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Abstract: Almost two years have passed since the outbreak reported for the first time in Wuhan of 
coronavirus disease 2019 (COVID-19), due to severe acute respiratory syndrome (SARS)-CoV-2 
coronavirus, rapidly evolved into a pandemic. This infectious disease has stressed global health 
care systems. The mortality rate is higher, particularly in elderly population and in patients with 
comorbidities such as hypertension, diabetes mellitus, cardiovascular disease, chronic lung 
disease, chronic renal disease, and malignancy. Among them, subjects with diabetes have a high 
risk of developing severe form of COVID-19 and show increased mortality. How diabetes 
contributes to COVID-19 severity remains unclear. It has been hypothesized that it may be 
correlated with the effects of hyperglycemia on systemic inflammatory responses and immune 
system dysfunction. Vitamin D (VD) is a modulator of immune-response. Data from literature 
showed that vitamin D deficiency in COVID-19 patients increases COVID-19 severity, likely 
because of its negative impact on immune and inflammatory responses. Therefore, the use of 
vitamin D might play a role in some aspects of the infection, particularly the inflammatory state 
and the immune system function of patients. Moreover, a piece of evidence highlighted a link 
among vitamin D deficiency, obesity and diabetes, all factors associated with COVID-19 severity. 
Given this background, we performed an overview of the systematic reviews to assess the 
association between vitamin D supplementation and inflammatory markers in patients with 
diabetes; furthermore, vitamin D’s possible role in COVID-19 patients was assessed as well. Three 
databases, namely MEDLINE, PubMed Central and the Cochrane Library of Systematic Reviews, 
were reviewed to retrieve the pertinent data. The aim of this review is to provide insight into the 
recent advances about the molecular basis of the relationship between vitamin D, immune 
response, inflammation, diabetes and COVID-19. 
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1. Introduction 
In late December 2019, the first pneumonia cases caused by severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2) occurred [1]. By 11 March 2020, the WHO (World 
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Health Organization) had declared the COVID-19 outbreak a global pandemic [2]. Up to 
1 February 2022, 378,716,963 cases and 5,675,536 deaths were reported across the world 
[3]. This disease includes asymptomatic forms and different clinical manifestations [4]. 
Because of the rapid spread and high mortality rate of COVID-19, major efforts have been 
made to evaluate the possible risk factors affecting the progression of the disease in 
COVID-19 patients [5]. Elderly subjects and patients with comorbidities, such as diabetes 
mellitus (DM), hypertension, cardiovascular disease, chronic obstructive pulmonary 
disease and chronic renal insufficiency, are more likely to suffer from severe COVID-19, 
showing a higher mortality rate [6–10]. Overall, DM represents one of the most relevant 
chronic diseases that impacts hospitalization and mortality rates, with relevant economic 
repercussions on health care systems. It has been estimated that, in 2019, the prevalence 
of DM among adults was 463 million worldwide [11]. This disease represents the second 
most-frequent comorbidity in subjects affected by severe COVID-19 infection, after 
hypertension [12]. Different studies highlighted that DM is associated with disease 
severity, poor prognosis and mortality among COVID-19 patients [13–15]. However, 
systemic inflammatory response, increased coagulation activity, immune response 
impairment and direct pancreatic damage by SARS-CoV-2 might underpin the 
association between diabetes and COVID-19 [13,16,17]. It was demonstrated that 
elevated levels of pro-inflammatory cytokines were present in patients with severe 
COVID-19 and DM [18]. Moreover, a higher expression of ACE2 in human lung tissue 
has been associated with DM and its related treatments, which might increase sensitivity 
to SARS-CoV-2 infections [19]. Lastly, the level of glycated dysfunctional hemoglobin 
may contribute to the hypoxia in COVID-19 patients, most often those who are anemic, at 
later stages [20]. Therefore, it could be hypothesized that the combination of SARS-CoV-2 
infection and DM might represent a negative condition that tends to complicate the 
course of the disease [21]. 

Vitamin D is a well-known hormone with principal effect on bone health, but 
different data has shown the extra-skeletal activities of vitamin D, such as the 
anti-inflammatory, antioxidant and immunomodulatory ones [22]. Many observational 
and epidemiological studies have suggested an association between vitamin D 
insufficiency and the incidence of type 1 and type 2 DM [23–26]. Furthermore, an intake 
of high monthly doses of vitamin D proved efficacious in reducing c-reactive protein 
(CRP) levels. 

In fact, COVID-19 is characterized by high levels of inflammatory markers, 
including CRP, and increased levels of inflammatory cytokines and chemokines [27,28]. 
Given this background, we conducted an overview of the available systematic reviews to 
summarize the current knowledge and evidence about the role of vitamin D on the 
inflammatory process in patients affected by DM. Moreover, based on literature data, we 
aimed to indicate the possible role of vitamin D supplementation in the setting of patients 
affected by COVID-19. 

2. Materials and Methods 
2.1. Eligibility Criteria 

All the meta-analyses and systematic reviews (SRs) regarding the association 
between vitamin D supplementation and inflammatory markers in patients with diabetes 
were eligible for this review. 

