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Abstract: (1) Background: Vitamin D is an immunoregulatory factor influencing intestinal homeosta-
sis. Recent evidence supports a central role of this micronutrient in the course of Inflammatory Bowel
Diseases (IBD). This narrative review aims to provide a general overview of the possible biological
mechanisms of action of vitamin D and its therapeutic implications in IBD. (2) Methods: A systematic
electronic search of the English literature up to October 2021 was performed using Medline and the
Cochrane Library. Only papers written in English that analyzed the role of vitamin D in IBD were
included. (3) Results: In vitro and animal studies reported that vitamin D signaling improves epithe-
lial barrier integrity regulating the expression of several junctional proteins, defensins, and mucins,
modulates the inflammatory response, and affects gut microbiome composition. Recent studies also
suggest that vitamin D deficiency is highly prevalent among IBD patients and that low serum levels
correlate with disease activity and, less clearly, with disease course. (4) Conclusions: An increasing
body of evidence suggests some role of vitamin D in the pathophysiology of IBD, nonetheless the
underlying mechanisms have been so far only partially elucidated. A strong correlation with disease
activity has been reported but its implication in the treatment is still undefined. Thus, studies focused
on this issue, the definition of vitamin D levels responsible for clinical effects, and the potential role
of vitamin D as a therapeutic agent are strongly encouraged.

Keywords: micronutrient; inflammation; IBD; Crohn’s disease; ulcerative colitis

1. Introduction

Vitamin D regulates calcium and phosphate metabolism, contributing to optimal bone
homeostasis [1]. Besides effects on bone, vitamin D has also been linked to a wide range of
biological activities, including modulation of gut mucosal immunity and the integrity of
the intestinal barrier [2,3]. Consequently, vitamin D deficiency has been associated with
the activity of immune-mediated diseases, including inflammatory bowel disease (IBD). A
pathogenetic role in chronic inflammatory diseases, including IBD, has also been advocated.

Vitamin D, a fat-soluble steroidal hormone, is present in humans in two main forms:
vitamin D2, (ergocalciferol, from vegetables) and vitamin D3 (cholecalciferol, from animal
sources). Both are provided by dietary intake and supplementation.

Vitamin D3, the more biologically active compound, is synthesized in the skin in
response to ultraviolet light [4]. Cholesterol is converted to 7-dehydrocholesterol in
the plasma membrane of epidermal cells. The 7-dehydrocholesterol is then converted
to pre-vitamin D which will be further converted into vitamin D [4]. The vitamin is
then released into the circulation, bound to Vitamin D Binding Protein (VDBP) [4]. Fol-
lowing endogenous synthesis or intestinal absorption, vitamin D is carried to the liver
where it is converted by vitamin D 25-hydroxylase into its major circulating form, 25-
hydroxyvitamin D [25(OH)D]. The 25(OH)D is then further converted into its active
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form, 1,25-dihydroxyvitamin D [1,25(OH)2D], by the renal cytochrome P450 enzyme, 25-
hydroxyvitamin D-1α-hydroxylase (CYP27B1) [5] (Figure 1).
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Figure 1. Vitamin D is synthesized in the skin in response to ultraviolet light or provided by the
diet. It is first converted to 25-hydroxyvitamin D3 by hydroxylation occurring in the liver and then
further converted into its active metabolite, 1,25-dihydroxyvitamin D3, in the kidney. Ca = calcium;
P = phosphate; CYP2R1 = Cytochrome P450 Family 2 Subfamily R Member 1; CYP27B1= Cytochrome
P450 Family 27 Subfamily B Member 1; 25(OH) vitamin D = 25-hydroxyvitamin D; 1,25 (OH) Vitamin
D = 1,25-dihydroxyvitamin D.

Opposite effects are exerted in the kidney by 1,25-dihydroxyvitamin D3 and parathy-
roid hormone (PTH) on the enzymes 1α-hydroxylase and 24- hydroxylase, regulating the
production and excretion of the active form of the vitamin.

Bone, kidney, and gut function, and regulation of calcium and phosphate homeostasis,
result from the action of 1,25-dihydroxyvitamin D3.

Both 25(OH)D and 1,25(OH)2D are degraded through a third hydroxylation at carbon 24
or carbon 23 and converted by oxidation to calcitroic acid [6], which is excreted by the kidney
or enters the enterohepatic circulation through bile [6].

