress Diagnostics and ABC-19TM
Rapid Test, Abingdon Health) to detect the presence of SARS-CoV-2
antibodies. A second kit was sentto all participants who recorded an
initial positive result and who had indicated they had not yet been vac-
cinated, in order to reduce the number of false positives.

Participants were classified as SARS-CoV-2 positive cases if they had
apositivetestrecordinanyofthe three datasources described above.
Date of diagnosis (Table 2) was determined based on the information
available in (i) and (ii). For participants with multiple positive test
records, we took the earliest date as the date of diagnosis.

Controlswere thenselected by identifying, from the remaining previ-
ously imaged UK Biobank participants, those who had a negative anti-
body test result, as determined from the home-based lateral flow kits,
and/or who had no record of confirmed or suspected COVID-19 from
primary care, hospital records or diagnostic antigen test data. Controls
were selected to match 1:1to positive SARS-CoV-2 cases according to
five criteria:

* sex

« ethnicity (white/non-white, as numbers were too low to allow for a
finer distinction)

« date of birth (+/-6 months)

« location of firstimaging assessment clinic

« date of first imaging assessment (+/-6 months).

Permission to use the UK Biobank Resource was obtained via Mate-
rial Transfer Agreement (www.ukbiobank.ac.uk/media/p3zffurf/
biobank-mta.pdf).

Image Processing

For this work, we primarily used the IDPs generated by our team on
behalf of UK Biobank, and made available to all researchers by UK
Biobank®”*8, The IDPs are summary measures, each describing a differ-
entaspectofbrainstructure or function, depending on what underlying
imaging modality is used*”*®,

The protocolincludesthree structural MRIscans (T1, T2 fluid attenu-
ation inversion recovery (FLAIR) and susceptibility-weighted MRI),
as well as diffusion MRI and resting and task functional MRI. T1scans
make it possible to derive global measures of brain and cerebrospi-
nal fluid (CSF) volumes, as well as localised measures of grey matter
volume and cortical thickness and area. The T2 FLAIR scan identifies
differences that might be indicative of inflammation or tissue damage.
Susceptibility-weighted MRl is sensitive to iron and myelin content. Dif-
fusion MRI measurements give insight into the tissue microstructure
integrity. Resting-state functional MRl is performed on an individual
who is not engaged in any particular activity or task, and can provide
indices related to the functional connectivity between brain regions®.
Functional connectivity is intrinsically noisy when each region-pair con-
nectionis considered individually, so we focused here our analysis on
6 dimensionally-reduced functional connectivity networks®. We also
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did not consider a prioritask-fMRI activation IDPs, as these have previ-
ously been found to have very low reproducibility and heritability®°.

We used 1,524 existing UK Biobank IDPs, including: regional grey
matter, brain and CSF volume, local cortical surface area, volume
and thickness, cortical grey-white contrast, white matter hyperin-
tensity volume, white matter microstructural measures such as frac-
tional anisotropy and mean diffusivity, resting-state amplitude and
dimensionally-reduced connectivity measures. In addition, we also
generated 1,106 new IDPs, as described below.

We computed additional IDPs obtained using Quantita-
tive Susceptibility Mapping (QSM), which has been recently
added into our UK Biobank processing pipeline (https://doi.
org/10.1101/2021.06.28.450248). Magnitude and phase datafrom the
susceptibility-weighted MRI acquisitions were processed to provide
quantitative measuresreflecting clinically relevant tissue susceptibil-
ity properties. Median T2* was calculated within 17 subcortical struc-
tures (with their regions-of-interest (ROIs) estimated from the T1) as
IDPs; 14 of these are the same subcortical regions already estimated
by the core UK Biobank pipeline, and here we added 3 more subcorti-
cal ROIs: left and right substantia nigra® and regions of white matter
hyperintensities (lesions)®?. Second, susceptibility-weighted MRI phase
datawere processed for QSM following a pipeline recently developed
for UK Biobank® (https://doi.org/10.1101/2021.05.19.21257316). QSM
(CSF-referenced) IDPs were calculated in the same 17 subcortical struc-
tures as the T2*IDPs.

Additional IDPs were created via refined sub-segmentations of
the hippocampus, amygdala and thalamus as implemented in Free-
Surfer® %, We extracted these ROl masks from the FreeSurfer pro-
cessing and applied them to the T2* and diffusion images (diffusion
tensor model: MD and FA; NODDI model: OD, ISOVF, ICVF) to generate
additional subcortical IDPs.

Finally, we generated new IDPs tailored to the olfactory and gustatory
systems, as described below.

