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Abstract: Peripheral blood mononuclear cells (PBMCs) belong to the innate and adaptive immune 

system and are highly sensitive and responsive to changes in their systemic environment. In this 

study, we focused on the time course of transcriptional changes in freshly isolated human PBMCs 

4, 8, 24 and 48 h after onset of stimulation with the active vitamin D metabolite 1α,25-dihydroxyvit-

amin D3 (1,25(OH)2D3). Taking all four time points together, 662 target genes were identified and 

segregated either by time of differential gene expression into 179 primary and 483 secondary targets 

or by driver of expression change into 293 direct and 369 indirect targets. The latter classification 

revealed that more than 50% of target genes were primarily driven by the cells' response to ex vivo 

exposure than by the nuclear hormone and largely explained its down-regulatory effect. Functional 

analysis indicated vitamin D’s role in the suppression of the inflammatory and adaptive immune 

response by down-regulating ten major histocompatibility complex class II genes, five alarmins of 

the S100 calcium binding protein A family and by affecting six chemokines of the C-X-C motif ligand 

family. Taken together, studying time-resolved responses allows to better contextualize the effects 

of vitamin D on the immune system. 

Keywords: vitamin D; 1α,25-dihydroxyvitamin D3; transcriptome; PBMCs; vitamin D target genes; 

inflammatory response; adaptive immune system 

 

1. Introduction 

Vitamin D3 is a micronutrient that is either produced endogenously in UV-B exposed 

skin [1] or taken up by diet as well as direct supplementation [2]. The evolutionarily oldest 

role of vitamin D is to maintain energetic and survival homeostasis [3], while its physio-

logically best known function is the homeostasis of calcium levels being critical for bone 

mineralization [4]. In addition, another function of vitamin D is the modulation of the 

immune system [5]. This is important for an efficient response of innate immunity to in-

fectious diseases, such as tuberculosis [6] or COVID-19 (coronavirus disease) [7], as well 

as for the avoidance of overreactions of adaptive immunity, such as in the onset and pro-

gression of the autoimmune disease multiple sclerosis [8,9] or in the context of severe 

forms of COVID-19 [10]. 

The vitamin D3 metabolite 1,25(OH)2D3 binds and activates the transcription factor 

VDR (vitamin D receptor) [11,12], i.e., vitamin D has direct effects on gene regulation [13]. 

VDR belongs the nuclear receptor superfamily [14] and has up to a few hundred specific 

target genes in about half of human tissues and cell types [15,16]. The biological function 

of vitamin D3 in health and disease is therefore directly linked to 1,25(OH)2D3-dependent 

changes of the transcriptome in VDR expressing cells [15]. The vitamin D-triggered tran-

scriptome has been studied in a number of in vitro cell culture models [17–20], such as in 

THP-1 monocytic leukemia cells [21]. Since primary cells are far closer to the human in 
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vivo situation, PBMCs are an attractive alternative to THP-1 cells and accessible with min-

imal harm to the donor [22]. PBMCs are composed of monocytes, natural killer cells, T 

and B cells, i.e., of innate and adaptive immune cells, of which monocytes are the most 

vitamin D responsive cell type [23]. 

The genome-wide binding pattern of VDR is known for a number of human in vitro 

cell culture systems representing macrophage-like cells [24], monocytes [17,25], lympho-

cytes [26], colorectal cancer cells [27], hepatic stellate cells [28] and prostate cells [29]. In 

monocytes the VDR cistrome has more than 10,000 loci, but only a few hundred persistent 

VDR binding sites are always occupied [25]. The latter sites are the genome’s primary 

contact points with 1,25(OH)2D3 and coordinate its spatio-temporal response to the nu-

clear hormone. The chromatin model of vitamin D signaling [30,31] had been proposed 

based on data obtained primarily in THP-1 cells being stimulated for 24 h with 

1,25(OH)2D3. The model suggests that a primary vitamin D target gene is modulated in its 

expression, when the topologically associated domain (TAD), in which the gene is located, 

carries a prominent VDR binding site. Since TADs have a size between 100 kb and 2 Mb, 

this determines the maximal distance between an enhancer containing a VDR binding site 

and the transcription start site of the respective vitamin D target gene. 

This study describes changes of the transcriptome of freshly isolated human PBMCs 

that had been stimulated for 4, 8, 24 and 48 h with 1,25(OH)2D3. The analysis of time-

resolved transcriptional responses allows a wider view on the effects of vitamin D on these 

immune cells, such as a segregation into primary and secondary target genes as well as 

direct and indirect targets, in the context of inflammatory responses of the innate immune 

system and its crosstalk with the adaptive immune system. 