2. Methods

A systematic electronic search of the English literature up to October 2021 was per-
formed using Medline, and the Cochrane Library. The search strategy used a combination
of Medical Subject Headings (MeSH) and keywords as follows: “vitamin D”, “vitamin D
deficiency”, “vitamin D receptor”, “VDR”, “IBD”, “Inflammatory Bowel Disease”, “Crohn”,
“ulcerative colitis”, “inflammation”, “cytokines”, “immune system”, “gut microbiota”,
“intestinal barrier”, “epithelial barrier”, “epithelial permeability”, “epithelium”, “intestinal
homeostasis”, “inflammatory response”, “short-chain fatty acids”, “SCFA”, “butyrate”,
“response to therapy”, “therapy”, “biologics”.

Four authors selected relevant studies by screening the abstracts. Additional references
were included after a review of the bibliography of the identified papers and review articles.
Any difference was resolved by consensus, referring to the original articles.

Out of 2687 citations, 119 relevant articles were selected and included in the present
narrative review.

3. Vitamin D Deficiency

Vitamin D shortage is a common health issue, but a shared definition of vitamin
D deficiency is not available. Most guidelines suggest that levels below 20–30 ng/mL
(50–75 nmol/L) are considered insufficient [7,8]. These figures are primarily based on the
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skeletal effects of vitamin D, while the minimum level required for extra-skeletal effects is
less clearly defined.

According to the World Health Organization (WHO) guidelines, vitamin D shortage
is further subdivided into deficiency and insufficiency, defined as serum 25(OH)D levels
below 10 and 20 ng/mL, respectively [9]. However, higher cut-offs are proposed by the
Endocrinological Society [8].

The prevalence of vitamin D deficiency (serum 25-OH-D < 40 nmol/L) in the general
population is high, ranging between 30% [10] and 47% [11], in relation to the geographic
area considered [12]. The prevalence is higher in patients at risk of vitamin D deficiency
due to different causes, malabsorptive disorders, IBD included.

In a recent Italian study [13] mean vitamin D concentration in IBD patients was
18.9 ± 10.2 ng/mL. Insufficiency was present in 62% of IBD patients, and deficiency was
observed in 22%. The Odds Ratio of vitamin D deficiency versus controls was 3.2, higher
than that was reported in a recent meta-analysis in the IBD series (OR 1.64) [14]. The
strict exclusion of subjects taking vitamin supplementation in the Italian cohort explains
the difference [13].

IBD patients are known to be at particularly high risk for vitamin D deficiency [13]
for several reasons including intestinal inflammation leading to impaired absorption of
nutrients, bile acid malabsorption, restricted dietary intake, reduced sunlight exposure [15],
or as a consequence of immunosuppressive treatment with thiopurines [16].

The prevalence of osteopenia is also high in IBD ranging from 32 to 36%, while the
prevalence of osteoporosis is present in 7–15% of patients [17,18]. The mean bone mineral
density (BMD) and Z-scores for IBD patients versus controls were also decreased [19]. The
relative risk (RR) for bone fractures is increased in IBD patients when compared to the
general population, as confirmed by two recent metanalyses [19,20]. This proves true both
for the global fracture risk (RR 1.38, 95% CI 1.11–1.73) and for vertebral fractures (odds
ratio 2.26, 95% CI 1.04–4.90) [19].

Low circulating levels of vitamin D is an important risk factor for osteopenia and
osteoporosis in patients with IBD [21,22].

Nonetheless, the issue of vitamin D shortage in IBD is addressed by the British guidelines,
but not by the more recent European Crohn’s and Colitis Organisation (ECCO) [23,24] and
American College of Gastroenterology (ACG) guidelines [25,26]. Surprisingly enough the
need for vitamin D supplementation was pointed out by 2017 [27], but not by 2020 [23,24]
ECCO guidelines.

Besides vitamin D deficiency, reduced levels of vitamin K or magnesium, as well as
increased levels of PTH secondary to low vitamin D levels, may also contribute to bone loss.
Additional important risk factors for osteopenia/osteoporosis include chronic ongoing
inflammation and corticosteroid therapy. It is well known that bone loss is tightly linked
to immune system activation occurring during flares in chronic inflammation, mainly via
TNF-α, IL-1β IL6, IL15, IL17, IFNγ, and receptor activator of nuclear factor kappa-B ligand
(RANKL). Steroids may also contribute to bone loss by increasing RANKL and reducing
osteoprotegerin levels. Disability or reduced physical activity caused by the active disease
may be involved in the alteration of bone metabolism.