2.2. Search Methods 
On 13 September 2021, at 22:00 p.m. (GMT-5, Bethesta, MD, USA), a literature search 

was performed within the database of MEDLINE, PubMed Central and the Cochrane 
Library of Systematic Reviews (CLSR); the following search strings were used: (“vitamin 
d” [MeSH Terms] OR “vitamin d” [All Fields] OR “ergocalciferols” [MeSH Terms] OR 
“ergocalciferols” [All Fields] OR (“ergocalciferols “[MeSH Terms] OR” ergocalciferols 
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“[All Fields] OR” ergocalciferol “[All Fields]) OR (“cholecalciferol “[MeSH Terms] OR” 
cholecalciferol “[All Fields] OR” cholecalciferols “[All Fields] OR” colecalciferol “[All 
Fields]) OR (“calcitriol “[MeSH Terms] OR” calcitriol “[All Fields] OR” calcitriols “[All 
Fields])) AND (“inflammation “[MeSH Terms] OR” inflammation “[All Fields] OR 
“inflammations” [All Fields] OR “inflammations” [All Fields] OR (“inflammatories” [All 
Fields] OR “inflammatory” [All Fields]) OR “TNF” [All Fields] OR (“interleukine” [All 
Fields] OR “interleukines” [All Fields] OR “interleukins” [MeSH Terms] OR 
“interleukins” [All Fi elds] OR “interleukin” [All Fields]) OR (“cytokin” [All Fields] OR 
“cytokine s” [All Fields] OR “cytokines” [MeSH Terms] OR “cytokines” [All Fields] OR 
“cytokine” [ All Fields] OR “cytokinic” [All Fields] OR “cytokins” [All Fields]). 

2.3. Study Selection 
Two authors (RMB and MLM) independently reviewed the titles, abstracts and full 

texts of the retrieved articles, to determine their potential inclusion using the eligibility 
criteria. Any disagreement was resolved by discussion with a third author (SC), and, 
when only limited information was available, the authors of the study were contacted to 
request the full text or further details. 

2.4. Data Extraction, Coding and Analysis 
Two authors (RMB and MLM) collected data from all the included articles using a 

pre-tested form and individuated duplicates and prepared the flow-chart of the excluded 
and included studies. SC and CA independently verified the entire process (Figure 1). 
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Figure 1. Flow diagram of the study selection process. 

2.5. Quality Assessment of the Included Systematic Reviews 
Two authors (RMB, MLM) assessed the quality of the included SRs by means of 

AMSTAR (a measurement tool to checklist assess systematic reviews), which is a 
validated tool to assess the methodological quality of SRs. It includes 11 domains, such as 
the a priori protocol documentation, scientific quality and risk-assessment publication 
bias. Based on AMSTAR evaluations, we ordered the derived scores into tertiles and 
classified the methodological quality of each review in three categories: “high” (8–11 
points out of 11), “moderate” (4–7 points) and “low” (3 or fewer points). (Table 1). 
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Table 1. AMSTAR assessment for each systematic review regarding the association between 
vitamin D supplementation and inflammatory markers in patients with DM. Colors refer to scores: 
Green refers to “high scores” (8–11 points) and yellow to “moderate” (4–7 points). No systematic 
review had a “low” (<3 points) evaluation. 

  High Moderate Low 

Vitamin D Omid Asbaghi (2019) [29]    

Sheila A. FisherID (2019) [30]    

Yanting Yu (2017) [31]    
Mohsen Mazidi (2018) [32]    

Tari Agbalalah (2017) [33]    
Neng Chen (2014) [34]    

3. Results 
The data of patients with DM were extracted and tabulated according to the result of 

each trial. Figure 1 shows the flow diagram of the study selection process. To ensure the 
highest data recruitment possible, initially we searched all the papers regarding vitamin 
D and cytokines; thereafter we extracted data about the patients with diabetes. The 
search strings we used permitted us to retrieve 223 bibliographic citations. These were 
screened, and 129 papers fit the eligibility criteria. Then, ninety-four studies were 
excluded because they were duplicates, six papers were removed because they were not 
systematic reviews or meta-analysis and twenty-nine articles were not taken into 
consideration as they were not pertinent to the aim of our overview. Thus, we finally 
identified six relevant papers, which were investigated for the details that pertain to this 
overview of the SRs. Table 1 shows the summary of the AMSTAR assessment. No SR 
regarding the vitamin D had low-quality results. Hence, we extracted each randomized 
clinical trials including patients with diabetes from every systematic review. The data 
from each randomized clinical data are reported in Table 2.  
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Table 2. Clinical trial data extracted for each meta-analysis reporting vitamin D supplementation in patients with diabetes. 

Clinical Trial Data Extracted for Each Meta-Analysis Reporting Vitamin D Supplementation in Patients with Diabetes 

Meta-Analy

sis 

Study Sample 

Size 

Population  Posology Intervention 

Duration Range 

Endpoint Efficacy 

Omid 

Asbaghi 

(2020) 

[29] 

Tabesh 2014 59 Patients with type 2 diabetes mellitus 1000 mg/day Ca carbonate + 

50,000 IU/wk Vitamin D3 

8 weeks CRP 

IL-6  

TNF-α 

We found a beneficial effect 

of vitamin D-calcium 

co-supplementation on 

serum CRP concentrations 

while there was no effect on 

IL-6 and TNF-α 

Sheila A. 