Hypothesis-driven approach
Based on prior expectations from animal models and post mortem
findings, we chose to focus a priori our primary analyses on a subset
of 332 regions-of-interest (297 of which passed the reproducibility
thresholding; see Reproducibility section below) from the available
2,630 IDPs?23¢; these correspond anatomically to the telencephalic
primary and secondary connections of the olfactory and gustatory
cortex. Briefly, these include the piriform cortex, parahippocampal
gyrus, entorhinal cortex, amygdala, insula, frontal/parietal opercu-
lum, medial and lateral orbitofrontal cortex, hippocampus and basal
ganglia. As nolabelling of the piriform cortexexistsinany of the atlases
used in the UK Biobank imaging processing, we refined a previously
published ROI of the piriform cortex (frontal and temporal), anterior
olfactory nucleus and olfactory tubercle, by limiting it to the cortical
ribbon of our UK Biobank T1-weighted standard space (https://github.
com/zelanolab/primaryolfactorycortexparcellation®). We further
used maps from the same study’s resting-state fMRI analysis of the
functional connectivity of each of the four parts of this ROI (piriform
frontal, piriform temporal, anterior olfactory nucleus and olfactory
tubercle)to the rest of the brain, to generate four additional extended
ROIs of the functionally-connected cortical and subcortical regions
to these primary olfactory areas®, For this, we thresholded their con-
nectivity t-value maps to keep only significant voxels (P,.<0.05, with
threshold-free cluster enhancement), and used the maps as weighted
(and, separately, binarised) masks, to further extract grey matter vol-
ume (GM), T2*and diffusion values; this was done by: (i) regressing each
of these maps into the GM, T2* or diffusion images in their respective
native spaces, and separately, (ii) by binarising the maps and extracting
mean and 95" percentile values.

Additionally, masks for the left and right olfactory bulbs were gener-
ated by manually drawing a binary mask for the right olfactory bulb

on an averaged template-space T2 FLAIR volume generated from 713
UK Biobank subjects, and mirroring this to obtain the mask for the left
(having confirmed by visual inspection that symmetry in this region
allowed for this to be effective). Both masks were then modulated by
the T2intensitiesin their respective ROIs, to account for partial volume
effects, generating the final “label” maps with values ranging between
0-1. For the hypothalamus, we combined and refined ROIs from two
previously published and publicly available atlases of a probabilistic
hypothalamus map (https://neurovault.org/collections/3145/%") and
hypothalamic subregions®. Both the probabilistic hypothalamus map
and the binarised map obtained from fusing the 26 hypothalamic sub-
regions were transformed to our standard space where the probabil-
istic map was then masked by the binarised map. We then extracted
volume, and T2 mean and 95th percentile intensity measurements in
subjects’ native spaces, using the olfactory bulb and hypothalamus
maps (unthresholded and thresholded at 0.3, to reduce concerns about
arbitrariness of threshold selection when re-binarising these very thin
ROImasks afterinterpolation, astep whichis unavoidable when trans-
forming masks from one space to another). For the hypothalamus, we
additionally extracted these metrics from T2* and diffusionimages. All
ofthe above preprocessing steps were defined and completed before
any analyses of longitudinal change and case-control modelling.

The fulllist of 297 pre-determined and reproducible IDPs is available
inSupplementary Table 1.

Exploratory Approach

Thefullset of 2,630 IDPsdescribed above were used for amore explora-
tory, inclusive analysis of SARS-CoV-2 infection effects on brain struc-
ture and function (see full list of reproducible IDPs in Supplementary
Table1).

Statistical Modelling

The following modelling was applied in the same way to both the
hypothesis-drivenanalyses of asubset of IDPs, and the all-IDPs explora-
tory analyses.

Outlier identification of the IDPs. All IDPs from all subjects were
pooled for initial processing (at this stage blinded to the SARS-CoV-2
status of participants): 42,729 Scan1datasets (all pre-pandemic), 2,943
pre-pandemic Scan 2 datasets, and 890 Scan 2 datasets acquired after
the beginning of the COVID-19 pandemic. Outlier values (individual
IDPs from individual scanning sessions) were removed on the basis of
being more extreme than 8 times the median absolute deviation from
the median for a given IDP. Missing data for individual subjects and
specific IDPs can therefore occur because of this step, or because the
IDP was missingin the original data (e.g., because a given modality was
notusable fromagiven participant). The fraction of total non-missing
data, averaged across IDPs, is 0.93; all full results tables include the
number of usable measurements for each IDP and for each statistical
test. Importantly, there was noimbalance inamount of missing/outlier
databetween cases and controls: the number of cases with usable data,
normalised by the total number of subjects with usable data, has the
following percentiles across IDPs: percentiles [0, 1,50,99,100]=0.50,
0.50,0.52,0.52,0.60, i.e., the median percentile is 0.52. From this analy-
sis, the only 3 IDPs having this fraction greater than 0.53 were thalamic
nuclei diffusion IDPs, which do not appear in any of our main results.
These arealso the only 3 IDPs with more than24% missing/outlier data.