4. Vitamin D and Inflammation

The biological activity of 1,25(OH)2D is mediated by the vitamin D receptor (VDR), a
member of the nuclear hormone receptor superfamily, expressed in differing organs, small
and large bowel included [28]. A growing body of evidence suggests that vitamin D /VDR
signaling affects the expression of several genes, regulates the immune system, and modu-
lates the inflammatory response in experimental models of IBD [29], and humans [30,31].
Some evidence supports its role on the integrity of the mucus layer and underlying epithe-
lium, and the composition of the microbiota (Figure 2). These issues will be addressed in
the following paragraphs.
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Figure 2. Vitamin D signaling affects the expression of several genes, regulates the immune system,
and modulates the inflammatory response. It helps maintain epithelial integrity, through the regula-
tion of tight junctions and adherens junctions’ components, as well as the release of antimicrobial
peptides like the defensins. A role in the integrity of the mucus layer, as well as the composi-
tion of the gut microbiome, has been advocated. Th = T helper cells; NKT = natural killer T cells;
Tregs = regulatory T cells; sIgA = secretory immunoglobulin A; VDR = vitamin D receptor.

4.1. Intestinal Epithelial Cells and Vitamin D

VDR is highly expressed in normal gut epithelial cells [32,33]. A surface-to-crypt
gradient is present, with the highest expression of VDR in the crypts [32,33]. The vita-
min/VDR signaling pathway plays a primary role in the control of epithelial permeability,
regulating the expression of several components of tight junctions (TJ) and adherens junc-
tions (AJ), as well as the release of antimicrobial peptides and mucins [34] (Figure 2). In
epithelial cells models, 1,25 (OH)2D3 increases the expression of E-cadherin and some TJ
components, occludin, and claudins included [35]. The epithelial integrity is maintained by
vitamin D/VDR signaling, also, through other mechanisms and provides a protecting effect
against TNBS-induced colitis in mice [36], through inhibition of myosin light chain kinase
(MLCK)-induced disruption of tight junctions. A direct role of vitamin D levels on mucus
production has not been documented, and animal studies indicate that goblet cells lack
VDR [37]. However, thinning of the mucus layer is present in CYP27B1−/−mice [29]. This
suggests that vitamin D indirectly modulates mucus secretion, possibly favoring adequate
Ca2+ assimilation [38]. The additive effects of Ca2+ and vitamin D on MUC12 expression
are also involved [39]. Another hypothesis links the effects of vitamin D/VDR on micro-
biota and mucus production. Modulation of microbiota affects SCFA/butyrate production,
and the effects of butyrate on mucus controlling genes expression are well documented [40].
Animals kept on a vitamin D-depleted diet and mouse models specifically lacking vitamin
D receptor (VDR) expression in the intestinal epithelium are more susceptible to experi-
mental colitis [32,41,42], with different mechanisms of action of the vitamin. Diet-induced
vitamin D deficiency increases intestinal permeability in mice models [43], and increased
disease severity was reported in a dextran sulfate sodium (DSS) animal model after the
deletion of epithelial cell VDR [44]. Interestingly, VDR/IL-10 double knockout (KO) mice
develop colitis after 8 weeks as compared with single IL-10- or VDR-knockout animals that
remain relatively healthy at that time [45]. Conversely, the induction of epithelial VDR
reduces disease activity [32]. Data however are not fully concordant, considering that gut
permeability is normal in VDR deficient (VDR−/−) mice, which exhibit normal mucosal
morphology both in the small [46] and in the large bowel [47]. Interestingly, in a mice
model investigating the intestinal response to 1,25(OH)2D, the transcriptional response
of VDR was reported 6 hours after a single bolus of 1,25(OH)2D. The effect was however
limited to mature enterocytes [48]. All these data of experimental colitis in animal studies
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strongly support the pivotal role of vitamin D/VDR in maintaining an efficient mucosal
barrier. The results on humans are less clear. Studies assessing VDR expression in IBD
versus non-IBD control reported conflicting data as two studies [32,49] reported signifi-
cantly lower VDR levels in inflamed IBD biopsies, while two other studies [50,51] were
not able to detect overall significant differences, although VDR expression was inversely
correlated with inflammatory activity. One study reported that VDR gene expression
and protein immunohistochemical staining intensity were similar in different intestinal
segments and between IBD patients and controls. However, a significantly lower VDR
staining intensity was documented in inflamed samples versus non-inflamed epithelia, in
IBD. [50]. The role of vitamin D in IBD patients, under stress conditions, was confirmed
by other studies on colonic mucosa [41,52]. Mucosal inflammation was associated with a
TNF-α-mediated downregulation of VDR and an up-regulation of CYP27B1 [41,52]. The
paradoxical effect of vitamin D/VDR on claudin-2, as vitamin D-dependent up-regulation
of claudin-2, is considered central for the paracellular absorption of Ca2+ [53]. On the other
hand, vitamin D/VDR signaling, reducing claudin-2 expression, and therefore epithelial
paracellular permeability, seems to be protective in IBD [49,54]. Vitamin D/VDR signaling,
by inhibiting the activation of NFκB, can prevent p53 upregulated modulator of apoptosis
(PUMA) induction, whose levels correlate with disease severity [55]. Moreover, in a model
of DSS-induced colitis, VDR deficiency delayed mucosal healing [56]. The opposite was
true for vitamin D supplementation [57,58].