Fisher (2019) 

[30] 

Bogdanou 2017 39 Patients with recent onset of >2 

months or chronic type 1 diabetes 

4000 IU/day Vitamin D3 for 

three months (120,000 

IU/monthly) 

6, 12 weeks CD4+CD25+ 

CD127  

Vitamin D improves the 

absolute T regulatory cells 

numbers and phenotypes in 

patients with diabetes Gabbay 2012 38 Patients with a new diagnosis of type 

1 diabetes (T1DM) 

2000 IU/day Vitamin D3 for 18 

months (60,000 IU monthly) 

6, 12, 18 months CD4+CD25+ 

Foxp3+ in 

Peripheral 

blood 

Treiber 2015 30 Young patients with new-onset type 1 

diabetes 

70 IU/kg/day Vitamin D3, 

weekly for 12 months 

(loading dose 140 IU/kg/day for 

1 month) (4200 IU for one month 

then 2100 IU monthly) 

3, 6, 12 months CD4+CD25hi 

FoxP3+ 

CD127low in 

CD4+ cells 

Yanting Yu 

(2018) 

[31] 

Breslavsky 2013 47 Patients with type 2 diabetes mellitus 1000 IU/day Vitamin D3 52 weeks CRP 

TNF-α 

IL-6 

Vitamin D supple-mentation 

is benefi-cial for the 

reduction of hs-CRP 

inT2DM subjects but does 

not have a signifi-cant 

Farrokhian 2016 60 Patients with type 2 diabetes mellitus 25,000 IU/week Vitamin D3 26 weeks 

Asemi 2016 66 Patients with type 2 diabetes mellitus 200 IU/day Vitamin D3 12 weeks 

Tuomainen 2015 68 Patients with type 2 diabetes mellitus 1600 – 3200  IU/day Vitamin D3 20 weeks 

Sadiya 2015 82 Patients with type 2 diabetes mellitus 3000 – 6000  IU/day Vitamin D3 12 weeks 
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Gagnon 2014 80 Patients with type 2 diabetes mellitus 2000 IU/day Vitamin D3 26 weeks influence on TNF-α and IL-6 

in T2DM subjects. Tabesh 2014 118 Patients with type 2 diabetes mellitus 50,000 IU/week Vitamin D3 8 weeks 

Ghavamzadeh 2014 51 Patients with type 2 diabetes mellitus 400 IU/day Vitamin D3 14 weeks 

Dalan 2016 64 Patients with type 2 diabetes mellitus 2000–4000 IU/day Vitamin D3 16 weeks 

Jafari 2016 59 Patients with type 2 diabetes mellitus 2000 IU/day Vitamin D3 12 weeks 

Al-Sofiani 2015 20 Patients with type 2 diabetes mellitus 5000 IU/day Vitamin D3 12 weeks 

Akbarzadeh 2013 70 Patients with type 2 diabetes mellitus 20 IU/day Vitamin D3 12 weeks 

Neyestani 2012 90 Patients with type 2 diabetes mellitus 500 IU/day Vitamin D3 12 weeks 

Mohsen 

Mazidi 

(2018) 

[32] 

Breslavsky 2013 47 Patients with type 2 diabetes mellitus 1000 IU/day Vitamin D3 6 months CRP 

TNF-α 

IL-6 

Vitamin D supplemen-tation 

had no impact on serum 

CRP and TNF-α, while 

significantly increased 

serum IL6.   

Ohk-Hyun Ryu 2014 50 Patients with type 2 diabetes mellitus 2000 IU/day Vitamin D3 24 weeks 

Tina K. Thethi, 2015 55 Patients with type 2 diabetes mellitus 1 mcg/day Paricalcitol 3 months 

Ulla Kampmann 2014 15 Patients with type 2 diabetes mellitus 5600–11,200 IU/day Vitamin D3 12 weeks 

Tari 

Agbalalah 

(2017) 

[33] 

Sugden 2008 34 Patients with type 2 diabetes mellitus 100.000 IU Vitamin D3 8 weeks EF measured 

by FBF or 

FMD. 

Significant increase of 2.35 ± 

3.12% in FMD 

Witham 2010 58 Patients with type 2 diabetes mellitus 100.000–200,000 IU Vitamin D3 16 weeks No change in FMD at both 

100,000 IU and 200,000 IU 

Brevlasky et al. 2013 47 Patients with type 2 diabetes mellitus 1000 IU/day Vitamin D3 52 weeks CRP No change in hs-CRP 

Yiu et al. 2013 100 Patients with type 2 diabetes mellitus 5000 IU/day Vitamin D3 12 weeks FMD and 

CRP 

No change in both 

endothelial 

and inflammatory markers 

measured  

Neng Chen 

(2014) 

[34] 

Breslavsky 2013 47 Patients with type 2 diabetes mellitus 1000 IU/day Vitamin D3 48 weeks CRP Vitamin D supplemen-tation 

is beneficial for the reduction 

of circu-lating hs-CRP 

Shab-Bidar 2012 100 Patients with type 2 diabetes mellitus 1000 IU/day Vitamin D3 12 weeks CRP 