The IDPs from the 890 subjects imaged during the pandemic
(SARS-CoV-2 positive cases and controls), from both timepoints, were
thenretained. Subjects were keptif atleast the T1-weighted structural
image was usable from both timepoints, resulting in IDPs at both time-
points (IDP1and IDP2) from 785 subjects. The data were then pooled
into a single dataset comprising 785 x 2 =1,570 imaging sessions, and
cross-sectional deconfounding, treating all scans equivalently, was
carried out for head size, age, scanner table position, and image motion
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in the diffusion MRI data. This deconfounding is part of the data pre-
processing, andis done at the level of individual scan sessions; hence,
this needs to be carried out before combining all scans and subjects
together in the main modelling. These imaging confound variables
first had outlier removal applied as described above, though using a
higher threshold of 15 times the median absolute deviation, because
someimportant confounds have extremely non-Gaussian underlying
distributions (e.g., MRI scanner table position), and we found that a
threshold of 8 was too aggressive for these variables, for values that
are perfectly acceptable when considered with the domain knowledge
of these variables™,

Reproducibility of the IDPs. We then evaluated the scan-rescanre-
producibility of IDPs, in order to discard IDPs that were not reasonably
reproducible between scans. For each IDP, we correlated the IDP1with
IDP2 values, separately for cases and controls, resulting in two repro-
ducibility measures (Pearson correlationr) for each IDP. The vectors of
rvalues (one value per IDP) derived from cases and from controls were
extremely highly correlated (r=0.98), showing that potential effects
associated with infection are subtle compared with between-subject
variability and IDP noise; hence, we averaged these cases and controls’
r values to give a single reproducibility measure for each IDP. From
the initial set of 2,630 IDPs, the least reproducible IDPs (r<0.5) were
discarded, leaving 2,048 IDPs. Finally, IDPs with high levels of missing
data (usable values from fewer than 50 subjects) were discarded, leav-
ingintotal 2,047 IDPs.

Main longitudinal model, deconfounding. Despite initial
case-control subject pairing (resulting in case and control groups
being well matched), missing/outlier data potentially disrupted this
exact paired matching, and thus we also included in the modelling
confound variables derived from those factors originally used as
pairing criteria: difference between the subjects’ ages at each of their
two scans, the difference of the squares of the ages (to account for
quadratic dependencies of IDPs on age), genetic sex, and ethnicity
(white vs non-white).

Longitudinal IDP change (AIDP) was estimated by regressing IDP2
onIDP1°, as well asincluding in the regression the confoundvariables
listed above.

The case-vs-control differencein thislongitudinal IDP effect was mod-
elledwithagroup difference regressor comprised of the case-vs-control
binary variable modulated by afunction of age at Scan2 (Age2, aclose
proxy for age at infection for the SARS-CoV-2 group, with less than a
year’s error). We chose to focus on an“objective” age model given the
strong prior knowledge of a highly increased detrimental effect, at
older ages, of SARS-CoV-2 infection and a greater vulnerability of the
brainwith age. The age dependence has been found to be exponential
in studies of the effects of COVID-19 on hospitalisation and fatality
rate’"”2, We used here the exact age dependence found by adata-driven,
meta-regression of 28 studies, with no free or subjectively-chosen
parameters, to modulate the binary case-vs-control variable, based
onageat Scan 2.

The main case-vs-control group difference regressor of interest is
therefore:

Case-vs-Control = demeaned(Case-vs-Control binary variable) (1)
x 10ABe2x0.0524-3.27

where the age-dependence constants are taken from the
meta-regression analysis’ (see Supplementary Analysis 5). To ensure
that the fitting of this term is not influenced by an effect that is com-
mon to controls and cases, we added a matching confound variable of
1048200524327 § e the same ageing term without the group-difference
multiplier.

Our main model of interest therefore simply combines IDP1 and
IDP2, the above group-difference model, and the confounds matrix:

IDP2 - Case-vs-Control + IDP1+ Confounds, 2)

where the confounds matrix comprises the terms described above:
Age2-Agel, Age2-Agel?, ethnicity, sex, and 10%862x0-05243.27

By using asimple, single case-vs-control regressor for the main effect
ofinterest, we optimise power for finding effects that follow this form,
at the risk of sub-optimal power (sensitivity to finding true effects) if
the effect does not follow this form.

