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A B S T R AC T Propensity score analysis is often used to address selection bias in pro-
gram evaluation with observational data. However, a recent study suggested that
propensity score matching may accomplish the opposite of its intended goal—in-

creasing imbalance, inefficiency, model dependence, and bias. We assess common
propensity score models and offer our responses to these criticisms. We used Monte
Carlo methods to simulate two alternative settings of data creation—selection on
observed variables versus selection onunobserved variables—and compared eight pro-
pensity score models on bias reduction and sample-size retention. Based on the sim-
ulations, no single propensity scoremethod reducedbias across all scenarios. Optimal
results depend on the fit between assumptions embedded in the analytic model and
the process of data generation. Methodologic knowledge of model assumptions and
substantive knowledge of causal mechanisms, including sources of selection bias,
should inform the choice of analytic strategies involving propensity scores.
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ropensity score analysis (PSA) is a class of statistical methods developed for

estimating treatment effects with nonexperimental data and, more generally,

for estimating conditional causality with observational data. Specifically, PSA

offers an approach to program evaluation when randomized trials are infeasible

or unethical, or when researchers need to assess treatment or causal effects from

survey data, census data, administrative data, medical records data, or other types

of observations where a counterfactual must be constructed. (For additional back-

ground on PSAmethods and applications, see Guo & Fraser, 2015.) In the social and

health sciences, researchers often face a fundamental task of drawing conditioned

casual inferences from quasi-experimental studies. Analytical challenges in mak-

ing causal inferences can be addressed by a variety of statistical methods, including

a range of new approaches emerging in the PSA field.
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The PSA approach has been used in a variety of disciplines and professions, in-

cluding epidemiology (e.g., Normand et al., 2001), medicine (e.g., Gum et al., 2001),

psychology (e.g., Jones et al., 2004), social work (e.g., Guo et al., 2006), and sociol-

ogy (e.g., Morgan, 2001). The method was the eighth most popular approach in

social work research identified from a review of articles published in five leading

social work journals from January 1, 2012, to December 16, 2013: Of 167 articles

using at least one multivariate statistical method, eight (4.8%) used PSA, and PSA

was the principal method used to address the endogeneity problem in the reviewed

articles (Guo, 2015). (See the following section for the definition and further discus-

sion of the endogeneity problem.)

Debates regarding PSA and other bias-reduction statistical methods have been

robust (e.g., Guo & Fraser, 2015). Bias-reductionmethods are neededwhen research-

ers conduct observational studies but cannot employ randomized experiments or

when there is evidence to show that such experiments are compromised or failed.

A recent paper by Gary King and Richard Nielsen (2019) challenged the statistical

conclusion validity of findings based on propensity score matching. The issues King

and Nielsen raised are relevant to researchers from all professions and disciplines:

What are the statistical problems pertaining to propensity score matching (PSM),

what are the best alternatives given the range of available propensity score methods

and the rangeof data generation situations that researchers encounter, andwhat kinds of

knowledge do researchers need when choosing and applying propensity score models?

We address these questions. For a general discussion of various propensity score

methods, readers are referred to Rosenbaum (2002), Imbens and Wooldridge (2009),

and Guo and Fraser (2015). In this article, to provide a larger context, we begin with an

overviewof available PSAmodels, includingmatching onpropensity scores.We then re-

viewtheproblemswithmatching suggestedbyKingandNielsen.Toextendandexamine

findings of King and Nielsen’s simulation studies, we present results of a Monte Carlo

study using eight statistical models, including an ordinary least squares regression that

does not correct for the endogeneity problem. Comparing these models in terms of

sample-size retention (i.e., theexternalvalidityofacorrectivemethod)andbias reduction

(i.e., the statistical conclusion validity of a corrective method), we place King and Niel-

sen’s conclusions in the context of amore comprehensive examination of PSA.We con-

clude by summarizing key issues in using PSA to correct for endogeneity, andwe review

core guidelines for the use of PSA when conducting observational studies.

Review of Key Propensity Score Methods

The Definition and Properties of Propensity Scores
Regression analysis of any type assumes that independent variables used in the

regression are not correlated with the residual/error term. When researchers use
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quasi-experimental designs, they typically assign study participants into treatment

and comparison conditions based on nonrandom criteria. The presence of various

selection effects can result in the residual term being correlated with the indepen-

dent variables. Running a regression without controlling for these selection effects

or biases results in inefficient and potentially misleading estimates of treatment ef-

fects. This is known as the endogeneity problem. In 1983, Rosenbaum and Rubin pub-

lished a seminal article that proposed to use a propensity score to address the prob-

lem. The theories and application principles developed from their work laid the

foundation for the entire class of propensity score models.