CRP = C-Reactive Protein, FoxP3 = Forkhead box P3, TNF-α =Tumor necrosis factor-α IL-6 = interleukin-6, EF = Endothelial Function, FBF = Forearm 
Blood Flow , FMD = Flow Mediated Dilation.
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The SRs that have been taken into consideration were heterogenous in different 
aspects: patient characteristics, type of treatment, end-points and measured variables. 
However, this heterogeneity enriched the final analysis. Six SRs were included, with a 
follow-up duration between six and fifty-two weeks. Both patients with diabetes type 1 
and type 2 were represented. The vitamin D doses used in these studies were widely 
variable. Three out of six SRs demonstrated a clear efficacy of the supplementation as to 
CRP reduction; one SR showed a statistically significant reduction of interleukin-6 (IL6) 
with vitamin D intake. Table 2 shows the various dosages used in each study. In their 
systematic review, Asbaghi et al., analyzing the only randomized clinical trial including 
subjects with type 2 diabetes, showed that 50,000 IU/week of vitamin D determined a 
reduction of serum CRP concentrations (−1.19 µg/mL ± 0.25); similarly, Chen and 
colleagues found that 1000 IU/day decreased CPR levels [CPR −0.40 (−1.12, 0.31]. 
According to Yanting Yu et al., the vitamin D supplementation significantly decreased 
the hs-CRP level by an average of 0.45 µg/mL [p = 0.005], particularly using a daily dose 
≤4000 IU with a supplementation time >12 weeks [p = 0.008]. On the contrary, these 
authors showed no impact of the supplementation on TNF-α and IL-6 concentrations. On 
the other hand, Mazidi et al. showed that vitamin D supplementation had no impact on 
CRP, IL-10 and TNF-α, whereas IL6 serum levels were detrimentally and significantly 
increased by the administration of vitamin D [0.67 pg/mL)]. Agbalalah and colleagues 
reported that, in patients with type 2 DM, a single-dose administration of 100,000 IU of 
vitamin D2 resulted, after 8 weeks, in a significant improvement of endothelial function, 
measured by flow-mediated dilation (FMD) [increase of 2.35 ± 3.12% in FMD from a 
baseline of 6.38 ± 4.31% (p = 0.048)]. According to Fisher et al., in patients with type 1 
diabetes, different doses of vitamin D caused a higher proportion of T regulatory cells in 
comparison with controls [+6.4% (DS 0.8%) of CD4+CD25+CD127, +4.55% ± 1.5% of 
CD4+CD25+Foxp3+, +22.2 ± 47.2% of CD4+CD25hi FoxP3+CD127low in CD4+ cells, 
respectively]. 

4. Discussion 
SARS-CoV-2 is the novel coronavirus agent of the severe acute respiratory 

syndrome that brought about the COVID-19 pandemic [35]. The CoV genome encodes 
four main proteins: spike, membrane, nucleocapsid and envelope [36,37]. The virus’ 
spike protein is responsible for the virus entry into host cells by recognizing and binding 
to a few receptors, such as ACE2, CD147 and sialic acid molecules. The viral spike protein 
that binds to the cell membrane receptors is proteolyzed by the transmembrane serine 
protease 2, which facilitates its entry into target cells [38,39]. Once in the cell, the viral 
RNA genome is released into the cytoplasm to begin its replication process [40]. The 
virus can negatively regulate the expression of ACE2, leading to the upregulation of 
angiotensin II (Ang II). Ang II interacts with Ang II type 1 receptor (AT1R) to regulate 
nuclear factor-κb (NF-κB) signaling pathways, as well as the activation of macrophages, 
which leads to an overproduction of pro-inflammatory cytokines [41]. The key factor, in 
this positive feedback loop is IL-6, which causes cytokines to be released out of control 
[42]. IL-6 is an important functional marker of cellular senescence, and the age-dependent 
increase in IL-6 amplifier may correspond to the age-dependent increase in COVID-19 
mortality [42,43]. More recent studies have also unveiled potential roles of ACE2 in 
regulating immune responses rather than simply being a viral linkage receptor in 
COVID-19 [42,44–48]. Once ligated to SARS-CoV-2, the expression of ACE2 on the host 
cell surface was significantly decreased. IL-6 in toll-like receptor signaling pathway could 
influence the immune system as a downstream effector [42,44–48]. Dysregulation of 
ACE2 induced by SARS-CoV-2 infection may further cause cytokine storms and 
pneumonia. Many more detailed pro-inflammatory and detrimental phenomena have 
been equally described, based on the interaction of SARS-CoV-2 and CD147 and sialic 
acid membrane receptors [20,49–53]. This increased cytokine production is usually 
defined as “cytokine storm”. It also triggers a pathogenic inflammatory immune 
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response, leading to severe multi-organ failure and death in patients with COVID-19 
[54–56]. 