Many forms for the case-vs-control model might be used. Pos-
sible models include: a binary regressor; single-regressors with
age-modulated differences (such as the one primarily used here);
more flexible models with multiple-regressors. Without testing ahuge
number of possible different models, one cannot make claims of abso-
lute optimality. Nevertheless, our primary aimis not to prove model
optimality, but to identify the effects of disease. To that aim, we have
found statistically significant resultswith the simple model used here.
Importantly, the exact choice of exponential model also held little bear-
ing on our findings. Even opting for abinary case-vs-control regressor
—i.e., without any age modulation — yielded similar, if a little weaker,
primary results, consistent with ourexpectation of increased effects
at higher ages (Supplementary Table 5and Supplementary Analysis 5
for more details and discussion of non-modulated modelling results).
SupplementaryAnalysis 6 provides further model-fitting validity and
robustness evaluations, including diagnostic residual scatter-plots and
residual QQ plots, showing no obvious evidence of structured problems
inmodel residuals or of model misspecifications.

The group-difference regressor is scaled to have average peak-peak
height 1, so that the regression parameter from fitting Case-vs-Control
can easily be converted into a percentage change measure, when nor-
malised by the mean baseline value for a given IDP. For the main longi-
tudinal modelling, this represents the average group differencein the
longitudinal IDP change, and for the separate modelling of baseline IDPs
only, this percentage reflects the average group difference in the base-
line values. Inaddition to reporting % effects and associated standard
errors, we also report the statistical significance as Z-statistics (Gaussi-
anised regression model T-statistics), and P-values. Here, Z is more
useful than T, because different IDPs have different patterns of missing
data, and hence Zis more usefully comparable across IDPs. The regres-
sion inference automatically takes care of the degrees-of-freedom,
including accounting for missing data and confound variables. For
each IDP, any missing data is ignored (that subject is left out for that
analysis). As part of the estimation of the longitudinal IDP changes,
AIDP outliers (for each IDP, and each subject) were removed (set as
missing), if they were more than 8 times the median absolute devia-
tion from the median.

Multiple comparison correction. We used permutation testing to
estimate family-wise-error P-values (Py,.), i.e., correcting for the mul-
tiple comparisons across IDPs while accounting for the dependences
among IDPs. Werandomly permuted the residualised case-vs-control
regressor relative to the residualised IDP2s, with 10,000 random
permutations. At each permutation we computed the association
Z value for each IDP, and recorded the maximum absolute value
across all IDPs. By taking the absolute value, we corrected for the
two-tailed nature of the test, i.e., we did not pre-assume the direction
of any effect. After building up the null distribution of the maximum
|Z| across IDPs, we then tested the original |Z| values against this
distribution, to obtain family-wise error corrected P-values (Py,.),
fully correcting for multiple comparisons across all IDPs. We also
computed for each test the false discovery rate (FDR) at 5%, gen-
erating a threshold that can be applied to uncorrected P-values to
determine their FDR significance.
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We thus computed both FDR-and FWE-corrected inferences as two
distinct measures of strength of evidence for agiven effect. In this study,
we primarily rely on FDR correction, which provides good power while
controlling for multiple testing in a principled manner, but we wish to
also indicate when a result additionally attains FWE significance. We
therefore always specify the findings obtained using both correction
methodsintheResults section and the main and Supplementary Tables.

Group comparisons. Intherest of the manuscript, we refer to the main

age-modulated-group comparison analysis (comparing IDPs at second

timepoint controlling for IDPs at baseline) between SARS-CoV-2 posi-

tive cases and controls, as described above, as Model 1.

As secondary follow-up analyses, we also applied the same
hypothesis-driven and exploratory approaches as described above, to
compare non-hospitalised SARS-CoV-2 positive cases against controls
(Model2),and hospitalised patients against controls (Model 3). Sepa-
rately, we also carried out the same analysis between hospitalised and
non-hospitalised cases, adding as covariates three risk factors showing
significant differences between these two SARS-CoV-2 groups (Model
4). For these secondary models (2-4), we again used age-modulated
group-difference regressors as described above for Model 1. Power to
detect effects in the two latter models, considering the hospitalised
patients as a separate group, is of course considerably reduced, given
the small number of hospitalised cases in this cohort.

For all4 models, testing was carried out twice: first using the a priori
focussed subset of IDPsidentified for the hypothesis-driven analyses,
and then using the full set of IDPs for the exploratory analyses. Inboth
cases IDPs were identified as having significant group differences,
corrected for multiple comparisons.

We thus carried out 8imaging group comparison longitudinal analy-
ses:

« the primary analysis comparing all cases vs all controls (Model 1),
firstin the set of olfactory-related IDPs a priori drawn, thenin the
exploratory set of IDPs

- secondary, ancillary analyses, using both hypothesis-driven and
exploratory sets of IDPs:

« all non-hospitalised cases vs all controls (Model 2),
« all hospitalised cases vs all controls (Model 3),
« all hospitalised cases vs all non-hospitalised cases (Model 4).