2. Results 

2.1. Time-Resolved Transcriptome Changes of PBMCs in Response to 1,25(OH)2D3 

PBMCs from an healthy individual were treated immediately after isolation for 4, 8, 

24 and 48 h with either 10 nM 1,25(OH)2D3 or solvent (0.1% ethanol (EtOH)). Total RNA 

was extracted and RNA-sequencing (RNA-seq) applied. Classical pairwise comparison of 

time-matched treated versus control cells detected 10 and 179 differentially expressed 

genes at the early time points 4 and 8 h (fold change (FC) > 1.5, false discovery rate (FDR) 

< 0.05, glmTreat test) as well as 466 and 341 genes at time points 24 and 48 h (FC > 2, FDR 

< 0.05) (Figure 1A and Table S1). The 466 target genes found after 24 h stimulation with 

1,25(OH)2D3 showed more than 85% overlap with the 676 and 625 vitamin D target genes 

identified in PBMCs from one [32] or five individuals [33] treated under the same protocol 

and the 1203 genes highlighted in THP-1 cells [19] (Figure S1). 

In total, of all four time points, 662 genes were differentially expressed (Table S1). 

However, only the genes CYP24A1 (cytochrome P450 family 24 subfamily A member 1) 

(Figure S2A), ACVR1B (activin A receptor type 1B), CLMN (calmin), ENTPD7 (ectonucle-

oside triphosphate diphosphohydrolase 7), G0S2 (G0/G1 switch 2), HBEGF (heparin bind-

ing EGF like growth factor) and SEMA6B (semaphorin 6B) passed the statistical testing 

threshold (FC > 1.5 and > 2 at FDR < 0.05) at all four time points (Figure 1B). The genes 

FFAR2 (free fatty acid receptor 2), LAMB3 (laminin subunit beta 3) and SLC37A2 (solute 

carrier family 37 member 2) were also identified as very early targets of vitamin D, but 

missed the statistical threshold at time point 24 h. A similar discontinuous pattern was 

observed for CD14 (CD14 molecule) and 13 other genes, which were significantly differ-

entially expressed at 8 and 48 h but their absolute FC dropped below 1.5 at 24 h (Figure 

S3E,F). By contrast, 66 genes responded at the consecutive time points 8, 24 and 48 h, 50 

genes at 8 and 24 h and 109 genes at 24 and 48 h. This implies that the majority (411) of 

the 662 differentially expressed genes were considered vitamin D targets based only on 

one time point, at which statistically significant response to 1,25(OH)2D3 had been ob-

served. 
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Figure 1. Differential gene expression. Mean-Difference (MA) plots monitor the effects of treatment 

(10 nM 1,25(OH)2D3) at indicated time points in comparison to solvent (0.1% EtOH) (A). The statis-

tical test for differential expression was conducted as a pairwise comparison for each time point by 

using EdgeR's glmTreat method. The difference in expression change (log2FC) for each tested gene 

was compared with the mean expression level between the compared groups (log2CPM). Signifi-

cantly (FDR < 0.05) up- and down-regulated genes are highlighted in red and blue, respectively. At 

each time point the top 10 genes with highest absolute log2FC are labeled. Horizontal lines (red) 

indicate the applied statistical testing thresholds (absolute FC > 1.5 at 4 and 8 h and absolute FC > 2 

at 24 and 48 h). A Venn diagram displays the in total 662 genes identified at different time points 

(B). Genes responding already at the early time points (4 and 8 h) are considered as primary targets. 

The direction of regulation of a gene over all time points was determined by applying a FC threshold 

of 1.5. The classic model of vitamin D signaling suggests that primary target genes encoding for the 

indicated transcriptional regulators mediate the activation or repression of secondary targets (C). 

Asterisks (*) denote genes with mixed FC profiles. Arrows indicate transcription start sites. 
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The 179 genes that were within the first 8 h significantly regulated by 1,25(OH)2D3 

were considered as primary targets, while the remaining 483 genes were classified as sec-

ondary targets (Figure 1B). The latter genes are assumed to be regulated by primary vita-

min D target genes that encode transcription factors and/or chromatin modifiers [34], such 

as the transcription factors IRF5 (interferon regulatory factor 5), MAFF (MAF BZIP tran-

scription factor F), MYCL (MYCL proto-oncogene, BHLH transcription factor), NFXL1 

(nuclear transcription factor, X-box binding like 1) and TFEC (transcription factor EC) as 

well as the transcriptional co-regulators MAMLD1 (mastermind like domain containing 

1), PPARGC1B (PPARG coactivator 1 beta), SRA1 (steroid receptor RNA activator 1) and 