4.1. Cytokine Storm 
Cytokine storm denomination has been used to describe hyperactive immune 

responses that can be initiated by a variety of factors, such as viral infections, 
autoimmune diseases and immunotherapies [57–59] Cytokine storms lead to the 
elimination of pathogenic microorganisms but also cause tissue toxicity affecting 
different organs [54,60]. Cytokine release syndrome (CRS), a type of systemic 
inflammation syndrome caused by cytokine storm, has been previously reported in 
patients infected with SARS-CoV and MERS-CoV. During viral infection, 
damage-associated molecular patterns (DAMPs) and pathogen-associated molecular 
patterns (PAMPs) can activate antiviral responses in nearby cells and recruit innate and 
adaptive immune cells, such as macrophages, natural killer (NK) cells and gamma delta 
(gd T) cells (Figure 1) [61–66]. Downstream production of interferons promotes 
intracellular antiviral defenses in neighboring epithelial cells. These may limit viral 
spread, whereas the release of IL-6 and IL-1b from other immune cells invokes the 
recruitment of neutrophils and T cells [62]. T-cell activation or immune cell lysis prompts 
the secretion of IFN-g and TNF-a, leading to the activation of immune cells and 
endothelial cells, with the further release of pro-inflammatory cytokines in a positive 
feedback loop [60]. These inflammatory mediators may promote thrombus formation 
[66]. This process, called immune-thrombosis, can also amplify cytokine production, and 
is illustrated by the binding of thrombin to inflammasome activation and IL-1 production 
[67]. Because vascular endothelial cells are exposed to circulating cytokines and other 
immune mediators, coagulation defects (such as capillary leak syndrome, thrombus 
formation and even DIC) may also be caused by endothelial cell dysfunction in cytokine 
storms, highlighting the crosstalk between hemostasis and cytokines [61,66]. The 
cytokine storm not only limits further spread of the virus but also induces secondary 
tissue damage through the secretion of massive amounts of active mediators and 
inflammatory factors [55–66,68–70]. The inhibition of this self-amplifying inflammatory 
cascade may not only control tissue damage but also impair viral clearance. 

In COVID-19, Huang et al. had noted that patients in intensive care units (ICUs) had 
higher levels of plasma inflammatory cytokines IL-2, IL-7, IL-10, G-CSF (granulocyte 
colony-stimulating factor), IFN-γ and MCP, and TNF-α compared to patients not in ICUs 
[71]. These cytokines not only suggested the presence of Th1 answers but also the 
presence of Th2 answers in COVID-19. Furthermore, monocyte activation may imply that 
the cytokine storm in COVID-19 is closely correlated with disruption of the balance 
between innate and adaptive immunity. Recently, studies also showed that the level of 
IL-6 in severe cases was markedly higher than that in mild and moderate cases, but the 
levels of CD4+ T cells, CD8+ T cells and NK cells were decreased, indicating 
immunosuppression in severe COVID-19 patients [68]. Meanwhile, T lymphocyte cells 
were over-activated during cytokine storm in COVID-19 patients, which may be 
accompanied by severe immune dysfunction [72]. In a recent systematic review based on 
autopsy findings, in lung specimen and other organs, fibrin thrombi associated with 
increased CD61 positive platelets and megakaryocytes in pre-capillary and post-capillary 
vessels without complete luminal obstruction were observed in specimens collected from 
patients with COVID-19 [73]. Thus, a cytokine storm can directly damage the pulmonary 
capillary mucosa, promote alveolar oedema and further induce the spread of 
inflammatory cytokines, resulting in damage to alveolar structure and dysfunction in 
pulmonary ventilation [73,74]. In the same way, cytokine storm is also associated with 
the sequence and severity of organ dysfunction in multiple organ dysfunction syndrome 
(MODS) [69]. Hence, cytokine storm may be considered an important factor influencing 
the fate of patients with COVID-19 multi-organ disease. 
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4.2. Innate and Adaptive Immune Response and COVID-19 
Innate and adaptive immune reactions cooperate with each other to produce 

immune protection [4]. Innate immune responses occur immediately after infection and 
are typically involved in virus removal, but it has a diminished antiviral capacity. 
Adaptive immunity is the key factor in the complete eradication of the virus [4]; this 
immune pathway needs 4 to 7 days to be activated after the occurrence of the infection. If 
an effective adaptive antiviral response is not generated in time to suppress the virus, 
innate immune responses will potentiate but are unable to effectively eradicate the virus, 
and this also leads to systemic inflammatory responses with the irrepressible release of 
inflammatory cytokines [75–78]. Elderly patients and those with chronic diseases need a 
longer period of time to generate adaptive and innate immune responses because of cell 
senescence. These patients rely only on the enhancement of antiviral innate immune 
responses in the early stages of infection, generating a higher risk of cytokine storms; 
thus a more rapid evolution towards severe disease is expected. It is still unclear whether 
the immune hyperactivity is due to ongoing viral replication or immune dysregulation 
[66]. Lastly, the NLR family pyrin domain containing 3 (NLRP3) is the most 
acknowledged inflammasome pattern which takes place in COVID-19, including most of 
the immune-inflammatory pathways elucidated above. 

Interestingly, diabetic patients show an upregulated NRLP3 pathway [79] which 
could be one of the possible explanations of their susceptibility to this viral infection. At 
the same time, it was shown that, among the possible compounds that specifically target 
the NRLP3 inflammasome, vitamin D proved to downregulate this pathway, inhibiting 
IL-1β secretion in macrophages in vivo [80]. 

Taken together, viral escape to avoid antiviral immunity, may compromise viral 
clearance, resulting in inappropriate immune activation and, consequently, causing 
cytokine storms [81]. Thereby, this activation of innate immunity may be an important 
factor in the development of cytokine storms in COVID-19 [82]. 