4.2. Immune System and Vitamin D

Macrophages, dendritic cells, B cells, and T cells all express VDR and are thus
vitamin D targets [59,60] (Figure 2). Furthermore, some immune cells directly produce
small amounts of vitamin D. Similarly, to other extra-renal tissues, the production of 1,25D
by the immune cells is modulated by the expression of Cyp27B1 [61]. Indeed, Cyp27B1 is
induced via toll-like receptors or cytokines in macrophages and through T cell receptor
stimulation in T cells [61–64]. Vitamin D inhibits the expression of IL-12 and toll-like recep-
tors in dendritic cells and macrophages, as well as the dendritic cells-induced activation
of T cells [65,66]. Conversely, the production of IL-10 by dendritic cells and cathelicidin
in macrophages is enhanced by 1,25D [67,68]. Less innate lymphoid type 3 cells (ILC3)
and lower levels of IL-22 were reported in vitamin D deficient mice compared to mice
with adequate levels of vitamin D [59]. In the acquired immune system, 1,25D inhibits the
proliferation of B- and T-cells [69] and inhibits the production of IL-2, interferon (IFN)-γ,
IL-17, and TNF-α from T-cells [69]. The stimulation of T cells by macrophages and dendritic
cells is reduced in the presence of 1,25D [66]. Conversely, 1,25D induces the production
of IL-10 and other anti-inflammatory cytokines by regulatory T-cells [70] and IL-4 by Th2
cells [69] (Figure 2). Vitamin D represents an attractive target for enhancing or restoring
the protective function of NKT cells [71]. Vitamin D/VDR signaling indeed contributes
to the development and function of NKT cells. A lower number of NKT cells compared
with wild-type (WT) mice, was observed in both VDR-deficient and 1,25D3-deficient mice
(Cyp27B1−/−) [72]. Defective iNKT cell maturation in the absence of the VDR was also
suggested in the same study, as KO mice fail to express NK1.1, although they express
normal levels of CD122. Vitamin D treatment also leads to increased production of IL-4 and
IFN-γ mice models [72]. The vitamin D-induced inhibition of T cells, reducing IFN-γ and
IL-17 levels, and the induction of regulatory cells (T regs, CD8αα, and T) also supports the
role of vitamin D/VDR in animal models of colitis [73]. This is in keeping with the results
of experimental studies documenting that CD4 T cells from VDR KO and Cyp27B1 KO mice
overproduce IFN-γ and IL-17 cells compared to wild-type CD4 cells [74]. 1,25(OH)2D3
suppresses the proliferation of T cells in vitro [75,76]. VDR favors FoxP3+ T reg cells, which
prevent the development of experimental colitis through the production of inhibitory cy-
tokines such as IL-10 and TGF-β [77] and FoxP3+ T reg cells are induced by 1,25(OH)2D3
treatments in vitro and in vivo [78]. Conversely, it has been reported that VDR KO mice
have normal levels of FoxP3+ T reg cells compared to WT [79], further documenting the
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complexity of this issue. Other populations of regulatory T cells, such as CD8αα, are also
influenced by vitamin D, thus VDR KO mice have a reduced number of CD8αα T cells in
the gut, due to block in maturation and proliferation of their precursors [80]. In the clinical
setting chronic activation of Th1 and Th17 cells takes place [73], possibly as IBD patients
are more frequently vitamin D deficient than control subjects [14].