Cognitive analysis
While cognitive testing offers limited measurements of cognitive func-
tion in UK Biobank, we included in our ancillary cognitive analysis 10
variables sensitive to cognitive impairment. For this, we drew these vari-
ables using adata-drivenapproach based onidentifying out-of-sample
currentand future dementia casesin UK Biobank, and comparing them
to matched controls (Supplementary Analysis 2). The top most signifi-
cant variables from this out-of-sample analysis were:

- three variables from the UK Biobank Trail Making Test: both dura-
tionsto complete trails A and B, as well as the total number of errors
made traversing trail B,

« one variable from the Symbol Digit Test: the number of symbol digit
matches made correctly,

 onemeasure of reaction time: mean time to correctly identify matches
at the card game “Snap”,

= one measure of reasoning: the “fluid intelligence” score,

« one measure of numeric memory: the maximum number of digits
remembered correctly,

« three variables of the Pairs Matching test: numbers of correct and
incorrect matches, and time to complete the test.

Based on these 10 variables from 6 different cognitive tests, we
carried out two analyses: (i) the same group comparison between
SARS-CoV-2 cases and controls of the longitudinal effect as described
above, but substituting AIDP for ACOG, (ii) a post hoc regression anal-
ysis, in the SARS-CoV-2 group only, of the ACOG showing the most

significant difference between cases and controls against the top 10
most significant AIDP for the hypothesis-driven approach and the top
10 for the exploratory approach. All results were evaluated for FWE
and FDR significance, correcting for multiple comparisons across all
cognitive, or IDP variables where applicable.

Additional analyses

Baseline group comparisons. Risk factors. We compared the
SARS-CoV-2 positive and control groups at baseline across common
risk factors for infection and severity of disease: age, sex, blood pres-
sure (systolic and diastolic), weight (including BMI, and waist-hip
ratio), diabetes, smoking, alcohol consumption and socio-economic
status (viathe Townsend deprivationindex). For this, we used the ‘Last
Observation Carried Forward’ (LOCF) imputation method, for which
we considered all the values available closest to the Scan1visit (for the
majority of the values, these were available from the same visit, on the
same day that Scan 1was acquired); we also tested that there was no
difference between SARS-CoV-2 and control groupsinthe distribution
of the visits used to collect the LOCF values.

All other non-imaging phenotypes. We also examined whether
the SARS-CoV-2 and control- groups differed at baseline across all
non-imaging phenotypes (lifestyle, environmental, health-related,
dietary), across all UK Biobank visits. We assessed the 6,301 pre-Scan2
non-imaging phenotypes having at least 3% of values as being distinct
from the majority value,and results were corrected for multiple com-
parisons using FDR and FWE (i.e., where relevant we refer to both in
Results).

IDPs. To complement our longitudinal analyses, we carried out a
baseline-only (and, separately, second timepoint only) cross-sectional
group comparison between SARS-CoV-2 cases and controls, across all
2,047 IDPs, correcting for multiple comparisons across all IDPs using
the same permutation-testing procedure as described above.

In particular, thisapproachis of interest to test whether brain regions
showing significant longitudinal changes demonstrate initial differ-
ences, pre-existing before the infection, between the two groups.
Cognition. We finally assessed whether the two groups differed at
baseline in their cognition, based on the results from the 10 variables
from 6 different cognitive tests preselected above, correcting for mul-
tiple comparisons across cognitive variables.

Lateralised effects. As a post hoc analysis, we explored whether the
longitudinal effects observedin grey matter thickness was lateralised,
by subtracting right AIDP from the corresponding left AIDP, for: (i)
all AIDPs of grey matter thickness showing significance in the main
case-control analyses (across the hypothesis-driven and exploratory
approaches), withinthe SARS-CoV-2 group only (to avoid circularity);
(ii) all AIDPs of grey matter thickness across the entire cortex (151 pairs
of left-right matched IDPs), and testing for associations between the
left-right difference and the case-vs-control age modulated regressor.
Results were corrected for multiple comparisons using FDR and FWE.

Effect of time of SARS-CoV-2 infection. For 351 SARS-CoV-2 positive
participants who had a date available for infection (hence, in effect
excluding those identified through antibody lateral flow tests), we
furtherlooked post hoc at the possible effect of time interval between
infectionand second brainscan (acquired post-infection) on the signifi-
cant IDP from our hypothesis-driven approach, to evaluate whether a
longer interval might mean either areduced loss of grey matter through
potential progressive recovery of sensory inputs (olfaction), or greater
loss as afunction of alonger, ongoing degenerative process.