4.3. Vitamin D 
Vitamin D, a secosteroid hormone, regulates calcium and phosphate homeostasis 

but also cell proliferation and differentiation. It plays a vital role in keeping the 
mineralized skeleton healthy, and it also plays a crucial function in the response of the 
immune system [83,84]. Experimental and animal studies have shown, firstly, that 
vitamin D has important biological activities on the innate and adaptive immune system 
and, secondly, that the administration of vitamin D changes the onset and progression of 
various immune-factor diseases [85]. Humans get their vitamin D from sunlight, diet and 
supplements. The two main forms are: vitamin D2 or ergocalciferol and vitamin D3 or 
cholecalciferol. After entering the circulation, vitamin D (D expresses both vitamin D2 
and D3) is metabolized by vitamin D-25-hydroxylase (CYP2R1) in the liver to 
25-hydroxyvitamin D or calcifediol [25 (OH) D]. 25 (OH) D is further metabolized, 
mainly in the kidneys, by the enzyme 25-hydroxyvitamin D-1α-hydroxylase (CYP27B1) 
into the active form, 1,25-dihydroxyvitamin or calcitriol (CT) [1,25 (OH)2 D] [84,86]. 
Then, 1,25 (OH)2 D employs its physiological functions by binding to the vitamin D 
receptor (VDR) in the cytoplasm of cells, stimulating the heterodimerization of the VDR 
with the retinoid X receptor (RXR), forming a VDR-RXR-hormone complex [15]; in the 
nucleus, it leads to the up- or downregulation of a multitude of genes [84]. Kidneys are 
the primary site of the conversion of 25 (OH) D to systemically bioavailable 1,25 (OH)2 D. 
CYP27B1 is also expressed by many other tissues, including activated macrophages, 
parathyroid glands, microglia, breast, colon and keratinocytes, wherein 1,25 (OH)2 D is 
produced and exercises its autocrine and paracrine function [83,85,87]. 

During an infection, macrophages and monocytes are recruited to the inflammatory 
site; the exposure to inflammatory cytokines expresses CYP27B1, which converts 25 (OH) 
D to 1,25 (OH)2 D [88]. Then, 1,25 (OH)2 D develops the antimicrobial activities of 
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macrophages and monocytes. Furthermore, 1,25 (OH)2 D suppresses the expression of 
toll-like receptors on monocytes and inhibits the production of some inflammatory 
cytokines such as IL-2, IL-6 and IL-17 [85,89,90]. Experimental studies have also shown 
that natural killer (NK) cell differentiation and function can be modulated by 1,25 (OH)2 
D administration. At present, the data regarding the influence of 1,25 (OH)2 D on NK 
cells are still inconsistent [91–93]. 

Through multiple genomic and extragenomic pathways, numerous experimental 
studies have demonstrated that vitamin D and its metabolites modulate endothelial 
function and vascular permeability [94]. Other studies have indicated that 1,25 (OH)2 D3 
is a transcriptional regulator of endothelial nitric oxide synthase (eNOS). This causes the 
upregulation of eNOS gene expression and consequently, an increase in endothelial nitric 
oxide production [93,95,96]. In local and systemic inflammation, vitamin D and its 
metabolites employ pleiotropic effects on vascular endothelium that are protective 
against vascular dysfunction and tissue damage [97,98]. Vitamin D may also activate 
hepcidin-antagonist pathways, regulating the hepcidin-ferroportin axis, which can be of 
help in COVID-19, for which hyperferritinemia is one of the major negative prognostic 
factors [20]. Vitamin D3 may also have an anticoagulant effect, in contrast to 
cholecalciferol insufficiency, which may be pro-thrombotic [99]. Recent studies showed 
that, in intensive care patients, 100,000 IU/day of cholecalciferol for five days resulted in 
higher and lower levels of hemoglobin and hepcidin, respectively. Cholecalciferol 
showed upregulatory epigenetic action on a few antioxidant systems too [100]. 

It was observed that a drastic shift from the proinflammatory state to a more 
regulated immune-inflammatory activity is achieved as a result of the local production of 
1,25(OH)2D by monocytes/macrophages [101]. This is considered one of the reasons why 
vitamin D might exert protective effects against autoimmune diseases. Other studies 
have also demonstrated that a decreased CD4/CD8 ratio was associated with low 
25(OH)D levels [102] and that the administration of 5000–10,000 IU of vitamin D3 was 
attributable to an increase in the CD4/CD8 ratio, reflecting immune regulation [103,104]. 

As regards B lymphocytes, inactive B lymphocytes do not have VDRs but only 
upregulate their VDR expression when they are activated to proliferate with mitogens 
[105]. Furthermore, 1,25(OH)2D inhibits immunoglobulin synthesis and therefore could 
potentially interfere with the immune system, and 1,25(OH)2D also regulates B-cell 
activity. The hyperactive state of 1,25(OH)2D appears to attenuate the immunoglobulin 
immune response through a variety of mechanisms [105–109]. 

By controlling B cell activity and the transformation of B cells into plasma cells, 
1,25(OH)2D contributes to a reduction in autoantibody production, resulting in a 
reduced risk of antibody-mediated autoimmune disorders [99,104,105,110]. 

4.4. The Link among Diabetes, Vitamin D and COVID-19 Pandemic 
It is well-known that people with diabetes are at higher risk of infections [111,112]. 