ZBTB46 (zinc finger and BTB domain containing 46) (Figure 1C). Moreover, 209 genes 

were up-regulated by 1,25(OH)2D3 (58 persistent primary (Figure S2A), 130 persistent sec-

ondary (Figure S2C), two transient primary (Figure S3A), four persistent secondary (Fig-

ure S3B), seven discontinuous primary (Figure S3E) and eight discontinuous secondary 

(Figure S3F)) and 409 were down-regulated (74 persistent primary (Figure S2C), 208 per-

sistent secondary (Figure S2D), 27 transient primary (Figure S3C) and 98 persistent sec-

ondary (Figure S3D) and two discontinuous secondary (Figure S3F)). In contrast, 44 genes 

displayed a mixed profile (11 primary (Figure S3G) and 33 secondary (Figure S3H)), i.e., 

they appeared to be up- or down-regulated depending on the time point. Interestingly, at 

the first (4 h) and last (48 h) time point 100 and 56.9% of the genes were up-regulated, 

while 60.9 and 77.5% of the genes were down-regulated at time points 8 and 24 h. 

In summary, classical differential expression analysis over four time points identified 

179 primary targets of 1,25(OH)2D3 and 483 secondary targets in PBMCs. The majority of 

these genes are down-regulated. 

2.2. Distinction between Stimulating and Stabilizing Effects of 1,25(OH)2D3 

A focus on the differences in mRNA levels of treated and control samples is im-

portant for the detection of statistically significant effects, but it hides the underlying gene 

expression patterns. Therefore, the unsupervised machine learning technique k-means 

was applied, which segregated the expression pattern information of all 662 vitamin D 

target genes into four clusters (Figure 2A). Cluster 1 comprises 145 directly up-regulated 

genes (examples in Figure S4A) and cluster 2 contains 148 directly down-regulated genes 

(examples in Figure S4B). In contrast, the 280 and 89 genes of clusters 3 and 4 are stabilized 

in their expression by 1,25(OH)2D3, while without treatment the genes are up- or down-

regulated, respectively (examples in Figures S4C,D). Displaying the expression trajecto-

ries provides a better overview on the responses of the in total 131 genes with a transient 

FC profile (Figure S5A–D), of 17 genes with a discontinuous FC profile (Figure S5E,F) and 

of 44 genes with a mixed FC profile (Figure S5G,H). This indirect effect of 1,25(OH)2D3 

signaling applies for more than half (55.7%) of differentially expressed genes. In particu-

lar, down-regulated genes are 3.1-times more likely indirect vitamin D targets than up-

regulated genes (FDR < 0.001, Fisher's exact test (FET)). By contrast, primary vitamin D 

responding genes are 2.2-times more often found to be direct targets (FDR < 0.001, FET). 

The latter tendency is also visible in multidimensional scaling (MDS) plot (Figure S6), 

which displays within the first 8 h a larger divergence between 1,25(OH)2D3-treated sam-

ples than control samples, i.e., vitamin D-driven changes precede cell culture-related ef-

fects. Thus, direct effects of 1,25(OH)2D3 are very likely mediated by VDR binding to the 

regulatory regions of the respective direct vitamin D target genes, while indirect target 

genes may be the consequence of more global effects, such as changes in the epigenetic 

landscape (Figure 2B). 

Taken together, the analysis PBMC gene expression after treatment with 1,25(OH)2D3 

and solvent using clustering analysis allows a dissection of the vitamin D responding 

genes into 293 direct and 369 indirect targets. 
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Figure 2. Clustering of vitamin D target genes. The machine learning algorithm k-means revealed 

four distinct clusters of vitamin D target genes based on cause and direction of expression change 

(A). 1,25(OH)2D3-driven expression changes indicated direct targets (clusters 1 and 2), whereas 

genes whose expression was primarily stabilized in the presence of 1,25(OH)2D3 are indirect targets 

(clusters 3 and 4). This suggests an alternative view on vitamin D signaling: 1,25(OH)2D3 either di-

rectly induces or reduces via VDR the expression of its target genes (B, left) or prevents their ex-

pression change mediated by other factors (B, right). 