4.3. Gut Microbiota and Vitamin D

Vitamin D influences the composition of the microbiome in healthy subjects [81] and
the interaction is bidirectional. Genome-wide association studies (GWAS) indicate that
human VDR gene variations correlate with changes in the intestinal microbiota [82], while
the absence of intestinal VDR leads to dysbiosis in mice [44]. The bacterial microbiome does
not express VDR, thus VDR signaling in epithelial and immune cells mediates the effects of
vitamin D on intestinal flora [83] (Figure 2). As shortage or presence of vitamin D and VDR
signaling modulate several substances influencing the bacterial–host interaction, as well as
innate and acquired immune response, further changes in microbiome ensue. This view is
supported by a large body of evidence, but this complex mosaic of interactions needs to be
better clarified. VDR knock-out mice show defective Paneth cells function [44,84], resulting
in defective autophagy, granule exocytosis, and secretion of antimicrobial peptides. Thus,
the lack of VDR in Paneth cells favors inflammation and susceptibility to infections in ani-
mal models [44,84]. Intestinal epithelial VDR down-regulates the expressions of ATG16L1,
an IBD susceptibility gene involved in autophagy [44]. The production of lysozyme [44]
and other antimicrobial peptides, such as defensin 4 [84] are reduced in VDR KO mice.
Interestingly, microbiota alterations can be partially reversed by the administration of
1,25(OH)D [85]. High concentrations of vitamin D are related to increased serum cathe-
licidin and reduced inflammation in UC patients. Furthermore, vitamin D improves the
cathelicidin antimicrobial activity in vitro against E. coli and protects against experimental
colitis in vivo [86]. Conversely, the role of bacteria in modulating vitamin D levels and possi-
ble feedback interactions have been assessed by a few studies only, but it is widely accepted
that commensal and pathogenic bacteria regulate VDR expression in animal models [33].
VDR signaling is indeed influenced by bacterial-produced metabolites, similar to butyrate,
which is associated with increased epithelial VDR levels, in mice [44]. In turn butyrate,
besides representing a primary energy substrate for colonic mucosal cells, increases the
intermolecular cross-linking of fibrin chains transglutaminase- and non-transglutaminase-
mediated healing processes [87]. Lithocholic acid, another intraluminal compound derived
from bacterial metabolism, suppresses IL-2 production by inducing VDR signaling in T
cells [88]. Interestingly, some bacterial enzymes hydroxylate steroids, and process and
activate vitamin D [89]. The microbiota also influences vitamin D metabolism through
fibroblast growth factor (FGF)-23 and the regulation of CYP27B1 [90]. Only a few studies
evaluated the effect of vitamin D on the microbiota in UC and CD patients. Vitamin D
shows a positive effect in both CD and UC patients increasing Enterobacteriaceae and
reducing overall intestinal inflammation [91–93]. Vitamin D administration (40,000 IU,
once weekly) over 8 weeks did not induce changes in alpha diversity, despite a small
reduction in Ruminococcus gnavus in a small cohort of UC patients [91]. The increased
level of Enterobacteriaceae was not paralleled by the significant change in E. coli and inva-
sive Fusobacterium nucleatum. In another study, vitamin D supplementation (300,000 IU
in 4 weeks) modified the gut microbiota composition in CD patients in remission, with
a transient increase of beneficial bacteria such as Alistipes, Roseburia, Parabacteroides, and
Faecalibacterium. No changes were noted in vitamin D deficient healthy controls. The
role of vitamin D supplementation in active CD was not investigated [93]. A possible
connection between the seasonal levels of serum vitamin D levels and microbiome changes
was also explored [94]. Increased concentrations of Pediococcus spp., Clostridium spp., and
Escherichia/Shigella spp., associated with the highest vitamin D levels (37.26 ng/mL) were
present in summer/autumn, while Eggerthella lenta, Helicobacter spp., Fusobacterium spp.,
and Faecalibacterium prausnitzii were relatively less represented.
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5. Vitamin D Supplementation and Disease Course