Diabetes is characterized by a hyperglycemic environment that promotes immune 
dysfunction through a variety of ways. In particular, in patients with DM, monocytes and 
mononuclear cells secrete less interleukin 1 (IL-1) and IL-6 when stimulated by 
lipopolysaccharide [113,114]. The low production of interleukins seems to be the result of 
inherent defects [113,115]. Hyperglycemia is also characterized by the reduced 
mobilization, chemotaxis and phagocytic activity of polymorphonuclear leukocytes 
[114,116,117]. A hyperglycemic environment blocks antibacterial function by inhibiting 
glucose 6-phosphate dehydrogenase (G6PD), increases the apoptosis of 
polymorphonuclear leukocytes and reduces the migration of polymorphonuclear 
leukocytes through the endothelium [114]. A reduction in C4 is associated with 
polymorphonuclear dysfunction and reduced cytokine production [111,113]. In addition, 
a hyperglycemic environment will increase intracellular glucose levels and then the 
utilization of NADPH as a cofactor for metabolism. The reduction of NADPH levels 
prevents the regeneration of molecules that play a key role in the cellular antioxidant 
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mechanism, thus increasing sensitivity to oxidative stress. When glycosylated 
hemoglobin (HbA1c) is more than 8.0%, the proliferation function of CD4 T lymphocytes 
and their response to antigens by the altered expression of cellular adhesion molecules 
are affected [114]. Moreover, the virulence of different pathogens can be increased by 
hyperglycemia [116,117]. 

Concerning SARS-CoV-2 infection, clinical reports found DM to be one of the 
most-common comorbidities present in patients exhibiting a more severe course of the 
disease [118]. Generally, the susceptibility to the viral action seems to depend mainly on 
the typology/expression of the host cell receptors and on the affinity of the spike with 
these receptors. Interestingly, diabetic (and obese) patients show an overexpression of 
CD147 receptors [20], of ACE2 molecules [119] and, especially, the altered glycosylation 
of all membrane receptors [120,121]. Lastly, hepcidin axis upregulation has been detected 
in diabetic patients [122], which reinforces the likelihood of intracellular ferritin 
overconcentration in these individuals. 

Overall, this altered profile of cell membrane receptors in DM may be one of the 
main factors explaining the higher susceptibility of these patients to COVID-19. 

A link between hyperglycemia and ACE2r levels and the severity of COVID-19 
disease has been documented, probably due to the changes in ACE2r glycosylation and 
viral spike protein glycosylation. Both may be caused by uncontrolled hyperglycemia, 
which may modify the binding of the viral spike protein to ACE2r and the degree of 
immune response to the virus [123]. 

Elevated blood glucose levels can directly increase the glucose concentration in 
airway secretions [124]. In uncontrolled hyperglycemia, high and abnormally 
glycosylated cell receptors in the lungs, nasal airways, tongue and oropharynx may also 
serve as increased SARS-CoV-2 virus binding sites, resulting in a higher trend of 
COVID-19 infection and more serious forms of the disease [123]. Glycemic control could 
reduce the levels of glycosylated ACE2r target in the lung, decreasing the number of 
glycosylated viral binding sites and possibly ameliorating inflammation and the 
symptoms of COVID-19 disease [123]. Hyperglycemia may also affect pulmonary 
function, and this effect could be linked to ACE2r overexpression in the lungs of diabetics 
[19]. 

In patients with diabetes, higher circulating glucose levels will result in a higher 
percentage of glycated hemoglobin. SARS-CoV-2 surface proteins seem to bind to and 
potentially impair the heme molecule within red blood cells. In this way, a separation of 
iron from the molecule to form porphyrin occurs, determining in red blood cells an 
altered oxygen and carbon dioxide carriage, with consequent possible systemic 
alterations induced by free heme circulation [20,125]. 

Whereas diabetics and older subjects have more glycated hemoglobin, they may be 
preferentially affected by SARS-CoV-2 binding and dissociation of iron from heme to 
form porphyrins, and another receptor (CD147 or basigin) might be involved [49]. 
Affecting overall hemoglobin functionality, DM may alter oxygen transportation 
capacity, which may significantly impact the hypoxia patterns of these patients. Different 
studies reported that diabetic patients have low 25(OH)D levels, which may be due to 
impaired liver and kidney metabolism of vitamin D, reduced dietary vitamin D intake 
and decreased intestinal absorption of vitamin D caused by diabetic autonomic 
neuropathy [126–128]. In addition, it has been reported that low circulating 25(OH)D 
levels are associated with poor blood glucose control in diabetic patients. Prospective 
studies have shown that vitamin D deficiency may increase the risk of fasting blood 
glucose impaired and diabetes [129–131]. Furthermore, a clear association between 
hypovitaminosis D, obesity and diabetes mellitus, factors known to increase COVID-19 
severity risks, have been widely recognized [126,127,132,133]. 

It worth to outline that vitamin D deficiency has been hypothesized to predispose 
individuals to SARS-CoV-2 infection and to increase COVID-19 severity. According to Di 
Filippo et al. [132], patients suffering from vitamin D deficiency and hyperglycemia were 
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at a higher risk of severe COVID-19, higher inflammatory response and worse disease 
outcomes. 

It was estimated that about 1 billion people worldwide have low vitamin D levels, 
and this is detected in all ethnicities and age groups [134]. Moreover, a significantly 
higher prevalence of vitamin D deficiency is reported in DM2 (83.5%) compared to 
normoglycemic controls in a north Indian community [126]. Tecilazich and colleagues 
found low 25(OH)D levels in diabetic patients with retinopathy [134], suggesting that 
hypovitaminosis D may worsen the predisposition of patients with diabetes to the 
microvascular damage typical of COVID-19. It was shown that supplementation with 
vitamin D may improve glucose metabolism control by reducing insulin resistance and 
stimulating β-cell function [135,136], especially in patients with poor baseline blood 
glucose control [137]. 