2.3. Functional Impact of Vitamin D Target Genes 

The functional impact of the changes in the expression of the identified 662 vitamin 

D target genes was analyzed via Gene Ontology (GO) term enrichment (Figure 3A). Ac-
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cordingly, 1,25(OH)2D3 down-regulates “neutrophil degranulation”, “inflammatory re-

sponse” as well as “cytokine-mediated signaling pathway” and affects “extracellular ma-

trix organization” as well as “positive regulation of angiogenesis”. The 179 primary vita-

min D target genes influence “inflammatory response”, “extracellular matrix organiza-

tion” as well as “cytokine-mediated signaling pathway” and down-regulate “positive reg-

ulation of cytosolic Ca2+ concentration” as well as “PLC (phospholipase C)-activating 

GPCR (G protein-coupled receptor) signaling pathway” (Figure 3B). Since 105 primary 

target genes are also direct vitamin D targets, both set of genes modulate “extracellular 

matrix organization” and “inflammatory response”. In addition, direct vitamin D target 

genes down-regulate “adaptive immune response” and “IFNγ (interferon gamma)-medi-

ated signaling pathway” and affect “neutrophil degranulation”. The 483 secondary vita-

min D target genes down-regulate “neutrophil degranulation”, “adaptive immune re-

sponse” as well as “inflammatory response” and affect “neutrophil chemotaxis” as well 

as “chemokine-mediated signaling pathway” (Figure 3C). Of this gene set 295 members 

are also indirect vitamin D targets and both groups of genes agree on the down-regulation 

of “neutrophil degranulation” and “inflammatory response”. Furthermore, indirect target 

genes down-regulate “positive regulation of IL6 (interleukin 6) production”, “regulation 

of cell shape” and “immune response”. In a more focused approach, the 17 different genes 

representing the top five genes mediating the top five functions of primary target genes 

were compared with representative 21 direct target genes (Figure S7, left). The most rep-

resentative unique function of the primary target genes is “PLC-activating GPCR signal-

ing pathway” and “IFNγ-mediated signaling pathway” for direct target genes, while “in-

flammatory response” is a common function. In the same way the 16 most representative 

secondary target genes were compared with 21 indirect target genes (Figure S7, right), 

which resulted in the pathways “chemokine-mediated signaling pathway” and “positive 

regulation of IL6 production” representing uniquely secondary targets and indirect tar-

gets, respectively, while “neutrophil degranulation” being common for both. 

In contrast, the segregation of the proteins encoded by all target genes (Figure S8A), 

primary target genes (Figure S8B), secondary target genes (Figure S8C), direct target genes 

(Figure S8D) and indirect target genes (Figure S8E) into functional categories, such as en-

zymes, structural proteins, transcriptional regulators, signal transduction regulators, se-

creted factors or membrane receptors, did not indicate any significant differences between 

the five different gene sets. 

In summary, GO term enrichment analysis indicated that vitamin D majorly down-

regulates “inflammatory response”, “neutrophil degranulation” and “adaptive immune 

response”. 

2.4. Colocalization of Vitamin D Target Genes with VDR Binding sites 

The inspection of the lists of vitamin D target genes representing the major biological 

processes regulated by 1,25(OH)2D3 in PBMCs (Figures 3 and S7) highlighted a couple of gene 

families with key impact on the function of the immune system. Importantly, 10 of 12 genes 

that encode for the α- and β-chains of the major histocompatibility complex (MHC, also 

named human leukocyte antigen (HLA)) class II proteins, HLA-DRA, HLA-DRB1, HLA-DRB5, 

HLA-DQA1, HLA-DQB1, HLA-DQB2, HLA-DMA, HLA-DMB, HLA-DPA1 and HLA-DPB1, 

are persistently down-regulated vitamin D target genes (Figure 4A). Interestingly, with the 

exception of HLA-DMA and HLA-DMB all are also direct targets. The HLA genes are located 

in a dense cluster with the down-regulated vitamin D target genes NCR3 (natural cytotoxicity 

triggering receptor 3), AIF1 (allograft inflammatory factor 1), LST1 (leukocyte specific tran-

script 1), HSPA1A (heat shock protein family A (Hsp70) member 1A), HSPA1B and C2 (com-

plement C2). Within this genomic region of approximately 2 Mb in chromosome 6, four per-

sistent VDR binding sites are known [25]. Furthermore, from the family of C-X-C motif chem-

okine ligands (CXCLs) in chromosome 4, a similarly sized genomic region contains the up-

regulated vitamin D target genes CXCL1, CXCL5, CXCL7 (official gene name PPBP (pro-plate-

let basic protein)), CXCL8 and EREG (epiregulin) as well as the down-regulated genes CXCL9, 
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CXCL10 and PARM1 (prostate androgen-regulated mucin-like protein 1) (Figure 4B). In this 

region there is only one persistent VDR binding site. Moreover, from the S100A (S100 calcium 

binding protein A) genes of the alarmin family in chromosome 2 S100A4, S100A6, S100A8, 

S100A9 and S100A12 as well as the genes SLC27A3 (solute carrier family 27 member 3), RAB13 

(RAB13, member RAS oncogene family) and PMVK (phosphomevalonate kinase) are down-

regulated by 1,25(OH)2D3 (Figure 4C). In this 2 Mb region two persistent VDR binding sites 

are found. 