With complete data, Rosenbaum and Rubin (1983) defined the propensity score

for participant i (i 5 1, ... N ) as the conditional probability of assignment to a par-

ticular treatment (Wi 5 1) versus nontreatment (Wi 5 0) given a vector of observed

covariates, xi: e(xi)5 pr(Wi 5 1FXi 5 xi). The propensity score e(xi) is a balancingmea-

sure (called the coarsest score) that summarizes the information of vector xi in

which each x covariate is a finest score.

Severalmethods are available for estimating the conditional probability of receiv-

ing treatment using a vector of observed covariates. These methods include logistic

regression, the probit model, and discriminant analysis. Of these methods, logistic

regression is theprevailing approach. A closely relatedmethoduses theMahalanobis

metric distance. In these models—developed prior to PSM methods—Mahalanobis

distance serves a similar function as a propensity score and is used as a basis for

matching estimators. More recently, newmodels—such as the application of gener-

alized boosted modeling (McCaffrey et al., 2004)—have been developed to refine lo-

gistic regression and, in turn, to refine propensity score estimation.

The greatest advantage of the propensity score is its reduction in dimensions, which

solves the problem of an insufficient number of sample cases in exact matching. In

practice, researchers must often correct for many covariates, which represent many

dimensions. The propensity approach reduces these dimensions to a one-dimensional

score. In conventional 1:1 matching, as the number of matching variables increases,

the researcher is challenged by the difficulty of finding a good match from the con-

trol group for a given treated participant. Rosenbaum (2002) illustrated this with

p covariates: Even if each covariate is a binary variable, there will be 2p possible val-

ues. Suppose p 5 20, then 220 5 1,048,576, or more than a million possible values of

20 covariates. With a sample of hundreds or thousands of participants, it is likely

that many participants will have unique covariate values and, therefore, will be un-

matchable. Matching in this context often results in dropping cases and, in the pres-

ence of a large number of covariates, may become infeasible. Rosenbaum and

Rubin (1983) derived and proved a series of theorems and corollaries to justify three

key approaches using the propensity scores: pair matching, propensity score subclas-

sification, and covariance adjustment. These methods have been greatly expanded
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since. Today, researchers may use at least eight closely related but technically dis-

tinct models. To frame our discussion of matching on propensity scores, we briefly

review these PSA methods in the following section.
Propensity Score Methods
Nearest Neighbor Within Caliper Matching
This method aims to match each treated participant to one or more control partic-

ipant based on estimated propensity scores. Denote Pi and Pj the propensity score

for treated and control participants, respectively, I1 the set of treated participants,

and I0 the set of control participants. A neighborhood, C(Pi), contains a control par-

ticipant j (i.e., j ∈ I0) as a match for treated participant i (i.e., i ∈ I1) if the absolute

difference of propensity scores is the smallest among all possible pairs of propen-

sity scores between i and j:

C Pið Þ 5 min
j

Pi 2 Pjj j, j ∈ I0:

Once j is found to match i, j is removed from I0 without replacement. If for each i

only a single j falls into C(Pi), then the matching is nearest neighbor pair matching

or one-to-one matching. If for each i there are n participants found to fall into C(Pi),

then the matching is 1-to-n matching.

In nearest neighbor matching, there is no restriction imposed on the distance

between Pi and Pj as long as j is a nearest neighbor of i in terms of the estimated

propensity score. By this definition, even if FPi – PjF is large (i.e., j is very different

from i on the estimated propensity score), j is still considered a match to i. To over-

come shortcomings of erroneously choosing j, researchers must select j as a match

for i only if the absolute distance of propensity scores between the two participants

meets the following condition,

Pi 2 Pjj j < ε, j ∈ I0,

where ε is a prespecified tolerance formatching, or a caliper. Rosenbaumand Rubin

(1985) suggested using a caliper size of a quarter of a standard deviation of the sam-

ple estimated propensity scores (i.e., ε ≤ .25rP, where rP is the standard deviation of

the sample’s estimated propensity scores).

Nearest neighbor matching within a caliper is a combination of the two ap-

proaches just described. Using these approaches, researchers begin by randomly

ordering the treated and nontreated participants. They then select thefirst treated par-

ticipant (i) and find j as a match for i if the absolute difference of propensity scores

between i and j falls into a predetermined caliper (ε) and is the smallest among

all pairs of absolute differences of propensity scores between i and other js within

the caliper. Both i and j are then removed from consideration for matching, and

the next treated participant is selected.
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Mahalanobis Distance Matching
Mahalanobis distance matching (MDM) requires randomly ordering study partici-

pants and then calculating the distances between the first treated participant and

all controls, where the distance—d(i, j)—between a treated participant (i) and a

nontreated participant ( j) is defined by the Mahalanobis metric distance: d(i, j) 5

(u2 v)TC21(u2 v), where u and v are values of thematching variables for treated par-

ticipant i and nontreated participant j, respectively, and C is the sample variance–

covariance matrix of the matching variables. The nontreated participant ( j) with

the minimum distance d(i, j) is selected as the match for treated participant i, and

both participants are removed from the pool. This process is repeated until matches

are found for all treated participants. The covariates included in u, v, and C may or

may not include an estimated propensity score. If these covariates include an esti-

mated propensity score—ê(x)—then the method is called MDM with propensity

scores; otherwise, it is called MDM without propensity scores.