Hard evidence shows that mean vitamin D concentrations are lower in IBD patients
than in the general population [14]. Independent predictors of vitamin D deficiency include
non-Caucasian ethnicity, high BMI (>30 kg/m2) both in CD and UC, and IBD-related
surgery in CD [95,96]. Inadequate exposure to sunlight, more so in patients with active
disease, negatively affects vitamin D levels. The use of cholestyramine to treat bile acid
diarrhea following distal ileum resection, also contributes to vitamin D deficiency, due to
malabsorption of fat-soluble vitamins [97]. Conversely, the multivariate analysis does not
show an association of steroid use with vitamin D deficiency, in IBD (p = 0.12 versus con-
trols) [95]. Nonetheless, international guidelines support vitamin D supplementation in all
IBD patients on steroids, to prevent the negative effect of steroids on bone metabolism [27].
A correlation between vitamin D levels and disease activity is also present [30]. Levels of
25(OH)D≤ 25 ng/mL in a retrospective study had an AUC of 0.79–0.81 for the identification
of endoscopic and histologic activity [98]. Reduced risk of postoperative endoscopic recur-
rence in patients with CD who underwent surgery has been reported in an observational
study in patients with vitamin D > 30 ng/mL (OR 0.22, 95% CI 0.07–0.66, p = 0.006) [99].
Thus, vitamin D has been proposed as a potential biomarker of disease activity [98,100].
This is, at best, debatable, as vitamin D concentration reflects changes occurring over rela-
tively long periods. Whether vitamin D supplementation represents a potential therapeutic
option is controversial [100]. A well-conducted RCT including 94 CD patients, showed
a non-significantly lower rate of relapse in patients treated with 1200 IU/day of vitamin
D compared to the placebo group (6/46 vs. 14/48; p = 0.06) [92]. However, several other
RCTs led to conflicting conclusions. This likely results from the small number of patients
included in underpowered studies (Table 1). Moreover, the extreme variability in dosage
regimens, and duration of follow-up, make results hardly comparable.
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Table 1. RCTs evaluating vitamin D supplementation on IBD and clinical course.

STUDY Country Patients
Included Disease Intervention

Group

Vitamin D
Doses in
the Inter-
vention
Group

Control
Group

Control
Group

(Placebo or
VitD)

Difference
in the
Mean

Daily Dose
*

Follow-Up

Outcomes
(Disease
Activity
Evalua-

tion)

Outcomes
(Adverse
Events;

Vitamin D
Levels)

Relapse In-
tervention
vs. Control

Bafutto
2017 [101] Brazil

30
moderate to
severe and
VitD levels

< 30 ng/mL

CD 20

50,000
IU/die
10.000
IU/die

10 2000 UI/die 48,000 IU
8000 IU 8 weeks ↓CRP; ↓FC;

↑IBDQ ↑VitD n.a.

Ahamed
2019 [102] India

60 with
UCDAI >3
and VitD

levels < 40
ng/mL

UC 30 60,000 IU/d
for 8 days 30 placebo 17,142 IU 4 weeks ↓UCDAI;

↓CRP; ↓FC ↑VitD; =AE n.a.

Narula
2017 [103] Canada 34 in

remission CD 18 10,000
IU/die 16 1000 IU/die 9000 IU 12 months =CRP;

↓relapse ** ↑VitD; =AE 0 vs. 3 **

Dadaei
2015 [104] Ireland

108 and
VitD levels

< 30 ng/mL
IBD 53 (10 CD;

43UC) 50,000/week 55 (6 CD;
49UC) placebo 7142 UI 12 weeks none ↑VitD n.a.

de Bruyn
2021 **
[105]

Netherlands
and

Belgium

143 with
ileocolonic
resection

CD 72 25,000/week 71 placebo 3571 UI 26 weeks

=Rutgerts
score;

=IBDQ;
=CRP; =FC

↑VitD; =AE n.a.

Sharifi
2016 [106] Iran 86 in

remission UC 46 300,000
IU/90 die 40 placebo 3300 IU 3 months ↓ESR;

↓CRP ↑VitD n.a.

Mathur
2017 [107] U.S.A. 18 and VitD

< 30 ng/mL UC 10 4000 IU/die 8 2000 IU/die 2000 IU 3 months
=CRP;

=pMayo;
↑SIBDQ

↑VitD; =AE n.a.

Raftery
2015 [54] Ireland 27 in

remission CD 13 2000 IU/die 14 placebo 2000 IU 3 months
=CDAI;

=CRP; =FC;
=QoL

↑VitD 0 vs. 0
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Table 1. Cont.

STUDY Country Patients
Included Disease Intervention

Group

Vitamin D
Doses in
the Inter-
vention
Group

Control
Group

Control
Group

(Placebo or
VitD)

Difference
in the
Mean

Daily Dose
*

Follow-Up

Outcomes
(Disease
Activity
Evalua-

tion)

Outcomes
(Adverse
Events;

Vitamin D
Levels)

Relapse In-
tervention
vs. Control

Tan 2018
[108] China

91 with
VitD levels

< 20 ng/mL
IBD 23 CD

24 UC
150,000

IU/90 die
19 CD
25 UC placebo 1666 IU 12 months

=CRP;
=ESR;

=CDAI;
=pMayo

↑VitD; =AE n.a.