Impact of non-imaging factors. We ran an additional analysis to test
whether any non-imaging variables measured before SARS-CoV-2 in-
fection might explain post hoc the longitudinal effects observed in
our significant IDPs. We considered non-imaging variables with at



least 50% non-missing datain the participants (n=6,301). Weincluded
individually each of these variables as additional confound for arepeat
of the original Model 1 regression tests for those IDPs found to show
significant longitudinal differences between the two groups, for both
hypothesis-driven and exploratory approaches. If the strength of the
original association was reduced by more than 25%, based on the regres-
sion Z-statistics, we considered a non-imaging variable to potentially
explain the IDP-infection association. See Supplementary Analysis 7
for further details.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data and code availability

All source data is available (upon data access application) from UK
Biobank. Please see https://www.fmrib.ox.ac.uk/ukbiobank/covid/
for analysis code from this study, as well as at: https://doi.org/10.5281/
zen0do.5903258.

57.  Miller, K. L. et al. Multimodal population brain imaging in the UK Biobank prospective
epidemiological study. Nature neuroscience 19, 1523-1536, https://doi.org/10.1038/
nn.4393 (2016).

58. Alfaro-Almagro, F. et al. Image processing and Quality Control for the first 10,000 brain
imaging datasets from UK Biobank. Neurolmage 166, 400-424, https://doi.org/10.1016/j.
neuroimage.2017.10.034 (2018).

59. Littlejohns, T. J. et al. The UK Biobank imaging enhancement of 100,000 participants:
rationale, data collection, management and future directions. Nat Commun 11, 2624,
https://doi.org/10.1038/s41467-020-15948-9 (2020).

60. Smith, S. M. et al. An expanded set of genome-wide association studies of brain imaging
phenotypes in UK Biobank. Nat Neurosci 24, 737-745, https://doi.org/10.1038/s41593-021-
00826-4 (2021).

61.  Pauli, W. M., Nili, A. N. & Tyszka, J. M. A high-resolution probabilistic in vivo atlas of human
subcortical brain nuclei. Sci Data 5, 180063, https://doi.org/10.1038/sdata.2018.63 (2018).

62. Griffanti, L. et al. BIANCA (Brain Intensity AbNormality Classification Algorithm): A new
tool for automated segmentation of white matter hyperintensities. Neurolmage 141,
191-205, https://doi.org/10.1016/j.neuroimage.2016.07.018 (2016).

63. Wang, C. et al. Methods for quantitative susceptibility and R2* mapping in whole
post-mortem brains at 7T applied to amyotrophic lateral sclerosis. Neurolmage 222,
117216, https://doi.org/10.1016/j.neuroimage.2020.117216 (2020).

64. Iglesias, J. E. et al. A probabilistic atlas of the human thalamic nuclei combining ex vivo
MRI and histology. Neurolmage 183, 314-326, https://doi.org/10.1016/j.
neuroimage.2018.08.012 (2018).

65. Iglesias, J. E. et al. Bayesian longitudinal segmentation of hippocampal substructures in
brain MRI using subject-specific atlases. Neurolmage 141, 542-555, https://doi.
org/10.1016/j.neuroimage.2016.07.020 (2016).

66. lIglesias, J. E. et al. Bayesian segmentation of brainstem structures in MRI. Neurolmage
113, 184-195, https://doi.org/10.1016/j.neuroimage.2015.02.065 (2015).

67. Saygin, Z. M. et al. High-resolution magnetic resonance imaging reveals nuclei of the
human amygdala: manual segmentation to automatic atlas. Neurolmage 155, 370-382,
https://doi.org/10.1016/j.neuroimage.2017.04.046 (2017).

68. Neudorfer, C. et al. A high-resolution in vivo magnetic resonance imaging atlas of the
human hypothalamic region. Sci Data 7, 305, https://doi.org/10.1038/s41597-020-00644-
6(2020).

69. Alfaro-Almagro, F. et al. Confound modelling in UK Biobank brain imaging. Neurolmage
224, 117002, https://doi.org/101016/j.neuroimage.2020.117002 (2021).

70. Vickers, A. J. The use of percentage change from baseline as an outcome in a controlled
trial is statistically inefficient: a simulation study. BMC Med Res Methodol 1, 6,
https://doi.org/10.1186/1471-2288-1-6 (2001).

71.  Papst, |. et al. Age-dependence of healthcare interventions for COVID-19 in Ontario,
Canada. BMC Public Health 21, 706, https://doi.org/10.1186/s12889-021-10611-4
(2021).

72. Levin, A. T. et al. Assessing the age specificity of infection fatality rates for COVID-19:
systematic review, meta-analysis, and public policy implications. Eur J Epidemiol 35,
1123-1138, https://doi.org/10.1007/s10654-020-00698-1(2020).