Coarsened Exact Matching
Coarsened exact matching (CEM) is similar to exact matching but uses coarsened or

less restrictive criteria (Iacus et al., 2011). The greatest advantage of this method is

its ease. CEM does not use a one-dimensional score in matching, but like other pro-

pensity score models, it reduces categories of matching variables by using coars-

ened standards in such a way that continuous covariates are coarsened at natural

breakpoints, such as high school and college degrees instead of years of education.

Discrete variables are left as is or are combined, such as when researchers combine

strong and weak Democrats into one category and strong and weak Republicans

into another. Matching is done on these coarsened variables.

Optimal Matching
Both nearest neighbor within caliper matching and MDM are criticized for their

requirement for a sizable common support region, which is defined as a region

bounded by the maximum value of estimated propensity scores for the treated par-

ticipants and by the minimum value of the estimated propensity scores for the

nontreated participants. When the common support region is small or does not ex-

ist, both matching algorithms will fail.

To address these problems, Rosenbaum (2002) developed an optimal propensity

matching approach using network flow theory from operations research. The treated

participants are set A and the controls are set B, with A \ B5 Ø. The initial number of

treated participants is FAF and the number of controls is FBF, where F•F denotes the

number of elements of a set. For each a ∈ A and each b ∈ B, there is a distance, dab, with

0 ≤ d ≤ ∞. The distance measures the difference between a and b in terms of their ob-

served covariates, such as their difference on propensity scores or Mahalanobis

metrics. Matching is a process to develop S strata (A1, . . . As; B1, . . . Bs) consisting
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of S nonempty, disjoint participants of A and S nonempty, disjoint subsets of B, so

that

FAsF ≥ 1, FBsF ≥ 1, As \​ As0 5 ∅ for s ≠ s’,
Bs \​ Bs0 5 ∅ for s ≠ s’,

A1 [ ​ A2 [​ ::: [ ​ As ∈ A, and

B1 [ ​ B2 [​ ::: [​ Bs ∈ B.

By this definition, a matching process produces S matched sets, each of which

contains FA1F and FB1F, FA2F and FB2F, ... and FASF and FBSF. Note that by definition,

within a stratum or matched set, treated participants are similar to controls in

terms of propensity scores. Depending on the structure (i.e., the ratio of the number

of treated participants to control participants within each stratum) the analyst im-

poses on matching, they can classify matching into the following three types:

1. Pair matching: Each treated participant matches to a single control, or a

stratification of (A1, ... As; B1, ... Bs) in which FAsF 5 FBsF 5 1 for each s.

2. Variable matching: Each treated participant matches to, for instance,

at least one and at most four controls. Formally, this is a stratification

whose ratio of FAsF:FBsF varies.

3. Full matching: Each treated participant matches to one or more controls.

Similarly, each control participant matches to one or more treated

participants. Formally, this is a stratification of A1, ... As and B1, ... Bs

in which the minimum of FAsF, FBsF 5 1 for each s.

Optimal matching is the process of developing matched sets (A1, ... As; B1, ... Bs)

with a size of a, b to minimize the total sample distance of propensity scores. For-

mally, optimal matching minimizes the total distance D defined as

D 5 o
S

s51

x Asj j, Bsj jð Þd As, Bsð Þ,

where x(FAsF,FBsF) is a weight function and d(As, Bs) is the difference between treated

and control in terms of their observed covariates, such as their difference on propen-

sity scores or Mahalanobis distances. There are three ways to define theweight func-

tion (see Rosenbaum, 2002).

The optimal matching method uses network flow theory to form matched sets

that minimize the total distance. A primary feature of network flow is that it con-

cerns the cost of using b for a as a match, where a cost is defined as the effect of the

pair (a, b) on the total distance (D). A primary advantage of optimal matching, par-

ticularly full and variable matching, is that the original sample size is retained.

Postmatching outcome analysis for matched samples generated by optimal var-

iable matching or optimal full matching can be performed by assessing the sample

average treatment effect (ATE) using a Hodges–Lehmann aligned rank test (Hodges
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& Lehmann, 1962). Outcome analysis formatched samples generated by the optimal

pairmatchingneeds to control for the clustering effectwithinmultiplymatched par-

ticipants and may be performed as a regression of difference scores (Rubin, 1979).
Propensity Score Subclassification
The central idea of subclassification was developed by W. G. Cochran (1968) and

formulated before the development of PSA. A subclassification algorithm using

propensity scores balances data through five consecutive steps. First, sort the sam-

ple by estimated propensity scores in an ascending order. Second, divide the sample

into K strata using quantiles (quintiles, deciles, or other) of the estimated propensity

scores. Third, evaluate the treatment effect by calculating the mean difference of

outcome and the variance of differences between treated and control participants

within each stratum, or by running a multivariate analysis of outcomes within each

stratum as one does for samples generated by a randomized experiment. Fourth, es-

timate the mean difference ATE for the whole sample (i.e., all K strata combined)

through aggregating. Fifth, test whether the sample difference on outcome is statis-

tically significant.