Bendix 2015
‡ [109] Denmark 18 CD

9 largest
VitD

increase ‡
1200 IU/die 9 seasonally

matched ‡ placebo 1200 IU 26 weeks
=CRP;
=HBI;

=CDAI
↑VitD 0 vs. 1

Bendix-
Struve

2010‡ [110]
Denmark 20 CD

10 largest
VitD

increase ‡
1200 IU/die

10
seasonally
matched

placebo 1200 IU 12 months =CDAI ↑VitD 0 vs. 1

Jorgensen
2010 [92] Denmark 94 in

remission CD 46 1200 IU/d 48 placebo 1200 IU 12 months ↓relapse
rate †

↑VitD;
↓AE 6 vs. 14

Bartels
2014 [111] Denmark 19 in

remission CD
10 with

increased in
vitD levels

1200 IU/die 9 seasonally
matched ‡ placebo 1200 IU 26 weeks =CRP

=CDAI n.a. 0 vs. 1

Karimi
2019 [112] Iran

46¶
mild to

moderate
disease

UC 24 2000 IU/die 22 1000 IU/die 1000 IU 12 weeks ↓CDAI;
↓IBDQ ↑VitD; =AE n.a.

Arihiro
2018 [113] Japan 223 IBD 108 500/die 115 placebo 500 IU 2 months

↑UCDAI;
↓Lichtiger

score;
↑VitD; =AE n.a.

*: mean dose assumed in the intervention group, calculated as follows: (Intervention VitD dose − Control group VitD dose)/days in dose interval; AE: adverse events; CD: Crohn’s
disease; UC: Ulcerative colitis; pMayo: partial Mayo score; SIBDQ: Short IBD questionnaire for quality of life; CDAI: Chron’s disease activity index; UCDAI: Ulcerative Colitis
disease activity index; ESR: erythrocyte sedimentation rate; CRP: C-reactive protein; FC: Fecal Calprotectine; QoL: Quality of Life; HBI: Harvey–Bradshaw Index; n.a: not available.
** per-protocol analysis; † p = 0.06; ‡ drawn from the same population of Jorgensen 2010; ¶: Oral nano Vitamin D. Results showed in the study: ↑ = increase, ↓ = reduction, =no difference
in the outcomes measured, respectively
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In a prospective study, Garg et al [114] used higher doses of vitamin D than other
RCTs. In the trial, 10.000 IU of vitamin D was daily provided to 10 IBD patients. The dose
was then adjusted over 12 weeks to achieve the target of 40–50 ng/mL of serum vitamin
D. A significant reduction in clinical activity score was observed both in CD and UC
patients [114]. Conversely, another RCT carried out in 27 CD patients in remission, treated
with 2000 UI/d or placebo, showed no difference in CRP, FC, CDAI, and QoL. However,
the sub-group analysis of those subjects achieving 25(OH)D concentrations of >75 nmol/L
(n = 18) compared to those who did not (n = 9), documented significantly lower CRP, higher
QoL, and a non-significantly lower CDAI in those with higher vitamin D levels [54]. All
available RCT data were pooled in three meta-analyses [115–117]. Two of them reported
that Vitamin D supplementation, as expected, improves the serum levels of the vitamin. It
also ameliorates clinical and biochemical disease activity scores [115,116]. Conversely, the
meta-analysis carried out by Guo did not confirm a decrease in disease activity indexes,
despite some decrease in C-reactive protein (CRP) levels [117]. In the subgroup analysis
including only observational studies by Guzman-Pardo, the Harvey Bradshaw Index
improved by −1.47 points (95% CI, −2.47 to −0.47, p = 0.004, I2 = 0%) in CD patients, and
high sensitivity CRP decreased in all sub-groups [115]. On the other hand, a sub-group
analysis including four RCTs that evaluated the changes in CDAI scores following vitamin
D administration did not statistically differ from controls. [115]. Therapeutic efficacy in
active disease is still unclear, but vitamin D supplementation has been reported to reduce
the relapse rate, irrespective of the duration of follow-up, or dosage [116]. The importance
of adequate levels of vitamin D is supported by observations in IBD patients treated with
biologics. Normal vitamin D levels at induction with anti-TNF-α are associated with 2.64
increased odds of remission at 3 months compared to patients with low vitamin D levels
(OR 2.64, 95% CI 1.31–5.32, p = 0.0067) [118]. Vitamin D ≤ 25 ng/mL identified patients
(6/6) losing response to biological drugs (6/50) [98]. The same holds for an increased risk
of primary non-response to vedolizumab (OR 26.10, 95% CI 14.30–48.90, p < 0.001) and
failure at 1-year follow-up (OR 6.10, 95% CI 3.06–12.17, p < 0.001) [119]. Overall, a role for
vitamin D supplementation in the therapeutic management of IBD with direct effects on
intestinal function is supported by available data (Figure 3).
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Figure 3. Vitamin D exerts its biological effects on the intestine in IBD maintaining mucosal barrier
integrity, modulating the immune system and the composition of the gut microbiota. Emerging evi-
dence suggests that vitamin D deficiency may unfavorably affect response to biological therapy, being
associated with an increased risk of both primary non-response and secondary loss of response to the
drugs. Furthermore, vitamin D deficiency may worsen corticosteroid-related osteopenia/osteoporosis
and increase the risk of immunomodulator-related infections.