 

Figure 3. Biological processes affected by vitamin D. GO term enrichment was performed for all 662 

vitamin D target genes (A), primary and direct targets (B) as well as for secondary and indirect 

targets (C). The list of all 12,305 expressed genes served as reference. Venn diagrams indicate the 

overlap of primary and direct targets (B) as well as secondary and indirect targets (C). The top 5 

enriched terms (ranked by statistical significance) and the corresponding top 5 representative genes 

(based on absolute median FC) are indicated. The direction of regulation of a gene is based on the 

FC across all four time points. Asterisks (*) denote genes with mixed FC profiles. Arrows indicate 

direction of regulation of pathways and target genes. 

Taken together, the functional impact of 1,25(OH)2D3 stimulation of PBMCs is prom-

inently mediated via the regulation of clusters of HLA, CXCL and S100A gene families. 
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Figure 4. Hotspots of vitamin D signaling. Karyoplots showing the location of vitamin D target 

genes (blue) highlight regions encoding for HLA genes in chromosome 6 (A), CXCL genes in chro-

mosome 4 (B) and S100A genes in chromosome 1 (C). VDR ChIP-seq data from THP-1 cells [25] 

monitor 1,25(OH)2D3-triggered VDR binding at indicated regions. Persistent binding sites of VDR 

are highlighted by red circles. Arrows indicate direction of regulation of target genes. 

3. Discussion 

This study describes the temporal changes of the transcriptome of human PBMCs in re-

sponse to 1,25(OH)2D3 analyzed by classical differential gene expression as well as via cluster-

ing analysis. Compared to traditional analysis of a single treatment time, such as 24 h [33,35], 

the use of multiple time points does not only identify a higher number of vitamin D target 

genes, but also allows differentiating them either into 179 primary and 483 secondary targets 
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or into 293 direct and 369 indirect targets. Although there is reasonable overlap between pri-

mary and direct vitamin D target genes as well as between secondary and indirect targets, the 

terms represent different mechanistic conceptions of vitamin D signaling. The essential condi-

tion of a primary vitamin D target gene is that within the same TAD an enhancer with a VDR 

binding site is found [34]. In contrast, a secondary vitamin D target gene does not require the 

presence of a VDR bearing enhancer, but its transcriptional activity is controlled by transcrip-

tion factors, co-factors or chromatin modifiers that are encoded by primary vitamin D target 

genes. For comparison, a direct vitamin D target gene is either up- or down-regulated by 

1,25(OH)2D3 in relation to a time-matched solvent control, i.e., the VDR ligand affects gene 

expression over time, while the control sample does not change. The opposite applies for in-

direct target genes, which are primarily responding to environmental conditions, such as cel-

lular stress due to isolation and ex vivo culture of PBMCs but not to 1,25(OH)2D3. In this con-

text, 1,25(OH)2D3 has a stabilizing effect on the transcriptome, i.e., vitamin D counteracts tran-

scriptional changes triggered by other factors. Thus, more than half of the 662 target genes are 

responding indirectly to vitamin D treatment. 

Persistently up-regulated primary vitamin D target genes are mechanistically well un-

derstood via VDR actively changing the epigenetic landscape and regulating gene transcrip-

tion as described in the chromatin model of vitamin D signaling [16,31]. This study demon-

strates that in human PBMCs the model applies only to 8.8% of the genes responding to 

1,25(OH)2D3. Nevertheless, the list of these 58 persistently up-regulated primary vitamin D 

targets contains a number of well-known genes, such as CYP24A1 and FBP1 (fructose bisphos-

phatase 1), which have been reported in numerous studies [36,37]. In contrast, there is no gen-

eral model explaining the down-regulation of genes by vitamin D. Every gene has an individ-

ual scenario for its up-regulation by a set of transcription factors and chromatin modifiers, 

which can be counteracted in many ways by VDR and its ligand. The majority of down-regu-

lated target genes are classified as indirect targets, i.e., 1,25(OH)2D3 rather counteracts their up-

regulation than prominently down-regulates their expression. Since most of the 662 vitamin 

D responding genes are indirect targets, this also implies that their regulation is context de-

pendent, such as the health and lifestyle situation of the individual. Moreover, 192 genes show 

unusual transcriptional dynamics, such as transient, discontinuous or mixed FC profiles. Most 

these genes are indirect vitamin D targets, i.e., their unusual behavior is primarily due to 

changes of the reference samples. Thus, the analysis of gene expression over time allows a far 

more differential description and understanding of vitamin D responding genes than snap-

shots of vitamin D effects at a single time point. 