Let 05 c0 < c1< c2< ... < cK 5 1 be boundary values. Let Bik be the indicators defined

as Bik 5 1 if ck-1 < e(xi) < ck, or Bik 5 0 otherwise, and

Bik 5 1 2 o
K21

k51

Bik,

where i is the index of observation (i 5 1, ... nk; nk is the number of observations in

stratum k), k is the index of the stratum (k5 1, ... K ), and e(xi) is the propensity score

for i. Now, the ATE within stratum k can be evaluated by applying the standard es-

timator to stratum k, or ŝk 5 �Yk1 2 �Yk0, where

�Ykx

1
nkx

o
i :Wi5x

Bik � Yi, nkx 5 o
ni

i :Wi5x

Bik,

and x 5 1 or 0, indicating treatment or control status. The condition under which

the constant propensity score property holds is that K is sufficiently large and the

differences ck 2 ck21 are small.

The ATE for the whole sample is then estimated by using the weighted average

of the within-stratum estimates:

ŝ 5 o
K

k51

nk

N
�Y0k 2 �Y1k½ � for mean; and

ŝ 5 o
K

k51

nk

N
ŝk½ � for regression�type coeff icient;

where N is the total number of participants. The variance of the sample ATE is es-

timated by the following formulas:
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Var ŝð Þ 5 o
K

k51

nk

N

� �2

Var �Y0k 2 �Y1k½ � for mean; and

Var ŝð Þ 5 o
K

k51

nk

N

� �2

Var ŝk½ � for regression�type coeff icient:

Taking a square root of variance, one obtains a standard error of the ATE or

regression-type coefficient and then can perform a significance test of a nondirec-

tional or directional hypothesis.

Propensity Score Weighting
Propensity scores may be used without matching or subclassification in a fashion

that is similar to data analysiswith samplingweights. In this context, aweighted out-

come analysis aims to increase internal validity, in a fashion similar to an analysis

that uses sampling weights to increase external validity. Propensity score weighting

is also called inverse probability of treatment weighting (or the IPTW estimator).

Propensity score weighting consists of the following three steps: First, estimate

propensity scores using sample observed covariates (x) in a logistic regression or sim-

ilar model. Next, calculate two types of weights: the weight for estimating ATE and

the weight for estimating average treatment effect for the treated (ATT). For ATE, the

weights are defined as follows:

x W, xð Þ 5 W
ê xð Þ 1

1 2 W
1 2 ê xð Þ :

By this definition, when W 5 1 (i.e., a treated participant), the weight becomes

x W, xð Þ 5 1=ê xð Þ :
When W 5 0 (i.e., a control), the weight becomes

x W, xð Þ 5 1
1 2 ê xð Þ :

For ATT, the weights are defined as follows:

x W, xð Þ 5 W 1 1 2 Wð Þ ê xð Þ
1 2 ê xð Þ :

By this definition, when W 5 1 (i.e., a treated participant), the weight becomes

x(W, x) 5 1; when W 5 0 (i.e., a control), the weight becomes

x W, xð Þ 5 ê xð Þ
1 2 ê xð Þ :

Finally, specify the weight in an outcome analysis that treats the weight just like

a samplingweight. The outcome analysis then becomes a propensity scoreweighted

analysis. In the outcome analysis, if researchers also need to use sampling weight,
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they can multiply the two types of weights (i.e., the sampling weight and the pro-

pensity score weight) and use the product weight in the outcome analysis (DuGoff

et al., 2014).

Because propensity score weighting retains the original sample and does not

trim a large number of cases, it is widely used in social behavioral and health re-

search in conjunction with complicated outcome analyses, such as Cox propor-

tional hazards and structural equation modeling.

Matching Estimators
Matching estimators refer to a collection of special matching algorithms developed

by Alberto Abadie and Guido Imbens, including the simple matching estimator,

the bias-corrected matching estimator, the variance estimator assuming homosce-

dasticity, and the variance estimator allowing for heteroscedasticity (Abadie et al.,

2004; Abadie & Imbens, 2006). The crucial idea of this method is to impute the

missing outcome or counterfactual at the unit level and then use both the observed

and imputed values to evaluate a series of treatment effects.