A recent cross-sectional study showed that there is a statistically negative correlation 
between 25(OH)D levels and the homeostasis model assessment of insulin resistance, but 
this association was only found in the female population and not in men [138]. Moreover, 
some studies have suggested that vitamin D treatment may slow the progression to 
diabetes in patients either at high risk of diabetes or with prediabetes, specifically in 
those with low baseline 25(OH)D levels [139]. 

Low 25(OH)D levels may be a predisposing factor in the bidirectional interrelation 
between diabetes and COVID-19, increasing from one side the susceptibility of diabetics 
to the infection, from the other side promoting the diabetogenic effect of COVID-19 in 
terms of endothelial dysfunction and microvascular complications. 

Obesity and overweight may equally play a role in COVID-19. High BMI and altered 
body composition, with increased adiposity, are reported as independent risk factors for 
greater disease severity and poor prognosis in COVID-19 patients [139,140]. 
Interestingly, low levels of 25(OH)D were frequently reported in obese and overweight 
patients, being inversely related to BMI and adiposity [132,141], negatively influencing 
skeletal and muscle health, with a resulting increased predisposition to an obese 
osteosarcopenic phenotype [142,143]. In fact, BMI has also been reported to predict 
resistance to vitamin D [144]. A possible direct relationship between vitamin D status, 
adiposity, age and COVID-19 severity has been previously hypothesized. In fact, aging 
and fat accumulation may decrease vitamin D bioavailability and efficacy [29]. A low 
vitamin D status is present in obese patients and patients with metabolic syndrome, and 
these conditions are associated with reduced hepatic 25-hydroxylation of vitamin D. 
Experimental studies showed that CYP2R1 (the major vitamin D-25 hydroxylase) is 
lower in the livers of obese mice in comparison with normal mice [145]. According to 
Ekwaru and colleagues obese and overweight subjects had serum 25(OH)D significantly 
lower than normal weight people and vitamin D supplementation would be 2 to 3 times 
higher and 1.5 times higher for obese and overweight subjects respectively, in 
comparison with normal weight subjects [146]. 

A recent study showed that a strong relationship exists among vitamin D, glycemia 
and BMI in COVID-19 subjects [147]. Vitamin D deficiency could be identified as a 
common pathophysiological mechanism involved in the detrimental effect of 
hyperglycemia and adiposity on disease severity. 

Overall, a clear-cut effect of vitamin D serum level on COVID-19 incidence and 
prognosis was demonstrated [30], which may be explained through the several beneficial 
effects of this pre-hormone on several biochemical pathways that may putatively contrast 
the viral invasiveness. 

This umbrella review demonstrated that vitamin D supplementation in subjects 
with diabetes leads to improved circulating inflammatory biomarkers, representing an 
adjuvant therapy for COVID-19 patients with diabetes and a vitamin D status deficiency. 
It can therefore be affirmed that, based upon this umbrella review, a strong rationale ex-
ists for the therapeutic administration of supplemental vitamin D in order to reduce 
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COVID-19 respiratory complications or prevent, in case of infection, a severe form of 
COVID-19. 

The major strength of this analysis is represented by the resolution of the clinical 
heterogeneity problem. The presence of clinical heterogeneity across studies is related to 
the different characteristics and health conditions of the participants included. In this 
sense, we considered only patients affected by diabetes and according to the different 
types of diabetes. In addition, our analysis also highlights the heterogeneity of treatments 
[29–34]. In fact, heterogeneity exists in doses of the vitamin administerd to the target 
population. This study has a limitation. The umbrella review makes a qualitative as-
sessment and compiles all the evidence from existing reviews on a topic through to a 
specified date. Through extensive searching, an additional thirteen randomized clinical 
trials [RCTs] are available at this time and, obviously, had not been considered in this 
umbrella review. For this reason, further studies are necessary for the evaluation of these 
RCTs. In this sense, it must be outlined that, according to Sabico et al. [148], oral sup-
plementation with vitamin D3 reduces the time to recovery for cough and ageusia among 
patients with COVID-19, highlighting the beneficial effects of vitamin D supplementation 
against COVID-19. On the contrary, it is worth it to outline that recent studies showed 
that long-term supplementation with vitamin D(3) did not reduce IL-6, hsCRP or 
NT-proBNP in patients with type 2 diabetes [149]; additionally, high-dose vitamin D 
supplementation did not improve biomarkers of glycemia, inflammation, neurohormo-
nal activation or lipids [150]. 

5. Conclusions 
Our overview of systematic reviews concerning vitamin D’s role in the inflamma-

tory processes, highlighted a series of documented interactions among this molecule and 
a large series of cell metabolic pathways involved in DM and the potential application in 
patients with diabetes and COVID-19. Current evidence supports the benefits of vitamin 
D supplementation for managing or treating both of these pathological conditions. Most 
of the literature reports showed that vitamin D supplementation significantly reduce 
CRP in diabetic patients, while contrasting data are available about IL-6. Further studies 
should highlight the optimal treatment doses for the maximum benefit to patients. 
Meanwhile, vitamin D deficiency should be corrected, since vitamin D supplementation 
is safe, and it results in potential benefits on the cytokine storm by reducing the severity 
of several respiratory complications of COVID-19. 
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