Acknowledgements This work was primarily supported by a Wellcome Trust Collaborative
Award 215573/Z/19/Z. K.L.M. was supported by a Wellcome Trust Senior Research Fellowship
202788/7/16/Z. The Wellcome Centre for Integrative Neuroimaging (WIN FMRIB) is supported
by centre funding from the Wellcome Trust (203139/Z/16/Z). S.L. was supported by the Rina
M. Bidin Foundation Fellowship in Research of Brain Treatment and the Pacific Parkinson’s
Research Institute. P.K. was supported by the UK Research and Innovation (MR/S034978/1).
P.M.M. acknowledges generous personal and research support from the Edmond J. Safra
Foundation and Lily Safra, an NIHR Senior Investigator Award, the UK Dementia Research
Institute and the NIHR Biomedical Research Centre at Imperial College London. This research
has been conducted in part using the UK Biobank Resource under Application Number 8107.
We are grateful to UK Biobank for making the data available, and to all UK Biobank study
participants, who generously donated their time to make this resource possible. We would like
to thank Profs. Bruce Fischl and Doug Greve on guidance with the FreeSurfer analyses.
Analysis was carried out at the Oxford Biomedical Research Computing (BMRC) facility. BMRC
is a joint development between the Wellcome Centre for Human Genetics and the Big Data
Institute, supported by Health Data Research UK and the NIHR Oxford Biomedical Research
Centre.

Author contributions G.D., S.L., F. A.-A., C.A.,, CW., P.McC., F.L., JLRA. LG, E.D, S.J., KLM.
and S.M.S. created, extracted and organised the imaging and clinical data. S.M.S. carried out
the imaging analyses. BT, AAM\W., and T.E.N co-supervised the statistical analyses. R.C., PM.M,
N.A., K.L.M. and S.M.S. contributed to the creation of the UK Biobank COVID-19 re-imaging
project. G.D., P.K., K.L..M. and S.M.S conceived the brain imaging study. G.D. interpreted the
results. G.D. and S.M.S. wrote the paper. All co-authors revised the paper.

Competing interests R.C. has been seconded from the University of Oxford as Chief Executive
and Principal Investigator of UK Biobank, which is a charitable company. N.A. is Chief Scientist
for UK Biobank. P.M.M. acknowledges consultancy fees from Novartis, and Biogen He has
received recent honoraria or speakers’ honoraria and research or educational funds from
Novartis, Bristol Myers Squibb and Biogen. P.M.M. serves as the honorary Chair of the UK
Biobank Imaging Working Group and as an unpaid member of the UK Biobank Steering
Committee. He is Chair of the UKRI Medical Research Council Neurosciences and Mental
Health Board.

Additional information

Supplementary information The online version contains supplementary material available at
https://doi.org/10.1038/s41586-022-04569-5.

Correspondence and requests for materials should be addressed to Gwenaélle Douaud.
Peer review information Nature thanks Randy L. Gollub, John Van Horn and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer
reports are available.

Reprints and permissions information is available at http://www.nature.com/reprints.


https://www.fmrib.ox.ac.uk/ukbiobank/covid/%20
https://doi.org/10.5281/zenodo.5903258
https://doi.org/10.5281/zenodo.5903258
https://doi.org/10.1038/nn.4393
https://doi.org/10.1038/nn.4393
https://doi.org/10.1016/j.neuroimage.2017.10.034
https://doi.org/10.1016/j.neuroimage.2017.10.034
https://doi.org/10.1038/s41467-020-15948-9
https://doi.org/10.1038/s41593-021-00826-4
https://doi.org/10.1038/s41593-021-00826-4
https://doi.org/10.1038/sdata.2018.63
https://doi.org/10.1016/j.neuroimage.2016.07.018
https://doi.org/10.1016/j.neuroimage.2020.117216
https://doi.org/10.1016/j.neuroimage.2018.08.012
https://doi.org/10.1016/j.neuroimage.2018.08.012
https://doi.org/10.1016/j.neuroimage.2016.07.020
https://doi.org/10.1016/j.neuroimage.2016.07.020
https://doi.org/10.1016/j.neuroimage.2015.02.065
https://doi.org/10.1016/j.neuroimage.2017.04.046
https://doi.org/10.1038/s41597-020-00644-6
https://doi.org/10.1038/s41597-020-00644-6
https://doi.org/10.1016/j.neuroimage.2020.117002
https://doi.org/10.1186/1471-2288-1-6
https://doi.org/10.1186/1471-2288-1-6
https://doi.org/10.1186/s12889-021-10611-4
https://doi.org/10.1007/s10654-020-00698-1
https://doi.org/10.1038/s41586-022-04569-5
http://www.nature.com/reprints

Article

- Age at Scan 1
[ 1SARS-CoV-2
50 [ coentrol

40
30
20

10

0
45 50 55 60 65 70 75 80 85

Age at Scan 2

; [ 1SARS-CoV-2
50| [IcControl

40.
30}
20}

10+

ok

45 50 55 60 65 70 75 80 85

Extended DataFig.1|Agedistributionsfor SARS-CoV-2 positive
participants and controls at each timepoint do not differ significantly.
Two-sample Kolmogorov-Smirnov was used tocompute the P values for age
comparisons, since age for each group was not normally distributed (Lilliefors
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significant differencein age distribution between SARS-CoV-2 participants and
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