Based on the counterfactual framework (Neyman, 1923/1935; Rubin, 1974, 1986),

thematching estimators directly impute themissing data at the unit level by using a

vector norm. That is, at the unit level, a matching estimator imputes potential out-

comes for each study participant. Specifically, it estimates the value of Yi(0)FWi 5 1

(i.e., potential outcome under the condition of control for a treatment participant)

and the value of Yi(1)FWi5 0 (i.e., potential outcome under the condition of treat-

ment for a control participant). After imputing the missing data, matching estima-

tors can be used to estimate various ATEs, including the sample ATE, the population

ATE, the sample ATE for the treated, the population ATE for the treated, the sample

ATE for the controls, and the population ATE for the controls.

Thematching estimators do not use logistic regression to predict propensity scores.

Instead, thesemethods use a vector norm to calculate distances on the observed covar-

iates between a treated case and each of its potential control cases, anddistances on the

observed covariates between a control case and each of its potential treated case. A

minimum distance shows who is the match and determines the imputed counterfac-

tual value. The vector norm uses the same formula as theMahalanobismetric distance.

Abadie and Imbens allow the use of both the sample variance–covariancematrix and

the sample variance matrix (i.e., a diagonal matrix) in the computation, while the

Mahalanobis method only uses the variance–covariance matrix. Abadie and col-

leagues (2004) provided a variance estimate for each of the six treatment effects, as-

suming homoscedasticity, so that analysts can use appropriate standard errors to per-

form significance tests. When treatment effects are heteroscedastic, Abadie et al.

(2004) developed a robust estimator of variance, which involves a second matching

procedure such that treated units are matched to treated units and control units

are matched to control units. When one or morematching variables are continuous,
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the bias-corrected estimator can be used to correct for biases due to inexact match-

ing, which uses a least squares regression that adjusts the difference within the

matches for the differences in their covariate values.

PSM With Nonparametric Regression
Propensity score analysis with nonparametric regression was developed by James

Heckman, Hidehiko Ichimura, and Petra Todd (1997, 1998). A central feature of this

method is the application of nonparametric regression (i.e., local linear regression

with a tricube kernel, also known as lowess) to smooth unknown and possibly com-

plicated functions. Themethod allows estimation of ATT by using information from

all possible controlswithin a predetermined span. Because of this feature, themethod

is sometimes called kernel-basedmatching (Heckman et al., 1998). Themodelmay be

called a difference-in-differences approach (Heckman et al., 1997) when it is applied

to data for two timepoints (i.e., pre- and posttreatment data) to showchange triggered

by an intervention in a dynamic fashion.

I0 and I1 are the indices for controls and treated participants, respectively, and Y0

and Y1 are the outcomes of control cases and treated cases, respectively; n1 is the

number of treated cases, and Sp is the common support region. To estimate a treat-

ment effect for each treated case i ∈ I1, outcome Y1i is compared with an average of

the outcomes Y0j for matched case j ∈ I0 in the untreated sample. Matches are con-

structed on the basis of propensity scores ȇ(x) that are estimated using the logistic

regression on covariates x. Precisely, when the estimated propensity score of an un-

treated control is closer to the treated case i ∈ I1, the untreated case gets a higher

weight when constructing the weighted average of the outcome:

ATT 5
1
n1

o
i∈ I1 \ ​ SP

Y1i 2 o
j∈ I0\​ SP

W i, jð ÞY0j

" #
,

where W(i, j) is the weight estimated via lowess. When a data set including two

time points is available, researchers can compute the change score on the outcome

(Y1ti 2 Y1t’i) for the treated case i and outcome (Y0tj 2 Y0t’j) for the control case j, re-

spectively. To conduct a difference-in-differences (DID) analysis, replace Y1i with

(Y1ti 2 Y1t’i) and Y0j with (Y0tj 2 Y0t’j); the estimate is a special version of the ATT. The

DID formula is

DID 5
1
n1

o
i∈ I1 \​ SP

Y1ti 2 Y0t0ið Þ 2 o
j∈ I0\​ SP

W i, jð Þ Y0tj 2 Y0t0jð Þ
( )

,

where W(i, j) is the weight estimated via lowess. The application of lowess to match-

ing is innovative. Because the asymptotic distribution of weighted averages is rel-

atively complicated to program, no software packages currently offer parametric

tests to discern whether a group difference is statistically significant. As a common
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practice, researchers use bootstrapping to estimate the standard error of the sam-

ple mean difference between treated and nontreated groups.

In summary, over the past four decades, methods for program evaluation have

undergone a significant change. Statisticians and econometricians have developed—

and continue to develop—a range of propensity score and other models. The criti-

cism and reformulation of the classical experimental approach symbolize a shift

in evaluation. Although Rosenbaum and Rubin published their propensity score pa-

per in 1983, debate about correction methods is lively today, and it has fueled the

development of new approaches.

King and Nielsen’s Critique and Comments
In 2016, Gary King and Richard Nielsen posted a working paper entitled Why Pro-

pensity Scores Should Not be Used for Matching, and the paper was published in 2019.