Less clear are the mechanisms indirectly relating vitamin D levels, or supplementation,
and the therapeutic response to biological drugs. Heterogeneity in the study design,
including dosage and length of intervention, as well as the small series of patients, prevent
reliable conclusions (Table 2). More RCTs with adequate size and well-defined protocols
are needed.
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Table 2. Main limitations of the available studies.

Different populations
–Age

–Ethnicity
–Country

–Sun exposure
–Comorbidities

Small number of patients

Partial data according to
–Disease subtype

–Disease progression
–Medical treatment

–IBD-related surgery
–Dietary pattern

Limited data on changes in disease activity

Different vitamin D dosage regimens and treatment duration

6. Conclusions

Vitamin D plays an important role in maintaining intestinal homeostasis and mucosal
barrier integrity, besides modulating the inflammatory immune response and the composi-
tion of gut microbiota. All these mechanisms are potentially related to the development of
IBD, and some evidence suggests an influence on disease occurrence, relapse, and clinical
course. Preclinical data suggest that vitamin D/VDR signaling regulates the expression of
several components of tight junctions and adherens junctions, favoring the integrity of the
mucosal barrier. Although the direct role of vitamin D levels on mucus production has not
been documented, indirect modulation is likely.

Vitamin D regulates immunity through direct inhibition of Th1/Th17 cells, or indi-
rectly inducing IL-10-producing regulatory T cells. It also activates specialized cells like
Paneth cells in the epithelium and promotes the expression of antimicrobial peptides. Some
effects have also been described on NK cells. Vitamin D has been recently linked to changes
in intestinal bacterial composition. As the microbiota does not express VDR, the effects
of vitamin D on intestinal flora are supposedly mediated by epithelial and immune cells.
Bidirectional effects are present, resulting from VDR functions modulated by microbial
metabolites, such as butyrate. However, most studies report short-term experiments, and
what happens over a long time is yet to be defined. Most data trying to elucidate the molec-
ular mechanisms of action of vitamin D derived from studies carried out in a preclinical
setting, hampering the translation of results to IBD patients. Indeed, the effects of vitamin
D/VDR signaling in murine models indicate that following vitamin D administration the
severity of chemically induced colitis is reduced and mucosal healing processes are more
effective. Vitamin D deficiency in IBD is multifactorial, resulting from inadequate sun
exposure, unnecessary dietary restrictions, and, in some instances, impaired absorption
of nutrients. It is significantly more common in IBD compared to the general population
with potentially relevant clinical implications. Whether vitamin D shortage results from
active, long-standing disease, or represents itself a factor favoring inflammation is still
to be defined. Emerging evidence, however, suggests that vitamin D deficiency may be
implicated in more aggressive disease behavior and impaired response to biological therapy.
If this proves true a therapeutic effect of vitamin D supplementation may be anticipated.
Nonetheless, high-quality interventional RCT with an adequate baseline assessment and
follow-up documenting laboratory and endoscopic improvement following vitamin D ad-
ministration is still lacking. This leads however to a crucial unsettled point. A universally
accepted definition of vitamin D deficiency/insufficiency (optimal blood levels) in IBD is
still undefined, as the presently used normal range derives from studies centered on bone
metabolism. The circulating levels required for disease prevention and management of IBD
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still need to be defined, as well as the optimal dosage for replacement and its duration. The
vitamin D/VDR pathway represents however a promising area for further research, and a
better understanding of its functions may lead to novel therapeutic strategies.
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