Functional analysis of all 662 targets identified in this study in comparison to the 

subgroups of primary, secondary, direct and indirect genes suggests that the overall effect 

of vitamin D treatment is the down-regulation of inflammatory response, neutrophil 

degranulation and adaptive immune response. Since neutrophil degranulation involves 

the release of anti-microbial and inflammatory proteins [38], this process rather represents 

an additional aspect of inflammatory response than a separate function. For example, the 

vitamin D target genes CXCL1, CXCL5, CXCL8 and PPBP (CXCL7) encode for CXCL 

chemokine family members that act as neutrophil chemoattractants [39]. Since inflamma-

tion-related processes are predominantly mediated by secondary and indirect target 

genes, they seem to represent a context-specific effect of vitamin D. In parallel, vitamin D 

suppresses the production of other inflammatory molecules that are triggered by acute 

infections or inflammatory disorders. For example, vitamin D could reduce ARDS (acute 

respiratory distress syndrome) in the context of COVID-19 by suppressing the expression 

of target genes, such as IL18, CXCL9 and CXCL10, that mediate the cytokine storm associ-

ated with the severe form of the disease [40,41]. This is also in line with the down-regula-

tion of damage-associated molecular patterns (also called alarmins) of the S100A family, 

such as those encoded by the direct vitamin D target genes S100A8, S100A9 and S100A12, 

that are highly expressed and released by neutrophils and inflammatory monocytes/mac-

rophages during tissue damage or cellular stress reactions [42,43]. The genes S100A8 and 

S100A9 are prominently up-regulated in inflammatory diseases being associated with 
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phagocyte activation, like autoimmune and autoinflammatory disorders, infections, aller-

gies, cardiovascular diseases and cancer [43–44]. Given their involvement in disease pa-

thology, the inhibition of S100A8 and S100A9 gene expression may be important for the 

treatment of various inflammation-associated disorders. Interestingly, S100A8, S100A9 

and S100A12 protein levels are used as sensitive biomarkers for monitoring disease activ-

ity in juvenile idiopathic arthritis, inflammatory bowel disease and psoriasis. 

The regulation of adaptive immune response is another important function of vita-

min D in PBMCs. It is mediated by later responding but direct target genes, many of which 

many are also associated with IFNγ-mediated signaling. Importantly, this study demon-

strated that 10 of 12 HLA genes encoding for MHC-II proteins are direct down-regulated 

vitamin D targets. MHC-II proteins are expressed on the surface of antigen-presenting 

cells, such as dendritic cells, monocytes/macrophages and B cells, through which they 

present CD4+ T helper (TH) cells peptide antigens [45]. This is further enhanced by the 

down-regulation of the genes ICAM1 (intercellular adhesion molecule 1), CIITA (class II 

major histocompatibility complex transactivator) as well as CD4, which encode for a co-

stimulator of T cell activation, the master regulator of HLA gene transcription and the 

main co-receptor of the T cell receptor, respectively [46]. Thus, vitamin D reduces the func-

tionality of the immunological synapse between antigen-presenting cells and TH cells and 

lowers the risk of overboarding adaptive immune responses in this way. This may pro-

vide a mechanistic explanation of vitamin D's beneficial role in the context of autoimmune 

diseases [47]. Interestingly, the most prominently down-regulated vitamin D target gene 

of the HLA family, HLA-DRB1, is known as the major risk gene for multiple sclerosis. Since 

the risk variant HLA-DRB1*15:01 leads to high HLA-DRB1 protein levels, its down-regu-

lation by vitamin D may serve as a therapeutic target [48,49]. Notably, vitamin D-medi-

ated down-regulation of HLA-DRB1 has been observed in PBMCs from different individ-

uals [33] and thus may not be restricted to certain genotypes as suggested earlier [49]. 

Persistent VDR binding sites are reasonably conserved between comparable cellular 

models, such as PBMCs and THP-1 cells [24,25]. Therefore, they offer the core of a mechanistic 

understanding of the regulation of primary as well as of direct vitamin D target genes. In this 

study, this was exemplified for the clusters of HLA, CXCL and S100A genes, which have four, 

one and two persistent VDR binding sites in their neighborhood, respectively. Thus, it can be 

assumed that ligand-activated VDR modulates the epigenetic landscape at the respective ge-

nomic regions and explains the response of the gene clusters to vitamin D. 