They showed that the matching method often accomplishes the opposite of its in-

tended goal—increasing imbalance, inefficiency, model dependence, and bias. To

overcome the problems of matching, particularly those pertaining to nearest neigh-

bor within caliper matching (NNWC), King and Nielsen recommended using MDM

and coarsened exactmatching (CEM) as alternatives. In the following section, we dis-

cuss King and Nielsen’s paper, and we use it to motivate a renewed examination of

the eight PSA models discussed earlier.

Focus on Classical Matching Methods
King and Nielsen criticized the use of propensity scores for matching, not the entire

family of propensity score methods. They wrote, “We trace the PSM paradox to the

particular way propensity scores interact with matching. Thus, our results do not

necessarily implicate the many other productive uses of propensity scores” (King &

Nielsen, 2019, p. 1). For those who use the terms PSA and PSM interchangeably, it is

important to recognize that the current criticisms pertain only to matching.

Further, the title of King and Nielsen’s paper is potentiallymisleading. The study

criticized a very specificmethod ofmatching, that is, the classical NNWCmodel, not

all matching methods. As we described earlier, other matching approaches exist,

such as optimal matching, matching estimators, and PSM with nonparametric re-

gression. Hence, by referring to NNWC as “matching,” the title lacks specificity and

precision. Potentially, it leads to misconception about the robustness, efficiency,

and validity of other matching methods.

The Rosenbaum and Rubin Proof of the Properties of Propensity Scores
King and Nielsen criticized Rosenbaum and Rubin’s proof regarding the properties

of propensity scores. Although it was mathematically correct, they suggested that

the proof is of little use and possibly misleading when applied to real data. They

argued that the theorem encourages researchers to settle for the lower standard
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of approximating only complete randomization and average levels of imbalance

rather than a fully blocked randomized experiment, which has a higher likelihood

of reducingmodel dependence. They also asserted that balancing only on a propen-

sity score does not balance the entire vector of covariates: Equality between any

two estimated scalar propensity scores does not imply that the two corresponding

k-dimensional covariate vectors are exactly matched.

This critique ignores the fundamental property Rosenbaum and Rubin proved

with regard to the propensity score: the reduction of dimensionality in matching.

The endogeneity problem is synonymous with the violation of the strongly ignor-

able treatment assignment assumption: (Y0,Y1)?WFX, which states that condi-

tional upon observed covariates X, the assignment of study participants to binary

treatment conditions (W5 1 orW5 0) is independent of the outcome of nontreat-

ment (Y0) and the outcome of treatment (Y1). Violation of this assumption leads to

the call for using correction procedures such as a PSA model.

The key property of a propensity score is its summary of information of the

entire set of covariates in X so that it becomes a scalar score. Rosenbaum and Ru-

bin proved that after creating a propensity score, treatment assignment and the

observed covariates are conditionally independent given the propensity score:

xi? WiFe(xi). The conversion of (Y0,Y1) ? WFX into xi ? WiFe(xi) underscores the im-

portance and utility of the propensity score. That is, through the creation of a pro-

pensity score, multiple covariates are sufficiently reduced into one score. The key

feature is that the balancing or coarsest score adequately summarizes the informa-

tion of vector xi, in which each x covariate is a finest score. The mathematical proof

of this property is a major contribution made by Rosenbaum and Rubin.

After creating propensity scores, an analyst might still find that two participants

with the same ȇ(xi) score have different values on some covariates in x. For instance,

if gender is one covariate used in the estimation of propensity scores, two partici-

pants with the same value of ȇ (xi) still could be one female and one male. However,

the mathematical proof shows that for the sample as a whole, the joint distribution

of entire vector x is conditionally independent from the treatment assignment.

NNWC achieves a lesser degree of balance on covariates than MDM and CEM.

The former approach does the matching by using a summary score through logistic

regression, whereas the latter two methods perform matching based on individual

covariates. The crucial task for all propensity score methods is to correctly specify

the model estimating e(xi) to ensure the correct functional forms of the covariates

used in the estimation; thus, the analyst can be sure that the scalar score correctly

represents the joint distribution of all x covariates. The importance of ensuring co-

variate balance—and balance testing—is almost unanimously emphasized by PSA

developers. It is routine to check covariate balance after running a corrective pro-

cedure and to rerun a model if there are imbalances on major covariates. The fail-

ure to achieve covariate balance should not be attributed to the use of propensity
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scores in NNWC; rather, balance requires inclusion of appropriate predictors in the

estimation model and development of the proper functional form after balance

checks.
The Importance of Considering Both External and Internal Validities
An important issue pertaining to the advantages and disadvantages of NNWC,

MDM, CEM, and all other PSA methods is the level of bias reduction (i.e., the statis-

tical conclusion validity of a correctivemethod) and the extent towhich eachmethod

retains the original sample size (i.e., the external validity of a corrective method).