X

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

XX X XD

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

X

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

O 000 00d0gs

[ X X
X OO X

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Data were obtained from UK Biobank (available from UK Biobank upon data access application)

Data analysis Data were analysed using the latest versions of FSL and FreeSurfer, and using MATLAB code supplied.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy
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All source data is available (upon data access application) from UK Biobank. See https://www.fmrib.ox.ac.uk/ukbiobank/covid/ for analysis code from this study.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size was determined by data availability from UK Biobank. Exact samples sizes are listed in Methods.

Data exclusions  Extreme outlier values were removed on the basis of being more extreme than 8 times the median absolute deviation from the median for a
given variable of interest (see Methods for full details).

Replication N/A
Randomization  N/A

Blinding N/A

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChlIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |:| |Z MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data

OXXOOOO

Dual use research of concern

Human research participants

Policy information about studies involving human research participants

Population characteristics SARS-CoV-2 status based on primary care/hospital/public health records or two positive antibody lateral flow test positive
results.
Recruitment This study is part of the UK Biobank COVID-19 re-imaging project, which has imaging pre-pandemic for thousands of

participants, and focused on inviting back for a second scan participants who had been infected with SARS-CoV-2, and
matched controls (in terms of age, interval between scans, sex, ethnicity). Biases include those known for the UK Biobank, i.e.
a generally wealthier, healthier, and less ethnically diverse population. Specific bias for the COVID-19 re-imaging project is
that, because it is based on volunteering of previous UK Biobank participants, those who have been infected by SARS-CoV-2
tended to have milder symptoms (which can be seen as a strength rather than a weakness of this study).

Ethics oversight Human subjects: UK Biobank has approval from the North West Multi-centre Research Ethics Committee (MREC) to obtain
and disseminate data and samples from the participants (http://www. ukbiobank.ac.uk/ethics/), and these ethical regulations
cover the work in this study. Written informed consent was obtained from all participants. A statement on this is included in
the paper.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration | Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.
Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Qutcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Magnetic resonance imaging

Experimental design

Design type UK Biobank brain imaging data resting-state functional scans
Design specifications N/A

Behavioral performance measures ~ N/A

Acquisition
Imaging type(s) UK Biobank brain imaging data: structural (T1, T2 fluid attenuation inversion recovery and susceptibility-weighted),
diffusion, and resting-state functional scans. See Methods for full details.
Field strength 3T
Sequence & imaging parameters Please see Miller et al., Nature Neuroscience 2016 for a full list of the imaging parameters.
Area of acquisition Whole brain
Diffusion MRI X Used [ ] Not used

Parameters Diffusion data are acquired with two b-values (b = 1,000 and 2,000 s/mm?2) at 2-mm spatial resolution, with multiband acceleration
factor of 3 (three slices are acquired simultaneously instead of just one). For each diffusion-weighted shell, 50 distinct diffusion-
encoding directions were acquired (covering 100 distinct directions over the two b-values). (No cardiac gating.)

Preprocessing

Preprocessing software FSL5.0.9, Freesurfer 6 and Freesurfer 7 for subcortical segmentations.

Normalization Whenever applicable spatial normalisation was required (please see Miller et al., Nature Neuroscience 2016, and Alfaro-
Almagro et al., Neuroimage 2018), non-linear registration was used based on the structural images (usually T1).

Normalization template MNI152 and UK Biobank.
Noise and artifact removal Please see full details in Miller et al., Nature Neuroscience 2016
Volume censoring N/A

Statistical modeling & inference

Model type and settings Regression/correlation (see Methods for full details).
Effect(s) tested Effects of SARS-CoV-2 modulated by age (model based on a published meta-regression of 28 studies) - see Methods for
details.

Specify type of analysis: [ | Whole brain [ | ROI-based  [X] Both

ROI ("imaging-derived phenotypes", IDPs) cover the entire brain, and the entire cortical surface for
Anatomical location(s) FreeSurfer generated ROIs. In addition, we have created some visualisations of the effects voxel-wise and
vertex-wise.

Statistic type for inference N/A
(See Eklund et al. 2016)

-]
Q
=
<
@)
o
o
=
9
>
0
o
o
=
2
(@]
wv
C
3
3
Q
=
<

Lcoc y21opy




Correction All results are (at least) false-discovery rate (FDR) significant, and we also report their family-wise error (FWE) corrected p-
values.
Models & analysis

n/a | Involved in the study
|:| |Z Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Based on partial correlation

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).
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Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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