The focus of this study was on the effects of vitamin D stimulation of PBMCs immedi-

ately after their isolation. Since cell sorting induces stress to cells [50], the RNA-seq approach 

of this study captured only the bulk response of PBMCs, i.e., the heterogeneity of the cell pop-

ulation is masked. Thus, the most elegant approach would have been transcriptome profiling 

via single cell RNA-seq. However, the majority of the vitamin D target genes are primarily 

expressed in monocytes, i.e., the results presented in this study primarily reflect that of the 

monocyte fraction of PBMCs. A further limitation of this study is its focus on the transcrip-

tome, which is only a limited proxy for protein levels [51]. Thus, the findings of this study and 

their functional implications need to be confirmed with proteome-wide data and functional 

essays. Finally, while substantial differential expression only occurred after 8 h, a denser sam-

pling at earlier time points would allow a more precise dissection between direct and indirect 

targets. This applies in particular to very early responding vitamin D target genes, such as 

G0S2, which display significant differential expression already after 4 h but their expression 

levels are not changing at later time points. Thus, some very early responding genes may have 

been mislabeled as indirect targets. 

In conclusion, this study describes the time-resolved transcriptional response of hu-

man PBMCs to vitamin D stimulation. This experimental design allows the segregation of 

the 662 vitamin D responding genes into primary, secondary, direct and indirect target 

genes. Prominent vitamin D targets are the clusters of the HLA, CXCL and S100A genes, 

which mediate inflammatory processes of the innate immune system as well as the re-

sponse of the adaptive immune system. 



Int. J. Mol. Sci. 2022, 23, 911 11 of 15 
 

 

4. Materials and Methods 

4.1. Sample Collection 

Peripheral blood was collected from a single healthy individual (male, age 56 years) 

that participated in the VitDHiD trial (NCT03537027) [52]. 

4.2. PBMC Isolation and Stimulation 

PBMCs were isolated immediately after collecting 20 ml peripheral blood using 

Vacutainer CPT Cell Preparation Tubes with sodium citrate (Becton Dickinson) according 

to manufacturer’s instructions. After washing with phosphate-buffered saline the cells 

were grown at a density of 0.5 million/ml in 5 mL RPMI 1640 medium supplemented with 

10% charcoal-depleted fetal calf serum, 2 mM L-glutamine, 0.1 mg/ml streptomycin and 

100 U/ml penicillin at 37 °C in a humidified 95% air/5% CO2 incubator and treated for 4, 

8, 24 or 48 h with either 10 nM 1,25(OH)2D3 (Sigma-Aldrich) or solvent (0.1% EtOH). All 

experiments were performed in three repeats. Deconvolution of RNA-seq data using the 

algorithm CIBERSORTx [53] and its LM6 signature matrix estimated the relative amounts 

of B cells (7%), CD8+ T cells (32%), CD4+ T cells (20%), natural killer cells (21%) and mon-

ocytes/macrophages (20%) within the PBMC pool. 

4.3. RNA-Seq Data Generation and Processing 

Total RNA was isolated using the High Pure RNA Isolation Kit (Roche) according to 

manufacturer’s instructions. RNA quality was assessed on an Agilent 2100 Bioanalyzer sys-

tem (RNA integrity number ≥ 8). rRNA depletion and cDNA library preparation were per-

formed using the New England Biolabs kits NEBNext rRNA Depletion, NEBNext Ultra II Di-

rectional RNA Library Prep for Illumina and NEBNext Multiplex Oligos for Illumina (Index 

Primers Sets 1 and 2) according to manufacturer’s protocols. RNA-seq libraries went through 

quality control on an Agilent 2100 Bioanalyzer and were sequenced on a NextSeq 500 system 

(Illumina) at 75 bp read length using standard protocols at the Gene Core facility of the EMBL 

(Heidelberg, Germany). All samples were prepared and sequenced as one batch. 

Single-end, reverse-stranded cDNA sequence reads were aligned to the reference ge-

nome (version GRCh38) with Ensembl annotation (version 103) by using default settings of 

the nf-core/rnaseq STAR-Salmon pipeline (version 3.0) (http://doi.org/10.5281/ze-

nodo.4323183, accessed 25.06.2021) [54]. The number of nucleotide sequence reads are shown 

in Table S2. Ensembl gene identifiers were annotated with gene symbol, description, genomic 

location and biotype by accessing the Ensembl database (version 104) via the R package Bi-

omaRt (version 2.46.0) [55]. Ensembl gene identifiers missing HGNC gene symbol annotation, 

Entrez ID, genomic location information or being mitochondrially encoded were removed 

from the datasets. When a gene name appeared more than once, the entry with the highest 

average gene counts was kept. 