Both criteria should be used to evaluate the performance of a given approach.

For the three methods considered by King and Nielsen (2019), researchers often

must choose between inexact matching and incomplete matching (Guo & Fraser,

2015; Parsons, 2001).While trying tomaximize exactmatches, the analyst may trim

cases (i.e., drop unmatchable participants), which results in incomplete matching

(i.e., the loss of cases and a reduction in sample size). Conversely, while trying to

maximize cases, the analyst may create a sample with inexact matching results.

By design, NNCM employs a summary balancing score and, therefore, trims fewer

cases thanMDMand CEMbecause the latter twomethodsmatch based on individual

covariates. Hence, considering both external and internal validities of a correction

method, NNCM is not always inferior to MDM and CEM.

In empirical research, researchers often prioritize retaining the original sample

size because the sample represents the research population of interest. Whatever

corrections researchers intend to make, the fundamental goal is to ensure that the

resample or matched sample through propensity score modeling remains represen-

tative. In this context, the loss of a large proportion of sample observations is hazard-

ous and should be avoided. The external validity of a correction method is a crucial

criterion for evaluating the performance of the method.
Fully Blocked Randomization Versus Complete Randomization
King andNielsen raised an important issue related to NNWCmatching. NNWC aims

only to approximate a completely randomized experimental design, whereas inmost

observational data sets a fully blocked randomized experimental design is pre-

ferred. Although this is an important comment, in practice, fully blocked designs

require precise prior causal knowledge to select the correct blocking measure, pre-

cise measurement of the blocking variable, and exact matching. This is a tall order

that is rarely accomplished in routine program evaluation. For instance, a widely

used approach in health sciences and educational research is cluster randomiza-

tion, in which groups of participating units (as opposed to individual units) are ran-

domized. Cluster randomizationwithout using covariates is not fully blocked, yet it

is from this kind of randomization that we see the usefulness of approximating a



476 Journal of the Society for Social Work & Research Fall 2020
completely randomized experiment. Fully blocked designs are desirable but require

blocking on a variablewith high construct validity. The process of blocking typically

produces inexact or incomplete matches.

Method to Compare Propensity Score Models

Monte Carlo Study
To illustrate the importance of considering both bias reduction and complete

matching (sample-size retention) in the propensity score process, we conducted a

Monte Carlo study to compare eight different models: OLS regression without cor-

rection of endogeneity, NNWC, MDM, optimal full matching, CEM, matching esti-

mators, propensity score weighting, and propensity score subclassification. We

compared all the models described earlier except the PSA with nonparametric re-

gression, which we excluded because this approach estimates ATT and is not com-

parable with the other methods, which estimate ATE.

Following the design of a Monte Carlo study originally developed by Heckman

and Robb (1985, 1986, 1988), the current study simulated two conditions of data

generation: selection on the observables and selection on the unobservables. The

former is defined by uncorrelated residuals in the sample selection equation and

outcome equation. The latter is defined by the correlation of the two residuals.

The data simulation compares the eight models based on both the level of bias re-

duction (i.e., the internal validity of the method) and mean observations retained

by eachmodel (i.e., the external validity of themethod). Because one covariate used

in the data simulation is continuous, the Monte Carlo study considered three cat-

egorizations of the continuous variable in CEM. Details of the Monte Carlo study

specifications can be found in Guo and Fraser (2015), and the Stata syntax of the

Monte Carlo study is available at the website for Guo and Fraser (2015). The current

study contributes to the 2015 study by evaluating model performance on both

sample-size retention and bias reduction. It also compares three newmodels (MDM

with and without propensity scores, and CEM) recommended by King & Nielsen

and one model (optimal matching) ignored by the 2015 study. The evaluation of

model performance does not use the efficiency (or variance reduction) criterion

because a comparison of model variance is complex and cannot be shown by data

simulation. Properties of model efficiency are typically made analytically (see Guo

& Fraser, 2015; Imbens & Wooldridge, 2009).

Findings
The design of the Monte Carlo study is shown in Figure 1, and results of the model

comparisons under the two settings are shown in Tables 1 and 2.

Except for CEM with three categories, NNWC trimmed fewer cases than MDM

and CEM, and this was true for both selection on observables and selection on
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unobservables (Tables 1 and 2). When a continuous variable was categorized with a

much-coarsened standard, its level of bias reduction was the worst among all mod-

els being compared, although it retains more observations. Considering both

sample-size retention and bias reduction criteria, NNWC is not always inferior to

MDM and CEM. Indeed, it is challenging to determine which of the three methods

is best.

For selection on observables (Table 1), MDM with propensity score ranks Num-

ber 3, and MDM without propensity score ranks Number 1 in terms of bias reduc-

tion. Using this standard, MDM appears to be the preferred method when selection

is measured. However, considering the sample size retained, MDMwith propensity

score ranks Number 11 and MDM without propensity score ranks Number 10, which

are among the worse results across all models. Considering both internal and ex-

ternal validities, propensity score subclassification emerges as best.

For selection on unobservables (Table 2), neither MDM nor CEM can compete

with the optimal full matching and matching estimators if both criteria are consid-

ered. Results also show that CEM in general is not robust in retaining observations

and reducing bias, although the method has the advantage of easy application.

No singlemodel works well across all scenarios. The “best” results depend on the

fit between the assumptions embedded in a model and the process of data genera-

tion. For instance, under the setting of selection on observables (Table 1), because

the data-generation process exactlymeets the assumption embedded in the subclas-

sification model (i.e., the number of strata is sufficiently large and the propensity

score difference between two strata is small), the subclassifiction model ranks sec-

ond in terms of bias reduction and appears to be preferable. However, for selection
Figure 1. Design of the Monte Carlo Study: Two Settings of Selection Bias

Note. Sample size 5 500; number of simulations 5 10,000.
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on unobservables (Table 2), because of a nonzero correlation of residuals that

makes the propensity score differences between strata large and nonignorable, the

subclassification model ranks among the worst. These findings underscore the im-

portance of understanding the assumptions related to each correction model and

having deep, substantive knowledge sufficient to understand the risk of selection on

unobserved variables.When information regarding the tenability ofmodel assumptions

is not available, findings must be conditioned on a discussion of model assump-

tions. Seeking concordance across findings from multiple models is indicated.

In general, our study confirms that the three methods recommended by Imbens

andWooldridge (2009)—propensity score subclassification, propensity scoreweight-

ing, and matching estimators—are robust in most data situations.

Finally, this study supports a methodological caution made repeatedly by expe-

rienced observational researchers: OLS regression is a poor and ill-advised analytic
Table 1
Results of Monte Carlo Study of Selection on the Observables

Analytic Model

Mean
Observations
Retained

Rank by Mean
Observations

Mean
Effect

Bias 5 Mean 2

True Effect
Rank by

Mean Effect

Nearest neighbor within
caliper

219 8 0.488 20.012 5

Mahalanobis with
propensity score

171 11 0.495 20.005 3

Mahalanobis without
propensity score

178 10 0.499 20.001 1

Optimal full matching 500 1 0.395 20.105 11
Coarsened exact
matching (5 categories)

103 12 0.489 20.011 4

Coarsened exact
matching (4 categories)

184 9 0.488 20.012 5

Coarsened exact
matching (3 categories)

342 7 0.484 20.016 7

Treatment effect model 500 1 1.929 1.429 12
Matching estimator 500 1 0.453 20.047 10
Propensity score
weighting (ATE)

500 1 0.484 20.016 7

Propensity score
stratification

500 1 0.497 20.003 2

Ordinary least squares
regression

500 1 0.537 0.037 9
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approach in the presence of endogeneity or selection bias. Using the bias-reduction

criterion, OLS regression ranks as Number 9 for selection on observables (Table 1)

and Number 10 for selection on unobservables (Table 2).
Conclusion
As King and Nielsen pointed out, model specification in PSA is challenging. Our

findings suggest that researchers need comprehensive knowledge of model assump-

tions and knowledge of plausible causal structure. From prior research, sources of

selection bias must be understood. Substantive knowledge of plausible causal struc-

ture typically includes the theory of change of an intervention program being eval-

uated, which determines the covariates that should be used in the model predicting

propensity scores and in the outcome analysis. Sample reduction after running a

propensity score model is a key issue and should always be considered. Using both
Table 2
Results of Monte Carlo Study of Selection on the Unobservables

Analytic Model

Mean
Observations
Retained

Rank by Mean
Observations

Mean
Effect

Bias 5 Mean 2

True Effect
Rank by

Mean Effect

Nearest neighbor
within caliper

218 8 0.646 0.146 5

Mahalanobis with
propensity score

170 11 0.676 0.176 7

Mahalanobis without
propensity score

178 10 0.677 0.177 8

Optimal full matching 500 1 0.422 20.078 2
Coarsened exact
matching (5 categories)

100 12 0.698 0.198 12

Coarsened exact
matching (4 categories)

179 9 0.657 0.157 6

Coarsened exact
matching (3 categories)

341 7 0.642 0.142 4

Treatment effect model 500 1 0.505 0.005 1
Matching estimator 500 1 0.639 0.139 3
Propensity score
weighting (ATE)

500 1 0.686 0.186 9

Propensity score
stratification

500 1 0.693 0.193 11

Ordinary least squares
regression

500 1 0.691 0.191 10
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bias reduction and sample-size retention criteria, MDM and CEM cannot be as-

sumed to be good choices. Our findings suggest that it is of paramount importance

to understand the assumptions of propensity score models and attend to potential

violations of these assumptions. This requires both methodological and substan-

tive knowledge.
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