4.4. Transcriptome Data Analysis 

Differential gene expression analysis was computed in R (version 4.0.5) in the CentOS 

7 Linux operating system using the tool EdgeR (version 3.32.1) [56]. The analysis focused 

on the 19,147 protein-coding genes, in order to mitigate transcriptional noise expected by 

non-coding genes. Read counts were normalized for differences in library size to counts 

per million (CPM). Genes with very low expression were filtered out by applying the 

function FilterByExpr(), in order to mitigate the multiple testing problem and to not inter-

fere with the statistical approximations of the EdgeR pipeline. This requirement was ful-

filled by 12,305 genes. After filtering, library sizes were recomputed and trimmed mean 

of M-value normalization was applied. The transcriptome data structure was explored via 

the dimensionality reduction method MDS (Figure S6). MDS was computed via EdgeR's 

function plotMDS(), in which distances approximate the typical log2 fold change (FC) be-

tween the samples. This distance was calculated as the root mean square deviation (Eu-

clidean distance) of the largest 500 log2FCs between a given pair of samples, i.e., for each 
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pair a different set of top genes was selected. The inspection of the MDS plot showed a 

time-dependent divergence from the native transcriptome state and its modulation by 

1,25(OH)2D3 treatment as the principal two factors driving differences in PBMCs gene ex-

pression profiles. The gene-wise statistical test for differential expression was computed 

using the generalized linear model quasi-likelihood pipeline [57]. Trended negative bino-

mial dispersion estimate was calculated using the method CoxReid profile-adjusted like-

lihood and together with empirical Bayes-moderated quasi-likelihood gene-wise disper-

sion estimates used for generalized linear model fitting. The empirical Bayes shrinkage 

was robustified against outlier dispersions as recommended [57]. The glmTreat approach 

was used to test for differential expression relative to FC > 1.5 at the early time points 4 

and 8 h and FC > 2 at 24 and 48 h. A classical pairwise comparison was chosen for its 

superior performance in time course RNA-seq data analysis [58]. Genes with a Benjamini–

Hochberg corrected p-value, i.e., false discovery rate (FDR) < 0.05 and a total trimmed 

mean of M value-normalized CPM count > 25 (i.e., sum of the average gene expression 

level at each time point) were considered as significant vitamin D target genes (Table S1). 

MA plots were generated with vizzy (version 1.0.0, https://github.com/ATpoint/vizzy). 

Gene symbols from external datasets were updated with HGNC helper (version 0.8.1). 

4.5. Clustering and Functional Analysis 

The 662 vitamin D target genes (Table S1) were clustered based on their z-score stand-

ardized, log2-transformed expression values (log2CPM) using k-means Hartigan–Wong 

method with 25 random sets and a maximum of 1000 iterations implemented in R stats 

(version 4.0.5, modified code from [59]) and visualized with pheatmap (version 1.0.12). No 

further clustering was applied, i.e., genes within each cluster are displayed in alphabetical 

order. Clusters were assessed for over-representation using a two-sided FET with a Ben-

jamini–Hochberg corrected p-value applying rstatix (0.7.0). GO term enrichment for bio-

logical processes was performed using topGO (version 2.42.0) with the default weight01 

algorithm and FET (Table S3). As reference served, all genes tested for differential expres-

sion, of which 11,241 genes could be mapped to GO terms (GO.db version 3.12.1). En-

riched terms with less than five significant genes were excluded from the analysis. A bio-

logical process was considered as down-regulated when the ratio of down-regulated 

genes to up-regulated genes was higher than 2. 

Gene names were mapped to UniProtKB identifiers via BiomaRt. Functional attrib-

utes of all vitamin D target genes were retrieved through programmatic access (REST API) 

of the UniProtKB (Uniprot Knowledge Base) website using requests (version 2.25.1) and 

io in Python (version 3.8.8). Only manually reviewed (Swiss-Prot) entries were used for 

annotation. Gene product locations and functions were preferentially assigned using Uni-

ProtKB/Swiss-Prot Keywords and complemented with GO annotation (cellular compo-

nent and molecular function domains). The total list of functional annotations was manu-

ally inspected and simplified into overarching terms, by which the genes were assigned 

with (Table S3). Unmappable entries were annotated using information provided by the 

integrative database GeneCards (www.genecards.org). Custom code of the analysis can 

be found at https://github.com/andreahanel/2021_Timecourse. 

4.6. Clustering and Functional Analysis 

Location of genes along chromosomes was plotted using karyoploteR (version 1.12.4). 

VDR chromatin immunoprecipitation sequencing (ChIP-seq) data [25] were converted to 

hg38 coordinates using the UCSC liftover chain file (hg19ToHg38.over.chain.gz) via Cross-

Map (version 0.2.6) and visualized using the IGV browser [60] together with vitamin D 

target genes. The latter were imported to IGV in bed file form created with GenomicRanges 

(1.38.2) and rtracklayer (1.46.0). 

Supplementary Materials: The following are available online at www.mdpi.com/arti-

cle/10.3390/ijms23020911/s1. 
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